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Abstract  
The mathematical method φ-transformation in which large structures are regarded as a set of 

small and simple substructures. For this, they may have some common parts, that can be 

identified and amalgamated when constructing or reconstructing an entire structure from a 

finite number of substructures. Task: To demonstrate the possibilities of this method for the 

constructing of the set of all nonisomorphic 3-minimal plane simple graphs in which the set 

of all vertices is located on the boundaries of three 2-cells and constructing the set of all 

nonisomorphic 2-minimal projective planаг graphs in which the fixed set of points is located 

on the two boundaries 2-cell or pseudo cells. Based on the method of  𝜑-transformations of 

the 3-minimal planar graphs and the 2-minimal projective planar have been established and 

modified algorithms of producing these graphs have been suggested. The main result: 

algorithms and lists of the 3-minimal planar graphs and 2-minimal projective planar with 

genus 0 or 1. 
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1. Introduction 

Let's solve the problem of analysis of a complex system synthesized from the studied simpler 

substructures in general and their application in computer sciences. We offer a graph-theoretical 

approach as a way of machine thinking or operating with artificial images-structures. It is known that 

there are mathematical methods by which large systems as structures are considered through a set of 

small and simple substructures, which may have some common parts that can be identified in the 

construction or reconstruction of the whole structure from a finite number of substructures. 

The main tool is the φ-method of creating a graph model obtained in the form of a pair of finite sets: 

sets of vertices and sets of edges to determine the relationships between the structure of vertices as 

objects. An example of this is the transformation of the main problems of system programming into 

problems of graph theory with the mathematical support of algorithms. 

The main idea of the method of φ-transformation can be interpreted as a way of inheriting a certain 

property of substructures in the whole structure depending on the properties of the connection 

(identification of given parts of pair of substructures). 

 Task. To demonstrate the possibilities of this method for the constructing of the set of all 

nonisomorphic 3-minimal planar graphs in which the set of all vertices is located on the boundaries of 

three 2-cells and constructing the set of all nonisomorphic 2-minimal projective-planаг graphs in which 

the fixed set of points is located on the two boundaries 2-cell or pseudosells. 
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The solution to our task was based on the method of graph transformations, whose founder is M.P. 

Khomenko, and the concepts he introduced. The recognition of φ-transformations of graphs was taken 

from [1]. 

Тhe structural properties of a complex system model presented in the form of a graph model can be 

studied using a simple graph G with a fixed set of points embedded in the surface on which the edges 

of the graph will be located, where S is the Euclidean plane or projective plane. The point is either 

vertex G, or the inner point of the graph of edges G. Let us consider the connected simple graph G , 

),(
10

GGG  , where 0
G is the set of vertices and 1

G is the set of edges without multiple edges and 

without loops as its 2-cell minimal embedding in the surface S. The property of minimality of the model 

graph over S will be that the graph G with the edge removed or the edge compressed into a point will 

have changed the specified numerical measure of the fixed set of points of the graph G. For example, 

model G such a property outer-planarity of the set of all vertices which located on the boundary of one 

cell is the presence of subgraphs homeomorphic to K4 or K2,3.  

This result will be useful in the systematic analysis of both graph models and their topological aspect 

which will have common properties at the edges and vertices of the graph model. 

The cylindrical graphs were introduced in [2]. There was investigated from the point of view of 

their external planarity and a complete list of 38 graphs characterized by non-cylindrical graphs as 

minor ones was obtained. 

 Results: 1) The algorithm and the list of 3-minimal graphs, namely their characterization by the 

method of φ-transformation of graphs, was given in [3], the list of 32 3-minimal graphs is given in 

[4].  2) The algorithm and the list of 34 2-minimal projective planar graphs with a fixed set of points 

of this graph’s nonorientable genera 0 or 1 are presented here. 

Application trend. An example of a possible application is the set of points placement problems or 

automatic control with subsequent access to its points. If we talk about the surface as an almost infinite 

set of values of the function of several variables on a given finite subset as a set of vertices whose 

relationship between pairs of elements as a set of edges, we have an almost embedded graph in the 

surface. If it is possible to set edges as an almost infinite subset of points and in the absence of 

intersection of edges in infinite vertices of edges, we will have an almost exact embedding of the graph 

in the surface. If the surface is spherical or resembles some extent a plane without holes, then use the 

following list of 3-minimal graphs to place on the boundaries of three cells of all vertices of the graph. 

If the surface is a sphere with a hole or to some extent resembles a plane of holes, then we use the 

following list of 2-minimal projective planar graphs to place on the boundaries of two cells of a given 

set of vertices of the graph. 

2.  3-Minimal planar graphs and non-cylindrical graphs. 

According to [3] we will consider a simple graph G to be a planar graph having the following 

properties: 1) three 2-cells at the borders of which all vertices of the graph G are located, 2) removal of 

any edge or its pinching into the point of this edge leads to the destruction of property 1).   

According to [2] we define a non-cylindrical graph NCG as a flat-integrated graph NCG having 

more than two 2-cells of the cylindrical graph on their boundaries where all the vertices of NCG are 

located. Whereas removal of any edge of graph NCG or squeezing the point of this edge leads to the 

distribution of all the graph vertices on the boundaries of two 2-cells of the cylindrical graph. 

Problem. Let us study the identity of non-cylindrical and 3-minimal dense graphs and compare the 

graphs from the given lists in figure 1 with the list [2] and the modified algorithm of building all 3-

minimal planar graphs. 

History of the problem. In [7] there is a short review of works on this problem and the similar 

problems of shunting of the lists of graphs which would play a role of non-conserved (with the accuracy 

to homeomorphism) subgraphs for the input graphs, which are checked for the presence of an analogous 

"external planarity" property for some surfaces. 

We have the following relation for the planar graphs:  

Proposition 1. All graphs from the list [4] are in the list [2], non-cylindrical and 3-minimal graphs 

are equivalent, and graphs θ6, θ7, K5, K3,3 from the list [2],  are absent in the list [4].   



We consider the modification of algorithm [4] for constructing three-minimal planar graphs, which 

was based on the inexact result of characterization of planar graphs with all significant edges with 

respect to the number of an auxiliary multiplicity of vertices equal to 3 at the operation of removing the 

remaining edge. The main idea is that such graphs have at least one homeomorphic graph subgraph and 

at most three such graphs; it is necessary to define the nature and possible variants of combining them. 

2.1. The mathematical base for 3-minimal planar graphs. 

Theorem 1. If the connected planar graph G has the following condition
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jij GGy  , where 2,1i , (if 0n  then the simple path is formed into a point 1iy );  
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jiyG  - the simple path of the graph G  of length 1n  ( 0n  the simple path is generated 

to a point 1y );  

3) Existence of  -transformation of the graph 30 GG   in the graph G by the following:  
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Proof. Let simple graph G is the connected planar with all significant edges with respect to the 

number of reachability of the set of vertices equal t 3, in the operation of removing an arbitrary edge 

and embedding Gff :,  set the attachment that implements 3)(),(
00

 tGtGt GG , 
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}{)(  iiG sGS -set of  2-cells on the border of which all vertices of the graph G . We denote by the 

)(GM  set of all the different subgraphs H  of the graph G  constructed for each pair )( ji ss , where 

ji  , of 2-cells from the set )(
0

GSG  as the smallest part of the graph G  that satisfies the ratio: 

      ijijiji dsdsHHdsG  000       jiijijj dsdsHHdsG  000
))]()( 3,24 KHKH ijij     (*). 

Denote by )(
'

GM - the least included a subset of the set )(GM , consisting of the smallest included 

subgraphs ijH  of the graph G , or parts of these subgraphs that satisfy the following conditions: 
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b) If  the subgraph ijH  (or its part) is homeomorphic to the graph which, or all the edges of the 

graph are 1-subdivided or no edge of the graph 4K  is 1-subdivided. In the future, if no reservations are 

made, we will assume that, with respect to the elements of the set '
M  and the term "subgraph" of the 

graph G , does not preclude the fact that this element may be part of the graph.  

 
Figure 1. The graph G for constructing the set M. 

 

For example, consider the following embedding of a graph G  in an Euclidean plane (fig. 1) and 

distinguish two sets 
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We prove Proposition 1). Since the graph '

4K  is a graph 4K  with all 1-subdivisions edges and will 
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  then we will have the 

inclusion GK 
'
4 . On the other hand, if GK 

'
4 , then there is an edgeu ,

'
4\ KGu  . Proposition 1) 

is proved. 

Let the graph G be nonisomorphic to the graph 
'
4K . The following two cases are possible: m), 

mM || , where 3,2m . Let there be a case 2). Suppose there is equality 
2

1}{  iiHM . Due to the 

flatness of the graph G, we have three options  -transformation  of two graphs from the set M defined 

by one of three options: 1) for two simple chains, 2) for two different pairs of simple chains, 3) for two 

simple cycles. The first option is called linear in a simple chain, the second nonlinear in two simple 

chains, the third in a simple cycle. We prove Proposition 2). We have the following two options of the 



φ- transformation of two subgraphs from the set M: 1) two simple chains, 2) two different pairs of 

simple chains. That is, we have the following relationship: ),(][
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H
aaC  is a simple chain of a subgraph kH  of  length in  with finite vertices 
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, inj )1(1 , .)1(1 ni    For 1n  option 1)  and  statement 2) in this case is proved. For 2n  we have 

option 2). We prove the right-hand side of the next double inequality 1)),((0
2

1
1  
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GHLp i
i

, because 

the left-hand side is trivial. To do this, use the method of proving the opposite. 

Assume that for a graph L - the  -transformation of a graph i
i

H
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2

1

 into a graph G given in (A), 

where ),(
2

1

GHLL i
i
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 and the inequality holds: 1)(1 Lp . Then the graph L  will have at least two 

simple circles.  Each of this circles will mean the execution of the 2)   - transformations at points on 

at least three different pairs of simple chains without common points. The first elements of each pair 

will belong to a simple cycle z of  graph 1H . The second elements of each pair will belong to a simple 

cycle 
'

z of the graph 2H .  As a result, at least three new 2-cells s with boundaries simple cycles, 

which cannot all together be the boundaries of two 2-cells js , where 
3

1

0
}{)(  jjG sGS , 3,2j . This 

means that at least one edge of the graph G  belonging to iz  one of the loops will not belong to the 

intersection of two 2-cells js , is ,, which belong to the set )(
0

GSG  will be insignificant relative 

)(
0

GtG  to the operation of its removal. Thus we will have a contradiction to the condition of 3-

minimality of the graph G . Since our assumption is incorrect, we have inequality 1)(1 Lp , which 

proves the double inequality. Since in Proposition 2) we have a transformation on one pair of simple 

chains, the proof is complete. 

We prove Proposition 3). Let's  put 3

1}{  iiHM . For  -transformation of a graph i
i

H


3

1

 into the 

graph G , only the following two types are possible:  
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into a graph G , ie on the edges (or parts of edges) of graphs iH , 3)1(1i , has the property that - the 
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 has cycles; 

b)  - transformation of non-type (A) graph i
i

H
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3

1

 into a graph G , ie it is given so that some  -

images of graphs have common simple cycles. Each pair of  -images of the graphs ji HH ,  of the set 

)(
'

GM  can have no more than one common simple cycle. Then the following statements are made with 

precision to the renumbering of the elements of the set )(
'

GM : 

1) There are elements )( iH , 2,1i , of the set )(
'

GM  with a common cycle and homeomorphic 

graphs 3,2K  that do not have common simple loops with the element )( 3H ; 

2) There are elements )( iH , 2,1i , that do not have common simple cycles, and an element 

homeomorphic 3,2K  has a common simple cycle with an element )(
2
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 Proposition 3) is proved. We prove Proposition 4). The proof will follow as a partial case from the 

above proof of statement 2) and will differ in that part concerning the necessary condition of degeneracy 

at the point of simple chains of the second pair. 

The proof of theorem 1 is complete. 

2.2.  Algorithm for constructing 3-minimal planar graphs. 

The modification of the algorithm for constructing all 3-minimal plane graphs is based on Theorem 1 

and will have the following form: 

Input data: The set L1 of all nonisomorphic chains of graphs for each of the graphs K4, K2,3, ordered 

by their length and marked for which pair of graphs the chain is taken;  

Output: the set of all 3-minimal graphs G; 

1. Construct a set L2 from all different pairs of chains of the set L1 and a set L3 from all different two 

pairs of chains from L1, as well as a set L4 composed of different pairs of elements of the set L1 that 

generate simple loops without diagonals in columns K4 or K2,3 ; 

2. While the set L1 is not empty to perform the following actions: 

      2.0. Take the element x from L1, enter the element x in the list B1; 

      2.1. L1: = L1 \ x;  

      2.2. While the set L1 \ B1 is not empty to perform the following actions: 

             2.2.1. Take the element u from L1 \ (B1 + B2), enter the element u in the list B2; 

2.2.2. We perform the identification of pairs of vertices or points of pairs of graphs (K4, K4), or 

(K4, K2,3), or (K2,3, K4), or ( K2,3, K2,3), indicated as vertices or points of chains pairs (x, u), for 

all types of possible φ-transformations of the selected pair of graphs and we obtain a graph G; 

2.2.3. Procedure (G): Define the reachability number t of the set of all vertices of graph G as 

the minimum number of simple cycles covering the set of all vertices of graph G. 

             2.2.4. If  t = 3 then perform: 

    2.2.4.1. for each edge e of the graph G perform in the loop the contraction edge e to a point  

      G: = Ge, perform the procedure 2.2.3;  

                     If  t = 3 then perform the end of the cycle on the edges of the graph G, 

                         else we derive the graph G;  

                   end of the cycle on the edges e;  

        2.3. end of the internal cycle;  

3.  end of the external cycle; 

4. While the set L2 is not empty to perform the following actions: 

      4.0. Take the element x from L2, enter the element x in the list B3; 

      4.1. L2: = L2 \ x;  



      4.2. While the set L2 \ B2 is not empty to perform the following actions: 

             4.2.1. Take the element u from L2 \ (B3 + B4), enter the element u in the list B4; 

4.2.2. We perform the identification of pairs of vertices or points of pairs of graphs (K4, K4) or 

(K4, K2,3) or (K2,3, K4) or (K2,3, K2,3). They are indicated as vertices or points of two different 

pairs of chains x and u performed on all types of possible φ-transformations for the selected 

pair of graphs and we obtain the graph G; 

4.2.3. Procedure (G): Define the reachability number t of the set of all vertices of the graph G 

as the minimum number of simple cycles covering the set of all vertices of the graph G; 

4.2.4. If  t = 3, then perform: 

          for each edge e of the graph G perform the operation of contraction to a point ;  

   G: = Ge;  perform the procedure 4.2.3; 

If  t = 3, then perform the end of the cycle on the edges of the graph G,  

else derive the graph G; 

  else the end of the cycle on the edges; 

      4.3. end of the internal cycle;  

5. end of the external cycle; 

6. While the set L4 is not empty to perform the following actions: 

      6.0. Take the element z from L4, enter the element x in the list B4; 

      6.1. L4: = L4 \ z; 

      6.2. While the set L4 \ B4 is not empty to perform the following actions: 

             6.2.1. Take the element u from L2 \ (B5 + B4), enter the element u in the list B5; 

6.2.2. We identify pairs of vertices or points of pairs of graphs (K4, K4) or (K4, K2,3) or (K2,3   

K4) or ( K2,3, K2,3) indicated as vertices of different pairs of cycles, performed on all possible 

φ-transformations for the selected pair of graphs and get the graph G; 

6.2.3. Procedure (G): Determine the minimum number t of simple cycles covering the set of 

all vertices of the graph G; 

6.2.4. If  t = 3 then perform: 

For each edge e of the graph G perform the contraction operation to a point; 

 G: = Ge, perform the procedure 6.2.3; 

If t = 3 then perform the end of the cycle on the edges of the graph G, 

                else derive he graph G;  

 end of the cycle on the edges; 

        6.3. end of the internal cycle;  

  7. end of the external cycle; 

8. end of the algorithm. 

Result: Identity of non-cylindrical graphs to 3-minimal graphs with the proof of equivalence of 

non-cylindrical and 3-minimal planar graphs, theorem 1 on the characterization of 3-minimal planar 

graphs, and a modified algorithm for constructing all 3-minimal planar graphs. The 38 diagrams of 3-

minimal planar graphs as result presented in the figure 2. 

       

      



         
 

Figure 2. The list of 3-minimal planar graphs. 

3. 2-Minimal projective planar graphs. 

Task: To construct the set of all nonisomorphic 2-minimal projective-planаг graphs in which the 

fixed set of points is located on the two boundaries of 2-cells or pseudo-cells. Similarly of this task was 

the tasks for graphs with number of vertexes less then 10 on various genus, which solved in [6], [7], 

[8]. Introduce a new characteristic that measures the some structure of the set X of points of graph G 

on S.  

Definition 1. For a given embedding f , SGf : , a graph G  in S and a given set of points  , 

10
GG   determine  fStG ,, ,  fStt G ,, , the number of reachability of the set   relative to S , if 

there is a set  GS ,   )(\ GfSSG  , which satisfies the condition:   


)(
1


t

i
i Xsf   )(

,1

Xsf
t

jii
i 



 ,

tj ,..,2,1 . We say that the set   has a reachability number t ,   tStG , ,  relative to S , if among all 

no isomorphic embedding’s  SGf : , the number t  is the smallest among the numbers  fStG ,, . We 

consider further the set  of points of the graph G  t -non-planar concerning the surface S , or ( t , S ) - 

non-planar, if  2t , where   tStG , . If   2t , S is a projective plane, and the set  is the set of 

vertices of the graph G , 0
GX  , then we will call the graph G  non-outer projective planar. A graph 

G  is outer-projective-planar if embeds on the projective plane with all vertices on the boundary of one 

distinguished cell. 

Definition 2. Suppose the embedding f , SGf : , of the graph G in surface S , which 

implements ,t    tStG , , where   )(\ GfSSG      t

iG sS
1

 . We will say that concerning a given 

surface S  the set   will have the characteristic ),,( fSXG ,  ),,( fSXG
, 1 , if there are   three 

cells  3

1іs  from the set  GS , on the boundaries of which the subsets 
i , XX i  , are placed arbitrarily 

and satisfy the relation:  }{ 121

0
assG  }{ 232

0
assG }{ 331

0
assG  , and 

generates the smallest subgraph 'G  of the graph G , (possibly degenerate), contains the points  3

1ia  of 

pairwise intersection of cell boundaries 3

1іs . The set   will have the  -characteristic )(XG  if

),(max)( fXX GG   , where the maximum is taken for all embedding’s SGf : , realizing   tftG ,  

and  fG , . 



Proposition 3.1. Each non-outer projective planar subgraph with a given set of points that are not 

located on the boundary of one 2-cell or pseudo-cell of an arbitrary graph obstruction of the projective 

plane can be represented as 1-subdivision graph K4, or a φ-image of a pair of graphs homeomorphic to 

graphs from the set {K5, K3,3, K4, K2,3, K5 \ e} when identifying pairs of points from the connection sets 

both in a path and in a cycle. 

3.1. The algorithm 1 and its mathematical base. 

Theorem 3.1. [5]. The graph G  is non-outer projective planar if and only if then vHG \ , where 

v  is a vertex of graph-obstruction H of the projective plane 1N . 

Theorem 3.2. [9] is the mathematical base for the algorithm 1 for the construction of all no 

isomorphic non-outer projective plane graphs. The list of minimal projective planar graphs with genus 

0 or 1 and fixed subsets of vertices witch has reachability number 2 or 3 is the results of the following 

modified polynomial algorithm 1.  

Begin of Algorithm 1. 

Input: The set Ρ of 35 minors Pi of the projective plane 
1

N  with equivalence classes ij
l where 





in

j
iji l

1

0 ,  ||
0

ii Pn  . 

     Output: List   of graphs. 

1.  : ; 0:v  ;  

2. For i =1 step 1 to 35, does these steps: 

     begin  

               2.1.  iPP :0  ;  

               2.2.  
1: ivv   ; 

               2.3.   procedure А( 0P ,
0 , 0

0
P ,

2N ); 

                2.4.  Output (
0

P , 


in

j
ijl

1

) in   ; 

               2.5.  For k = 2   step 1 to ||
0

P , does these steps: 

                          begin  

                           2.5.1. If   ik
vv   then go to the end of the cycle by k ; 

                                           else    

2.5.2. vPP i \:0  ;   i :0 ;  

2.5.3.   L: = Function B ( 0P , X); 

                                      2.5.4. If   L == true then   do: 

                                                  begin; 

                                                 }),(|{:
1

0PvuuM  ; 

                                              2.5.4.1. If   K (G) == 1 then do 

                                                              begin; 

                                                              procedure А(
0P ,

0
 ,M,

1N  ); 

                                                              output (
0 , M) in  ; 

                                                              end; 

                                                2.5.4.2. else do 

                                                              begin; 

                                                              procedure А (
0P ,

0 ,M,
0  );   

                                                              output  (
0 , M) in  ; 

                                                              end; 

             3. end;    

      4. end;        



End of Algorithm 1. 

 

Procedure А ( G , , M, S) do the following: 

// Must construct the embedding   of a graph G  (without vertices of degree 2) with a given number 

of vertices in the surface S (Euclidean plane, projective plane or Klein surface) and determine the cells 

on the boundaries of which are the set of vertices M //. 

 If a graph G has a subgraph or part of the graph Н is homeomorphic 
5

K or
3,3K , then we construct 

the embedding of these graphs in the projective plane, otherwise, we attach a graph to the Euclidean 

plane 0
 . In nested graphs 5K or 

3,3K a projective plane, there are cells 5s , 33s  with the following 

boundaries: 
5s - a cycle of length 5 and 5 triangles for 5K , or 

33s - a cycle of length 6 and 4 

quadrilaterals for 
3,3K , in which we will embed stars with centers taken from the subset 00

\ HG .  

First of all, we will put all these stars in cells with either cycle boundaries of length 5 for or length 

6 for and try to use no more than one additional Mobius strip glued to the cells 
5

s or 
33

s . The 

number of vertices ||
0

G  of the obstruction graph of the projective plane is at least 12. The number of 

options for the location of the centers and edges of stars, not more than 7 stars, is equal 7
r because each 

center of the star does not belong to two cells, where r the number of cells of the graph embedded in the 

projective plane 6r  for 
5

K , 5r  for 3,3K .  

The time complexity of procedure А (G , , M, S)  is proportional )(
7

rO .  

The function K (G) will determine the presence or absence of a graph G of a subgraph or part of a 

homeomorphic 
5

K  or 
3,3

K  and will give it out. To do this, we need to examine the complement of the 

G graph G for the presence of a subgraph of five isolated vertices, 5K , or two triangles without 

common vertices, i.e. 3
2K . If such subgraphs of the graph are detected, the function K (G) will give 1 

and return to algorithm 1 the found vertices as vertices of the graph 
5

K  or 
3,3

K . In the absence case 5K ,

3
2K  the function K (G) will give 0. The function В (

0
P , Х) checks for the presence of an isomorphism 

of a graph 
0

P  with another element of the set of graphs X and will have polynomial complexity [10], 

[11] herein hand checking evidence identity of amalgamating sets of isomorphic graphs.  

The part of the output result of algorithm 1 is on figures 3, 4. 

 

 

 
 

Fig. 3. Planar subgraphs of the projective minors with set M from push vertices at the boundaries of 

colored cells with the number of reachability 2 between two highlighted color 2-cells on the 

boundaries of which are subsets of the set M.  

 

       



 

 
Fig. 4. The projective subgraphs of minors of the projective plane with two non-empty subsets of the 

set M, consisting of the push vertices and located on the bounderis of the colored 2-cells or 2- cell and 

pseudo-cell). 
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