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Abstract  
The very fast technological progress provokes the creation of a big volume of the information 

that can be fed in different forms. There are various science directions that use high 

dimensional data sets for the analysis. In this paper we presented the few aspects of the 

"knowledge discovery in databases" (KDD) process related to the Data Mining stage in 

astronomy, analyzed and reviewed Data Mining approaches. We presented the examples of 

astronomical sources of Big Data, instruments, information types, processing algorithms that 

can be used for the Data Mining process in astronomy. The paper deals with applying the 

CoLiTec (Collection Light Technology) software for the online processing of the different 

types of astronomical information using the Data Mining approach. This is achieved by using 

of the developed OnLine Data Analysis System (OLDAS), which helps with solving of the 

Data Mining tasks, like clustering, classification, and identification.  
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1. Introduction 

The huge engineering revolution is closely connected with the 21st century and characterized by 

the terrific technological progress. Such progress causes the creating of a large number of the various 

data that fed in an online or offline modes in the form of data streams, predefined sets, series, video, 

etc. [1]. Such all data as a huge number of files, streams, memory grow and grow. It requires a lot of 

storage space like data centers, servers, archives [2], Virtual Observatories [3, 4], etc.  

This ability of data to grow is ahead of all computing abilities of the already existed 

computers/machines/servers. In this case the processing optimization of the data streams, sets, data is 

very important by using only required input information to help computers/machines/servers to work 

more productively. 

The data mining and knowledge discovery approaches become more and more popular and actual 

in the different research and experiments to improve productivity and efficiency of the processing 

algorithms in the different fields of interest. Astronomy as a research field of interest is not an 

exception [5].  

So, what is the data mining approach? It is a process of the information receiving from the large 

data sets by using the extracting or discovering patterns and involving the methods at the intersection 

of disciplines like computer science, statistics, machine learning and database systems. 
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The data mining carries out about the information extracting using the intelligent methods from a 

data set to transform it into the obvious structure for the further use. The data mining is an analysis 

step of the "knowledge discovery in databases" (KDD) process [6]. The full flow with all intermediate 

stages of the "knowledge discovery in databases" process is presented in the Figure 1. 

 

 
Figure 1: Processing flow during the knowledge discovery in databases 

 

The main goal of the data mining is extraction of the potentially useful information for the 

knowledge from the given large input data sets/streams/video using the appropriate associations, 

relationships, or recognition patterns [7]. Then the received data is transformed into the subsets with 

known and required structure. These formed subsets are used for the future effective analysis and 

usage. 

In this paper we presented the few aspects of the "knowledge discovery in databases" process 

related to the data mining stage in astronomy, analyzed and reviewed data mining approaches. The 

examples of astronomical sources of big data, instruments, kind of information, processing algorithms 

are provided. The goal of current research is to apply the developed CoLiTec (Collection Light 

Technology) software [8] to the data mining purposes with the astronomical images. 

2. Related Works 
2.1. Data mining in astronomy 

The data mining and knowledge discovery become areas of growing significance. Such growing 

was caused by the increasing needs for KDD techniques for the different directions, like databases, 

knowledge gathering, machine learning, statistics, data visualization, and high performance 

computing. The data mining and knowledge discovery also is highly useful for the artificial 

intelligence techniques in many areas, like industry, commerce, government, education, astronomy 

and so on [9]. 

The data mining in astronomy is a very powerful approach, which has a big potential for the fully 

exploitation the exponentially increasing amount of data and promises an excellent scientific progress. 

But with the wrong using it can be little more than the black box application of complex computing 

algorithms that can provide very questionable results. So, the data mining can be much more powerful 

tool, which is pretty good adapted for the astronomical tasks, instead of accurate selection or 

continually modification an appropriate processing algorithm. 

Nowadays, in the big data era, there are different fields in astronomy that are vital for the dealing 

with big data and data mining issues. They are astroinformatics, astrostatistics, astrochemistry, etc. 

All progressive astronomers, researchers, scientists are ready to face the technological challenges and 

opportunities provided by the massive data volume and open exciting perspectives for the new 

astronomical discoveries by applying of the advanced data mining approach. The diversity of 



scientific tasks and complexity of the astronomical big data provoke the development of innovative 

processing algorithms and methods as well as a highly usage of the Information and Communications 

Technologies (ICT) [10]. 

2.2. Astronomical big data sources 

There are a lot of different scientific programs, projects, databases, virtual observatories [4], 

services that solve different research tasks by using the data mining and "knowledge discovery in 

databases" approaches. The DAME (DAta Mining & Exploration) program includes a set of web-

based services that perform scientific investigation and analysis of the astronomical big data sets [11]. 

The engineering design and requirements are constructed on the new paradigm of web-based 

resources that realize the efficient data mining framework in the data-centric era [2]. 

The data mining problems of data analysis and visualization [12] from the huge stellar catalogues 

that contain billions of objects are more difficult because of appearing the massive data sets, like 

2MASS (Two Micron All Sky Survey) [13], WISE (Wide-field Infrared Survey Explorer) [14], ESA 

Euclid space mission [15]. Such astronomical big data is received by the modern robotic telescopes, 

like Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) [16], ESA GAIA 

(Global Astrometric Interferometer for Astrophysics) space mission [17], Thirty Meter 

Telescope (TMT) [18]. 

Especial attention can be paid to the SDSS (Sloan Digital Sky Survey) [19], as to the most 

successful sky survey in the astronomy history. The SDSS project has formed the most detailed three-

dimensional maps of the Universe with deep multi-color images of 1/3 of the sky, and spectra for 

more than three million astronomical objects [20]. 

One more interesting and more huge wide-field survey with reflecting telescope is under 

construction and called Large Synoptic Survey Telescope (LSST) [21]. It has a primary mirror with 

diameter 8.4 meters and includes three mirrors with a very wide field of view (FOV) of 3.5-degree, 

which is presented in the Figure 2. 

 

 
Figure 2: Large Synoptic Survey Telescope (LSST) 

 

The LSST science database is focused on the following goals: 

• scalability (at petabytes scales) of existing machine learning and data mining algorithms; 

• development of grid with enabling the parallel data mining algorithms; 

• designing a robust system for brokering classifications from the event pipeline; 

• indexing of multi-attribute and multi-dimensional petascale astronomical databases for the 

rapid querying; 

• multi-resolution methods (object classification, outlier identification, anomaly detection). 



3. Methods 
3.1. Mathematical processing methods 

The data mining purposes regarding the astronomical image processing are focused on but not 

limited to the following tasks: brightness equalization [22], background alignment [23], object’s 

images detection [8], moving objects detection [8], astrometry of objects (positional object 

coordinates estimation in the image that are re-calculated into the sky position) [24], photometry of 

objects (object’s brightness estimation in the magnitude) [25], the parameters determination of the 

object’s image and apparent motion [8], reference objects cataloging [26], objects recognition [27], 

Wavelet coherence analysis [28] and others. 

The data mining of astronomical images includes the different major areas of application of image 

and signal processing like the following [27]. 

• Filtering. The clear raw signals in astronomy are very rarely existed without noise, so the 

removal of noise is necessary for the future useful data interpretation. In common, the data 

cleaning is required to bypass the artifacts of instrumental measurements without changing of 

the complexity of data. 

• Deconvolution. The signal "deblurring" is also used for reasons that are very similar to 

filtering, as a preliminary to the data interpretation. Deblurring of the objects motion in images 

is very important in astronomy, as well as the removing effects of atmospheric blurring, to 

improve the quality of seeing. 

• Compression. There are several facts that show the importance of effective and efficient 

compression technology: long-term storage of astronomical data, developing of detectors for 

the ever-larger image sizes, research in astronomy is a geographically distributed activity. 

• Mathematical morphology. The combinations of erosion and dilation operators often 

provoke the opening and closing operations. So, in the greyscale/boolean images they allow 

creation of immediately practical framework for the processing. The median function plays 

such role for the order and rank functions. In this case, the multiple scale mathematical 

morphology is an immediate generalization of the astronomical images processing [29]. 

• Edge detection. The gradient information is not very popular information for the astronomical 

image analysis because of their boolean nature. So, in this case, the objects edges identification 

is used more often like curves in the image by the brightness changes or discontinuities [30]. 

• Corner detection. A group of algorithms that are used within computer vision systems to 

extract certain kinds of the features and infer contents of an image [31]. It is often used for the 

object’s recognition, object’s image registration, object’s motion detection [8], video tracking, 

and 3D reconstruction. 

• Blob (point) detection. The mathematical methods for the region’s detection in the image. 

Such regions have a difference in brightness and color that are compared to the neighboring 

regions. The blob is a region with points in which properties are constant or approximately 

constant, so all points in the blob are like each other [32]. 

• Ridge detection. The mathematical methods for the ridge’s localization in the image that 

defined as curves whose points are the function’s local maximum, like the geographical 

ridges [33]. 

• Segmentation and pattern recognition. In astronomy, the segmentation and pattern 

recognition is used for the object detection while the term feature selection [26] is more 

popular in areas outside astronomy. In common, they are used for the assignment of the 

object’s images to a proper class by the highlighting of significant features that characterize 

this class [34]. 

• Hough and Radon transforms. The detection of curves is required for the many 

segmentation classes and feature analysis. It does not matter if the signal is faint or strong, the 

noise is usually the most critical one. The Ridgelet and Curvelet transforms provide the 

powerful generalizations for resolving such problems [27]. 

The described above mathematical image processing methods are different but all of them can be 

used as pre-processing stage of the data mining of astronomical images in the processing pipeline 



before the main image processing algorithm (object’s image recognition, object detection, objects 

parameters estimation, trajectory detection, trajectory parameters estimation) is applied. 

3.2. Astrophysical processing methods 

The object classification is an important initial step in the scientific data mining process because it 

provides the algorithms and methods for organizing the scientific information in a way that can be used 

to make the appropriate hypotheses and to compare with the existing models. 

3.2.1. Star-Galaxy separation 

Because of the small physical size of stars compared to their distance from the observing point, 

almost all stars are unresolved in the photometric datasets, and thus appear as the point objects in the 

CCD-image [35]. The galaxies in common case subtend a larger angle, even when they are further 

away, so appear as the extended objects in the CCD-image. But the other astrophysical objects such as 

quasars and supernovae also appear as point objects. So, the separation of photometric catalogs into 

stars, galaxies, and other objects, is an important and difficult task.  

The huge number of galaxies and stars in typical surveys requires the morphology separation as a 

process, which is automated or semi-automated. This task is a well-studied and the several automated 

approaches for big data analysis were implemented, like for the digitization of the scanned photographic 

plates by machines such as the Automatic Plate Measuring (APM) [36] and Palomar Digital Sky 

Survey (DPOSS) [37].  

Also, the several data mining methods have already been developed and implemented using the 

Artificial Neural Network (ANN) [38], mixture modeling [39], where the most methods achieving over 

95% efficiency.  

In general, such methods are based on the astrophysical object’s classification using a set of the 

measured morphological parameters that are received from the survey photometry, with shape, structure, 

texture, inclination, arm pitch, color, resolution, exposure, colors, spectra, and other astrophysical 

information.  

The main advantage of these data mining methods is that all such information about each 

astrophysical object is easily extended and incapsulated into the massive datasets [40]. 

3.2.2. Galaxy morphology 

There is a various morphology of galaxies based on the wide range of different sizes and shapes of 

them. The most popular system of the morphological classification of galaxies is the Hubble Sequence 

of spiral, barred spiral, elliptical, and irregular, and galaxies from the different subclasses [41]. This 

system correlates to the many important physical properties in the formation and evolution of 

galaxies [42]. 

The galaxy morphology is a very complex phenomenon, which is correlated to the underlying 

physics, but it is not unique to any one given process. But, anyway, the Hubble sequence is still actual, 

even if it being rather subjective and based on the visible-light morphology, which was originally 

received from the blue-biased photographic plates.  

The Hubble sequence was extended in different ways using the data mining approach and ANN 

applying [38] to predict the galaxies’ type at low redshift and finding the equal accuracy to human 

experts. ANNs were also applied to the higher redshift data to distinguish between normal and peculiar 

galaxies. Also, the fundamentally topological and unsupervised SOM ANN was used for the galaxy’s 

classification based on the CCD-images, received from the Hubble Space Telescope [43], where the 

initial distribution of classes is not known. The approach of using the ANNs also was used to determine 

the morphological types from galaxy spectra [44]. 

For the galaxy morphology research even the Fourier decomposition was used on the galaxy images 

implemented with ANNs for the bars detection and types assigning [45]. 



4. The CoLiTec software 

The different data mining approaches for the astronomical images processing is provided by the 

CoLiTec software [8], which allows the input data processing in near real time/online mode. This is a 

very complicated system for the astronomical data sets processing, which includes the different 

features, user-friendly tools for the processing management, results reviewing [12], integration with 

online catalogs and a lot of various computational components that are based on the developed 

methods [8, 24, 26]. The processing results are also available and can be visualized. 

The high level processing pipeline with developed modules and implemented methods of the 

CoLiTec software is presented in the Figure 3. 

 

 
Figure 3: CoLiTec software processing pipeline 

 

The processing steps of the CoLiTec software in the pipeline according to the data mining 

approaches are described below. 

4.1. Pre-processing 

The pre-processing step of the CoLiTec software in OnLine Data Analysis System (OLDAS) 

mode includes the input data set processing as soon as they successfully received from different 

sources. Such raw data is moderated before the computational process starts. The unsupported and 

corrupted frames are rejected at this step. The useful information from the input data set is only used 

during the computational process. 

4.2. Clustering 

The selected useful information from the input data set is categorized into clusters using the 

specified attributes. The CoLiTec software uses the different attributes, such as equatorial 

coordinates, filter type, telescope, investigated object and others. Based on these attributes the 

necessary information from the input data set is separated into subsets with similar data and stored at 

the different distributed servers, clusters or even networks. 



4.3. Classification 

After clustering process, the created subsets of data are classified by the applying of a known 

structure of the raw astronomical data that specified in Flexible Image Transport System (FITS) 

standard by NASA [46]. FITS standard is the most used digital file format in astronomy. Such format 

is designed especial in form of the image metadata, which includes different scientific data, like 

astrometric, photometric, calibration information and others. After classification the FITS files are 

sent to the processing pipeline. 

4.4. Identification 

During processing pipeline all received classified FITS files pass through the identification step. 

At this step all FITS files related to the service master-frame are used for the frame's calibration (e.g., 

bias, dark, darkflat, flat). Otherwise, if this is a raw light frame the processing pipeline starts 

computing process. 

4.5. Processing 

The computing process in the processing pipeline is managed by the OLDAS and includes two 

stages: intraframe and interframe processing. The intraframe stage includes the various processes for 

the image filtration and objects detection. The major goal of the object’s detection in the series of 

images is to recognize the object, its borders and determine the parameters of its image [8]. 

There are a different recognition patterns or types of the astronomical objects in the image that can 

be detected: point objects, long objects, blurred objects, objects with flare or intersection with another 

objects. Such types of objects can be belonged to the galaxy, star, robot [47], drone [48], rocket, 

satellite [49], and even comet [50] or asteroid [8]. 

The features of CoLiTec software related to the intraframe stage are described below: 

• processing of the very wide field of view (FOW) – up to 10 square degrees; 

• automated calibration process; 

• cosmetic correction process; 

• FrameSmooth software for background alignment and brightness equalization [22]; 

• automated rejection of the worst observations; 

• fully automated robust algorithm of astrometric reduction; 

• semi-automated algorithm of photometric reduction; 

• automated rejection of objects with bad or unclear measurements. 

The object’s image detection process during the intraframe processing is presented in the Figure 4. 

 

 
Figure 4: The object’s image detection during the intraframe processing 

 

The interframe stage includes the various processes for detection of the objects motion. The major 

goal of the moving objects detection in the series of images is to recognize the object’s trajectory and 

determine its parameters [8]. 



The features of CoLiTec software related to the interframe stage are the following: 

• automated detection of the faint moving objects with signal-to-noise ratio (SNR) more than 2.5; 

• automated detection of very slow objects with near-zero apparent motion from 0.7 pix./frame; 

• automated detection of very fast objects with apparent motion up to 40.0 pix./frame. 

The object’s motion detection process during the interframe processing is presented in the Figure 5. 

 

 
Figure 5: The object’s motion detection during the interframe processing 

4.6. Summarization 

The data mining analysis by the CoLiTec software is performed using the following technological 

features: 

• multi-threaded processing; 

• multi-cores systems using with managing the individual treatment processes; 

• deciding system, which allows adapting the user settings for the processing; 

• notification system, which informs user about the correct results at each processing stage; 

• data control managing during processing using the subject mediator. 

After pipeline processing and data mining analysis, the CoLiTec software produces the various 

forms of results representation, including visualization results and reports generation for the different 

services. To summarize results and for the visual analysis of them, the LookSky viewer with user-

friendly GUI is used (see Figure 6). 

5. Results 

As a result, about 700,000 observations were made using the CoLiTec software with approach for 

the data mining of astronomical images. According to these observations the following discoveries 

were also done: 

• more than 1,600 asteroids; 

• 5 Near Earth Objects (NEOs); 

• 21 Trojan asteroids of Jupiter; 

• 1 Centaur (2013 UL10); 

• 5 comets (C/2010 X1 (Elenin), P/2011 NO1 (Elenin), C/2012 S1 (ISON) [50], P/2013 V3 

(Nevski), C/2017 T3 (ATLAS) [51]). 

All mentioned above observations and discoveries are approved and confirmed by the Minor 

Planet Center (MPC) as an official organization for the observing and reporting on minor planets 

under the auspices of the International Astronomical Union (IAU). 



 
Figure 6: LookSky viewer of the CoLiTec processing results 

 

Below are presented the several examples of the series of images processing after the data mining 

stage in the processing pipeline of the CoLiTec software [8]. Such data mining stage was performed 

using the astronomical information from the different astronomical archives [4] and at the real-time 

receiving of CCD-images right from the telescopes during observations. 

The few processing results of the automated calibration, cosmetic correction, background 

alignment and brightness equalization processes are presented in the Figure 7. 

 

 
Figure 7: CoLiTec filtration - frames and histogram before (left) and after (right) processing 

 



The few processing results of the object’s measurements mining, object’s image detection, and 

object’s apparent motion detection processes are presented in the Figure 8. 

 

     
Figure 8: Moving objects detection by the CoLiTec software 

 

For all detected by the CoLiTec software objects a lot of apparent motion parameters are 

determined. Some of them are the object’s velocity V in the equatorial system (right ascension RA and 

declination DE) and in the cartesian system according to two axis x and y, and the distance S, which 

was passed by the object from the first positional measurement till the last one in the observing series 

of images.  

The few processing results with the determined apparent motion parameters of the real Solar 

System objects (SSOs) are presented in the Table 1. 

 

Table 1 
Apparent motion parameters of the detected objects  

Parameters XR32 VO138 QQ47 SC50 TB80 CF52 

Brightness, mag 19.48 17.88 18.85 17.45 19.11 19.64 
V, arcsec/min 0.282 0.360 0.400 0.451 0.515 0.638 

Vra, arcsec/min 0.212 0.358 0.318 0.441 0.494 0.434 
Vde, arcsec/min 0.186 0.036 0.241 0.094 0.144 0.468 

V, pix/frame 0.921 1.175 1.305 1.467 1.683 2.084 
Vx, pix/frame 0.705 1.171 1.056 1.441 1.626 1.378 
Vy, pix/frame 0.591 0.091 0.766 0.274 0.433 1.564 
S, pix/series 2.763 3.525 3.915 4.401 5.049 6.252 

 
The values of S distance, which was passed by the different objects from the first positional 

measurement till the last one in the observing series of images, shows that such objects have near-zero 

apparent motion, and the CoLiTec software successfully detected these objects and estimates the 

positional parameters and the motion parameters. 

6. Conclusions 

The very fast technological progress, networks of automated ground- and space-based observation 

systems, new scientific programs, surveys, projects lead to the fast growing of astronomical data. 

We presented the developed CoLiTec software [8], which is used for the online processing of the 

different types of astronomical information using the data mining approaches. As described in the 

paper the knowledge discovery in databases with the data mining analysis step is applicable and very 

practical for the optimization of data stream processing and receiving only useful information. It 

allows applying only necessary input data to improve the computing abilities of machines. 

The CoLiTec software realizes different data mining principles and stages of processing, such as 

anomaly detection, pre-processing, clustering, classification, identification, processing (edge 

detection, segmentation, recognition patterns, object [52] and motion detection) and summarization. 



Such data mining principles in the CoLiTec software are implemented by the especial developed 

mathematical methods and components for the intraframe and interframe processing, astronomical 

data mining from the different on-line services, archives [2], Virtual Observatories [4], 

visualization [12] under the CoLiTec project [8]. 

The scientific novelty of the current research is that the CoLiTec software is the first astronomical 

software, which fully implements all steps according to the data mining approach and pipeline to 

process the different astronomical data. 

Using the described in the paper data mining approaches the CoLiTec software helps with 

countless observation and discoveries of SSOs, which are confirmed by the MPC and the appropriate 

Minor Planet Electronic Circulars (MPECs). 
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