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Abstract  
Pedestrian tourists are considered the most vulnerable road users of urban mobility 

environments. Tourists are a special category of pedestrians, exhibiting different visual 

behaviour to residents due to their enthusiasm and unfamiliarity with the environment. These 

characteristics of pedestrian tourists influence their hazard perception. Eye tracking technology 

became popular in investigating pedestrian safety problems after findings that eye-gaze 

behaviour is linked with human attention and hazard anticipation. The majority of eye-tracking 

studies to date use stationary technology that may miss out important properties relating to 

environmental dynamics that cannot be accurately simulated. This study employs a novel 

method utilising mobile eye-tracking technology in naturalistic settings to investigate the 

application of machine learning in identifying differences between tourist and resident 

pedestrians’ visual behaviour. Eye tracking metrics are used to train an Extreme Gradient Boost 

(XGBoost) model to examine whether tourists have less hazard perception than residents when 

visiting destinations with opposite driving conventions to their own. Preliminary results with 

a small group of tourist and resident pedestrians demonstrate how such machine learning 

models could be used in real-time by agent-based systems that utilise wearable augmented 

reality displays to support hazard perception of  tourist pedestrians.  
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1. Introduction 

Pedestrians constitute 22% of all road traffic fatalities worldwide [1].  Tourists represent a vulnerable 

category of road users due to their unfamiliarity with the environment and traffic rules at destinations 

they visit [2][3]. These, in  combination with their curiosity and enthusiasm for exploration, reduce their 

hazard perception making tourists more vulnerable to accidents. 

Hazard perception refers to the anticipation of traffic hazards, is a critical component of road safety 

and is directly linked to pedestrians’ and drivers’ visual behaviour [4].  Novice road users in comparison 

with experienced road users are less effective in anticipating safety-relevant traffic events [5][6] thus a 

need to assist novice users based on experts’ knowledge is required [4]. Tourists visiting countries with 
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different road conventions compared to those in their origin country are considered as novice road users 

since they are not familiar with neither the environment, nor the driving rules. Research indicates that 

54% of tourists experience problems crossing the road as pedestrians when they are unfamiliar with a 

country’s road convention [7]. A recent driver safety study attributed many accidents involving tourist 

drivers to attentional factors, such as increased cognitive workload and reduced hazard perception while 

adapting to new traffic environments (i.e. finding out where to look at and from where to expect 

incoming cars at intersections) [8].  Like drivers, to maintain their safety when crossing roads, 

pedestrians have to process different information from the environment such as the road infrastructure 

characteristics, traffic density, incoming vehicles direction, sounds, other pedestrian movements and 

other visual distractions such as illuminated advertisements [9]. Despite this variety of factors that 

influence pedestrian safety most studies use either surveys [10], or unrealistic synthetic environments 

through simulated experiments to draw conclusions. These approaches, however,  might miss important 

information [11] and lead to inaccurate conclusions. Recently, eye tracking technology has emerged as 

a promising method for analyzing safety by examining humans’ visual behaviour and head movements. 

This technology enables capturing richer information relevant to pedestrians’ safety after evidence 

linking eye movements with attention. Therefore, what we are looking at often corresponds to what we 

are attending cognitively. Mental attention is a cognitive resource that is limited and is consumed when 

processing visual information. Changes in cognitive effort are manifested through changes in the 

physiology of the human eye such as pupil dilations that regulate the amount of light that enters the eye. 

Pupils’ dilations have also been linked to cognitive factors such as workload, surprise, attention, 

emotional arousal [12] and hazard anticipation[13]. Therefore, eye tracking data can be used to reveal 

information about mental processes, which are not easily accessible through behavioural performance 

measures alone. Most eye tracking studies, however, use stationary eye tracking in a lab with a computer 

screen as the visual scene to be analysed. Such artificial settings suffer from low realism.   

In this study, we use mobile eye tracking equipment (i.e., Tobii glasses) to investigate differences 

between two groups of participants (i.e., residents and tourists) during a road crossing scenario and use 

eye tracking metrics  to train a machine learning (ML) model to analyse hazard perception. This is a 

continuation of our previous work  in naturalistic eye tracking [14]. The main aim of the study is to 

investigate how the  visual behaviour of resident and tourist pedestrians differs when it comes to hazards 

and how tourists hazard anticipation can be enhanced in real time using wearable technology and tacit 

knowledge (visual behaviour for improved hazard perception) from expert road users. Due to the large 

volume of data generated by eye tracking equipment the use of ML is utilised in this study to assist in 

automating the hazard perception support of pedestrians. A popular classification technique is used, 

namely, XGBoost, to train a model and evaluate its patterns to identify differences between tourists and 

residents. Such models can be utilised by autonomous agents in transportation networks to evaluate the 

state of pedestrians’ hazard anticipation in real time.  

The study proposes the use of Wearable Augmented Reality Displays (WARD) equipped with eye 

tracking capability to assist in pedestrians’ hazards anticipation. WARD can overlay the physical world 

with digital content and thus can provide users with important safety information. They have been 

recently used to enhance the situation awareness of highway workers[15] and in other applications such 

as healthcare [16]. The analysis highlights ways to enhance tourist safety by analyzing eye gaze, eye 

pupil and head movements data through ML techniques and the use of such models in prospective multi-

agent systems that would utilise WARD and Fog/Edge computing to process and store data [17], and 

make inferences about hazard anticipation of pedestrians. 

The paper is organized as follows. The next section describes the literature relating to workload, 

hazard anticipation and use of eye tracking techniques for their assessment. This is followed by a section 

describing the methodology followed by the data preprocessing and training of an XGBoost model. The 

paper concludes with preliminary results, a discussion and conclusions. 

2. Literature Review 

Pedestrian safety countermeasures usually include infrastructural changes or policies [2]. These, 

however, are expensive and time consuming. Alternatively, technological developments such as 

Intelligent Transportation Systems that integrate information and communication technologies within 



the transportation infrastructure can provide real time information to road users through software agents 

running on the Fog/Edge of a computer network, offering time-sensitive and location-based services 

for autonomous vehicles or WARD agents as in our case [31].  

Currently, in-vehicle information systems are becoming popular means for improving driver hazard 

perception, and the same principle could be applied for pedestrians. Such systems are designed based 

on knowledge from safety literature highlighting that visual and auditory clutter overloads drivers and 

pedestrians, and in combination with distractions (i.e., advertisements, cell phones, in-vehicle 

conversations, billboards, etc.) can interfere with visual search strategies [19] such as, where to focus 

attention to infer information necessary to maintain safety and anticipate risk. These, in combination 

with traffic rules and environment unfamiliarity,  can increase the risk of accidents [20]. This risk 

becomes critical when pedestrians are crossing roads or engage with new road infrastructure where 

hazard perception is key [21]. Tourists are more vulnerable to overloading due to unfamiliarity with the 

environment and the driving conventions which decreases their hazard perception [3].  

Cognitive workload and hazard perception of pedestrians can be measured in different ways. 

Methods are usually categorized into subjective, performance-based, and physiological. Subjective 

techniques, including surveys, are commonly used in safety research, with NASA task load index being 

a popular option. Performance-based measures are usually classified in terms of primary and secondary 

task performance where users are engaged in a secondary task to the main task and through its 

assessment the level of workload can be inferred, since it shows user’s spared cognitive capacity; 

examples of such measures include vehicle lane departures, lateral deviations, task completion time, 

reaction time, accuracy, and error rates, with poor performance indicating that a driver is overloaded. 

Physiological measures encompass audiology, cardiovascular, respiratory, neurophysiology, and 

ophthalmic physiology [22]. The latter refers to metrics of pupil dilations, and is the method used in 

this study. Physiological methods are advantageous, because they can assess workload and hazard 

perception in real-time since increased workload or anticipation of hazard evoke small and involuntary 

fluctuations in pupil dilation due to the attentional demands imposed by a cognitive task [23].  

Pupil dilation is considered a reliable and valid psychophysiological measure of the amount of 

cognitive effort devoted to a given visual stimuli and a suitable indicator for hazard perception [24]. 

Techniques for assessing workload using pupillometry include the task-evoked pupillary response [25] 

and the index of cognitive activity (ICA) [12]. Both refer to variations in dilation as reactions to 

cognitive processing.  Hazard perception can be assessed in addition to pupillometry using metrics such 

as fixation count on certain areas of the visual scene (i.e., Areas of interest), fixation duration, time to 

first fixation, fixation heat map, scan-paths, etc.  

When it comes to designing solutions to tackle safety, eye tracking insights can be used for 

specifying and validating requirements in of prospective systems, with methods such as the one 

presented in[18] demonstrating the optimization of an information system’s user interface based on 

knowledge extracted from eye tracking experiments.  

2.1. Eye tracking and Visual behaviour 

Visual attention refers to the cognitive processes that guide the selection of relevant information 

from visual scenes and the filtering out of irrelevant information. Numerous studies agree that where 

we direct our eyes, and for how long often correlate with  attentional selection and information 

processing [26]. Eye-tracking technology has gained popularity in different safety and consumer-related 

disciplines, due to its ability to provide accurate information on visual attention of participants in 

experiments. Attention is expressed in the form of fixations (i.e., periods when eyes are relatively still 

and the visual system absorbs information about what is being looked at) and visualization patterns 

represented by saccades, which refer to fast eye movements between stimuli.  

Most eye-tracking studies assume that humans process the visual information they focus on [27], 

also known as the eye-mind hypothesis [28] with Hyönä [29] reporting this is true when the visual 

environment in front of our eyes is relevant to the task we are about to perform.  

Eye tracking technology can be used alone or in combination with other physiological measures 

such as electrooculography.  Alone they can measure participants’ attention in a visual environment 

through 1) eye fixations in Areas of Interest (AOI) that denote important areas in a visual scene (e.g., 



hazard perception indicators in this study), 2) saccadic behaviour that indicate visual exploration or 

confusion, 3) goal seeking behaviour through scan-path analysis of transitions of fixations between 

AOIs, and 4) head movements and acceleration in three axes as used in this study.  

Eye tracking data is obtained on a millisecond basis therefore millions of observations can be 

recorded which makes the analysis of such raw data difficult. Eye tracking software can provide support 

for this process, but this is limited to generic features that might not fit the needs of the researcher/user.. 

Therefore, researchers use ML to analyse raw eye tracking data to generate new features from the data. 

Example ML applications on eye tracking data include classification problems from different domains 

including safety, psychology and systems design. No work however has been reported on using mobile 

eye tracking with ML on pedestrian hazard perception.  

On the contrary the applications of eye tracking in safety related studies mainly used stationary 

apparatus with static imagery [30]. Mobile eye tracking studies are limited due the complexity of 

analyzing the data and difficulty in controlling confounding variables but can collect richer data and 

can be used to explain pedestrian safety issues in a more holistic manner. Alternative methods to eye 

tracking include pedestrian observation from cameras or pedestrian simulators with limited pedestrian 

movement [11]. The latter though suffers from a limited level of realism that could lead to biased 

conclusions.  

Recent efforts to improve pedestrian safety focus on increasing pedestrians’ situation 

awareness/hazard perception through assistive wearable technologies and sensors. Such systems 

identify potential dangers and provide warnings.  Eye tracking results from this study can be used to 

infer the information needs of pedestrians and thus assist when designing new pedestrian safety 

technologies such as wearable augmented reality glasses by minimizing the design space exploration 

of potential technological solutions. However, more in depth understanding of such designs can be 

achieved when both simulations and naturalistic visual behaviour analyses are combined, as in this 

study. The latter can explore the problem in its natural settings to identify main requirements which  

can be then refined and evaluated through simulations.   

3. Methodology 

This study proposes a novel analytical framework for pedestrian safety analysis based on explainable 

ML models with mobile eye tracking data extracted from a road crossing experiment with six 

participants in naturalistic settings. The technique used to assess hazard perception is based on pupillary 

variations when fixating in AOI linked to hazardous areas in the visual scene. The method consists of 

six steps: (1) designing the experiment, selection of road section and specifying the hazard AOIs; (2) 

participant selection, familiarization with equipment and procedure, conducting the experiment and 

collecting the data; (3) selecting the set of eye movement variables from the raw data that are relevant 

to hazard perception and cognitive workload; (4) pre-processing data associated with hazard AOIs; (5) 

Train an XGBoost classifier to identify patterns that explain the link between the selected variables and 

the target variable  (tourists or resident pedestrians); and (6) interpreting the learned XGBoost model 

using an explainable ML method to highlight differences among the two groups.  

3.1. Participants and Procedure 

The experiment used a targeted sample of participants. Six healthy participants (3 male and 3 female) 

with an average age of 35 years (standard deviation of 7.19 years) participated in this study. Three 

participants were tourists from a country with opposite driving rules to Cyprus and the other three were 

residents of Cyprus familiar with the rules and area where the experiment was conducted. The purpose 

and procedure of the experiment were explained to participants in advance, and it was made clear that 

they could abort the experiment at any time. Participants were given enough time to familiarize with 

the Tobii glasses prior to undertaking the experiment. The eye-tracker was calibrated for each 

participant prior to the experiment. The selection of the experiment’s location was based on tourist 

visitation data obtained from local authorities. The road section (Figure 1) includes a one-way road 

enclosed by buildings (occluded) with no visibility of incoming vehicles from side roads until the 

pedestrians reached the intersection points (kerb), to avoid providing any advance information to 



participants regarding imminent vehicles and hence test their vigilance level and visual behaviour at 

kerb (K). The road section had no clear indication of incoming vehicle direction, hence helped to convey 

visual scanning behaviours from habitual knowledge of participants from different driving conventions, 

that might expect incoming vehicles from specific direction. To minimise the effect of confounding 

variables such as different traffic flow for each participant, the experiment was conducted when the 

road section under study was closed for planned road works (2 days) but not at the points of interest 

and not visible by the participants.  Neither the residents nor the tourists were aware of this closure so 

as not to influence their visual behaviour. Participants engaged the pre-specified route of Figure 1, with 

a free walk scenario (observe stimuli as they do normally ), crossing the road at the point shown in 

the figure. The flow of vehicles in this road section is indicated with the blue arrows. 

 

  
Figure 1. Left: Road section and path that participants had to follow (red arrows,  allowed vehicles 

flow in blue arrows, kerb indicated by the letter K). Right:  Wide angle view of the infrastructure on 

the kerb with the hazard AOI as an overlay polygon and the path participants followed in dotted 

arrows. The name of the shop has been blurred for anonymity purposes(gray rectangle).   

3.2. Extracting patterns from XGBoost models 

Data from the experiment were used to train a ML model that allowed the automated identification 

of patterns from the large amount of eye tracking data. ML techniques  are classified into supervised 

and unsupervised techniques, the former requiring labelled data while the latter not, and they are applied 

into two broad types of problems, namely classification (e.g., predicting the probability that an input 

set of data is associated with a categorical output variable) and regression (e.g., predicting the value 

rather than a category) problems. ML techniques have been applied on eye movement data from 

cognitive science and other domains to classify human performance on cognitive tasks. In ML, features 

correspond to measurable properties that best characterize the problem under study.  

The classification technique employed in this study is used to classify participants based on eye 

tracking data into tourist or residents and in this way identify patterns that characterize each group. For 

this task a binary Extreme Gradient Boost (XGBoost) [32] model was developed in Python. XGBoost 

is a newer version of the gradient boosting decision tree model and has been extensively used in various 

problems including human performance due to its excellent performance by preventing overfitting with 

regularization and computational efficiency. XGBoost is an ensemble method since it combines 

multiple classification and regression trees, each composed of several nodes that represent variables in 

the dataset. During XGBoost, multiple decision trees are trained, with each tree built based on the result 

of the previous developed tree. 

 The binary XGBoost was trained to predict hazard anticipation using as features the visual 

behaviour data of participants in the road crossing experiment. In this work, for each participant several 

observations were made by the eye tracker regarding participants’ eyes and head movements every 

millisecond. These were set as initial features of the classifier and were refined afterwards through 

feature selection while developing the model. 

Although ML algorithms have been proven effective in prediction problems, when it comes to the 

interpretation of their results they are classified into white and black box techniques [33]. Black box 

techniques such as the XGBoost ensemble method used in this work and deep neural networks, can 

produce better results in terms of performance but provide little insights into how they come up with 

the outcome. Thus, they suffer from low interpretability. This is important in situations such as the one 
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presented in this study where the reason that cause low hazard anticipation is key to specifying the 

requirements for future solutions to this problem.  

A popular method for black box explanation used in this study is the SHAP (SHapley Additive 

explanation) technique that is based on cooperative game theory  [34], and allows black box ML models 

to explain the impact of input variables on the model’s outcome. SHAP is used to extract the patterns 

of the trained XGBoost model. 

3.3. Outcome variable and data labelling 

An XGBoost classifier is trained  in this study with outcome class variable being the tourist/resident 

property of participants and predictors their eye tracking observations. The class variable was annotated 

using the Tobii Pro Lab software based on the tourist/resident status of participants. 

Independent variables or features used to train the model included eye movement parameters 

relevant to cognitive effort and hazard anticipation based on the literature. The initial features were 

developed using statistical properties of raw eye tracking variables  such as mean and standard deviation 

of fixation coordinates (on 2 dimension space), pupillary and head movement data. Pupillary data was 

selected for fixations data points only, to account for points in the visual scene that participants attended 

cognitively. Additional features were the average duration values for fixations, and their normalized 

metrics by dividing the total duration of each parameter by the total time participants took engaging the 

intersection. Other pupillary features were the standardised pupillary score and the pupillary moving 

standard deviations. Head movement data was collected from the glasses’ gyroscope readings 

(degrees/s) with regards to lateral and vertical head movements (yaw, pitch). 

 As a hazard perception feature we considered the successful fixations of participants in an area of 

the road from where potential hazards could occur [35], and these have been prespecified by the 

researchers based on incoming vehicles, bicycles and mopeds direction. Fixating on the area where a 

hazard may occur does not always indicate that the hazard has been anticipated, however, studies [36]  

have shown that most glances in that area occur because the road user is anticipating the hazard. Thus, 

the hazard anticipation variable was determined from pedestrians’ fixations on specific intersection 

areas and was coded from the recorded eye tracker videos and the raw data that were collected by the 

device. Specifically, to code the hazard AOIs a predetermined hazard zone was defined on the visual 

scene coordinates, that refer to the position of incoming vehicles (Figure 1). Anticipatory glances were 

labelled accordingly based on participants’ fixations in these hazard AOIs. Tobii Pro Lab software 

allows the mapping of eye  gaze/fixation data onto still images (2D) such as snapshots of the 

environment under study (road crossing in our case)  and thus hazard hits could be assessed using AOI 

coordinates on this image. 

3.4. Data pre-processing 

Raw data from the eye tracker consisted of multidimensional time series data of all variables of 

interest (262K rows of data tuples for all participants during their interaction with the road crossing 

scenario) collected approximately every 20 milliseconds (50Hz sampling rate) and containing 

information about, horizontal, vertical head movements, head accelerometer data, fixation coordinates 

on x and y axes, fixation duration, eye gaze direction on x, y axes,  eye gaze coordinates, saccades, AOI 

(Hazard areas) hits, pupil diameter, and  pupil assessment confidence (indicator of the eye tracker's 

level of confidence it is correctly measuring the pupil). For the road crossing scenario only tuples that 

fall within the time interval in which pedestrians engaged with the road crossing scenario were selected, 

resulting in 62K observations from the initial dataset, thus eliminating irrelevant data prior to 

participants entering the scenario zone. The time intervals were specified in the Tobii pro lab software 

prior to extracting the raw data.  Tuples’ timestamps were used for filtering the eye tracking data.  

Additional filtering activities were performed to ensure sufficient eye tracking quality. Thus, all data 

points with low pupil confidence (estimated by the eye tracker) were removed. To normalize the data, 

the z score, mean and median values were extracted and used as additional features during the ML 

training, to find the best fitting for the problem. Raw data pre-processing was performed in Python. 



To identify differences in hazard perception and workload level  among the two groups, the number 

of variations in pupils’ diameter in the timeseries was used similarly to [12]. The points of interest in 

the pupils’ time-series data refer to temporal sections with increases/decreases of pupil’s diameter 

which indicate participants’ cognitive processing due to hazard anticipation. We hypothesize that, since 

the pupillary data selected for processing are the ones associated with hazard AOIs, the pupillary 

variations are a response to hazard perception for those AOIs.  To achieve this the moving standard 

deviation approach is employed with a sliding window on the pupillary timeseries (Figure 2). This was 

essential to minimise noise and highlight pupilar variations relevant to hazard perception. Thus, the 

higher the pupillary variations the higher the hazard anticipation. The size of the sliding window was 

identified after trying a range of window sizes until the points of high variability became apparent and 

the trained ML model produced best predictive performance.  

 
 

Figure 2. Example use of moving standard deviation on a portion of the pupil dilation data of one 

participant. Top series(blue) refer to raw data and bottom to moving standard deviations used later as 

one of the features in the XGBoost model training. 

 

Head movement data was also collected corresponding to gyroscope measures, yaw-movement 

(turning of the head sideways), pitch-movement (nodding the head up/down), roll-movement (tilting 

the head to the side). Positive yaw values denote high lateral head variability, when participants were 

turning their heads at the kurb possibly to scan for hazards. A positive slope in the yaw data denotes 

turning the head to the right and a negative slope turning to the left. The accelerometer measures the 

acceleration of the head unit and denotes the speed with which the head turns due to surprise. 

Acceleration is measured along three axes in the head unit coordinate system in m/s2. Head movement 

data was also essential in assessing participants hazard perception. 

3.5. Training the XGBoost model 

The XGBoost model was trained using the data described in the previous section. During XGBoost 

training, firstly, we specified the classifier’s performance metric to optimize. In this case, since the 

output variable is binary (tourist/resident) and we wanted to maximise the performance of the model in 

predicting both states of the class variable while also addressing class imbalances, the metric we used 

was the Area Under the Curve (AUC). During model learning the data was split into training and testing 

sets. A 70/30 stratified training-test set split, meaning that 70% of data was used to train the model and 

30% was used to validate the model's accuracy after training. This split was stratified, which means that 

both the train and test set maintained a roughly equal proportion of data of both classes (tourists, 

residents). The trained XGBoost model achieved an AUC of 0.89 which demonstrates the predictive 

performance of the model. 

During model optimization, hyperparameter tuning was performed using an exhaustive search 

approach (GridSearch). The best performing model is selected based on the hyperparameters and 

features that maximise AUC. Feature selection is an important step in training a model in ML that 

evaluates the importance of each feature (eye tracking variable) on classifiers performance. During 
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feature selection several variables were eliminated using the ANOVA F-test and the Scikit-learn 

SelectKBest function. 

4. Results 

Since XGBoost is not considered an interpretable model, it was imperative to use the SHAP 

technique [34] that  visualizes the contribution of each input feature. A SHAP value is assigned to each 

of the model’s features based on its marginal contribution to the model’s output.  

The SHAP summary plot depicted in Figure 3 shows the features based on their importance in 

classifying tourists/residents. The red color presents a larger value of the feature, while the blue 

indicates a smaller value.  The horizontal axis represents the SHAP value of each data point. A positive 

SHAP value on X-axis demonstrates the increase in probability (log odds) that the data belong to a 

tourist rather than a resident participant, while negative values imply that the subject is a resident. This 

diagram enables us to visualize the relationships between feature values (i.e., red/blue/purple dots on 

the horizontal lines next to each feature representing the intensity of the feature value) and their 

associations with the output variable(resident/tourist). The impact of each feature on the output variable 

can be examined further using the dependency plots depicted in Figure 4 where feature’s values is 

plotted on the x-axis and the SHAP value of the feature on the y-axis. Dependency plots enable analysts 

to drill down into each feature to examine how the feature interacts with the output variable and with 

other model variables. 

  
Figure 3. SHAP summary plot with features on Y axis and probability of belonging to either state 

of the target variable on x axis 

 

From the summary plot it can be observed that pupil variability (Pupil feature in figure 3) is the most 

influential feature in the model for the data associated with the hazards’ AOI under investigation. 

Increased pupil variability (indicated with red colour observations)  is associated more with residents. 

This indicates that the residents are more aware of the road hazards at the intersection, and they are 

anticipating them. On the contrary, tourists show low variability on the hazards AOI. Cyprus follows 

the right-hand driving convention while all tourist participants were familiar with the left-hand drive 

convention. This difference in prior knowledge resulted in tourists failing to attend the safety relevant 

areas when crossing the road which highlighted the need for information support in the form of warning 

when incoming vehicles or mopeds are electric and thus silent. 

With regards to fixations on the x-axis  (with [0,0] being the upper leftmost point on the coordinate 

system, the values of x refer to x after subtracting the mean value of x),  since high values of x are 

associated more with residents, this denotes that residents were fixating more on the right side of the 

intersection that was associated with the path that they had to follow according to Figure 3. High lateral 

head movement (Yaw) and  high head acceleration (Accelerometer X) were associated more with 

residents than tourists which indicate that residents were more vigilant and were scanning the area for 

hazards with rabid lateral head movements, in contrast to tourists that scanned the area less. Similarly 
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high head pitch movements were associated more with residents than tourists that pitch with less 

intensity but more often possibly to regularly check the surface where they were walking. 

A drill down analysis of the summary plot is performed using the dependency plots of Figure 4. This 

show the link between pupil variability and class variable (resident/tourist on Y axis), in the bottom 

chart. Thus, when the pupil variability increases, the odds of being a resident pedestrian also increase, 

which denotes that those resident participants have better awareness of the hazard since they attend and 

process the hazard AOI more. The dependency plot also show the interactions between Yaw movement 

and pupil variability that confirms that residents are more vigilant with more lateral head movements. 

This top chart in Figure 4 show that high pupil variability(bright red dots as opposed to blue/purple)  is 

associated more with lateral head moves for resident pedestrians rather than tourists. 

 

  

 
Figure 4. Dependency plots of pupil variability(bottom)  with class variable’s odds on y axis 

(resident/tourist), and lateral head movements(top) with pupil variability and class variable (top). The 

dotted line distinguish residents from tourists scores. 

5. Discussion and Implications 

These findings provide novel insights to understand the heterogeneous impacts of pupil and head 

movement on hazard perception using the SHAP method. The results point to the conclusion that 

tourists' hazard anticipation needs to be supported. Different techniques to alert pedestrians of imminent 

threats include the use of auditory, vibration and visual cues. The former two fail in accurately orienting 

the attention of pedestrians on the direction of the risk, thus the use of visual cues in WARD is 

recommended. 

Traditional approaches to pedestrian safety challenges, such as infrastructural changes, are 

expensive and sometimes less desirable. For instance, the “look left/right” road markings in pedestrian 

Tourist 

Resident 

Tourist 

Resident 



crossings can warn the pedestrians but such signs do not exist in all road sections, plus they warn only 

if the pedestrians attend this information. WARD can resolve these issues through dynamic virtual signs 

that attract attention and could be part of a multi-agent system. Such intelligent multi-agent 

transportation systems can integrate information and communication technologies within the 

transportation infrastructure to provide real-time information to road users through software agents 

running on the Fog/Edge of a computer network, offering time-sensitive and location-based services 

for autonomous vehicles or WARD agents as in our case [31]. A conceptual model of  a multi-agent 

system  that could be utilised in the scenario presented in this study is depicted in Figure 5. WARD 

agents communicate with   intersection agents on fog/edge servers that can store and process real time 

data from the WARD agents and make predictions (using trained ML models) of the likelihood that 

pedestrians will miss a hazardous event and accordingly provide them with warnings. WARD agents 

will have  data collection and visualization functionalities. The training of the ML models could be 

performed on the edge/fog using as training data the eye tracking/head movement observations of all 

pedestrians, their geolocation and road infrastructure scene properties (from WARD) using object 

detection capabilities as proposed by [16]. Data can be labeled based on pedestrians’ status (expert 

residents or novice/tourists).  

Edge/Fog

Expert

WARD

Expert

WARD

Novice

WARD

Intersection Agent

ML model 
Training 

Inference 
engine

Data pre-
processing 

Data

 
Figure 5. Conceptual model of a multi-agent system for pedestrian hazard perception support 

6. Conclusions 

This work proposes an analytical method for evaluating the hazard perception of pedestrians using 

mobile eye tracking in naturalistic settings. This work constitutes one of the few studies that use mobile 

eye tracking in naturalistic settings for pedestrian hazard perception. The study verifies the hypothesis 

that resident pedestrians attend more safety-relevant information than tourists and highlights important 

information-needs of tourists compared to residents in order to maintain adequate hazard perception.  

The results of this study provide evidence of several issues with regards to tourist pedestrian safety, 

that points out the need for hazard anticipation support using WARD and trained ML models that utilise 

eye gaze and head movement observations. The study proposes the assessment of pedestrians’ hazard 

perception in naturalistic settings through the utilization of a multi-agent system and fog/edge 

computing. Future directions, include the simulation of a prospective muti-agent WARD system 

architecture using a pedestrian scenario to verify its utility and response time performance. 
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