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Abstract
The goal of speech emotion recognition (SER) is to identify the emotional aspects of speech. The SER
challenge for Brazilian Portuguese speech was proposed with short snippets of Portuguese which are
classified as neutral, non-neutral female and non-neutral male according to paralinguistic elements
(laughing, crying, etc). This dataset contains about 50 minutes of Brazilian Portuguese speech. As
the dataset leans on the small side, we investigate whether a combination of transfer learning and
data augmentation techniques can produce positive results. Thus, by combining a data augmentation
technique called SpecAugment, with the use of Pretrained Audio Neural Networks (PANNs) for transfer
learning we are able to obtain interesting results. The PANNs (CNN6, CNN10 and CNN14) are pretrained
on a large dataset called AudioSet containing more than 5000 hours of audio. They were finetuned on
the SER dataset and the best performing model (CNN10) on the validation set was submitted to the
challenge, achieving an 𝐹1 score of 0.73 up from 0.54 from the baselines provided by the challenge.
Moreover, we also tested the use of Transformer neural architecture, pretrained on about 600 hours of
Brazilian Portuguese audio data. Transformers, as well as more complex models of PANNs (CNN14), fail
to generalize to the test set in the SER dataset and do not beat the baseline. Considering the limitation of
the dataset sizes, currently the best approach for SER is using PANNs (specifically, CNN6 and CNN10).
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1. Introduction

Speech emotion recognition (SER) aims at identifying the emotional aspects of speech inde-
pendently from the actual semantic content. SER can be used to identify the emotions of
humans, e.g., when using mobile phones, an ability that may become crucial in improving
human-machine interactions in the future [1]. Several efforts to acquire speech data classified
with different emotional labels have been undertaken [2, 3, 4]. These datasets are typically small
in size, even for languages such as English. In order to tackle these datasets, the use of transfer
learning and data augmentation techniques may be instrumental.

Transfer learning is the method of training a network on a particular problem where there is an
abundance of data, with the goal of using the acquired knowledge to obtain better performance
on a related problem with limited data available. Transfer learning has been effectively used
in many fields of deep learning such as computer vision [5] and language modelling [6]. Data
augmentation is the method of increasing the amount of data available by slightly modifying

Proceedings of the First Workshop on Automatic Speech Recognition for Spontaneous and Prepared Speech Speech
emotion recognition in Portuguese (SER 2022), co-located with PROPOR 2022. March 21st, 2022 (Online).
$ marcelomatheusgauy@gmail.com (M. M. Gauy); mfinger@ime.usp.br (M. Finger)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:marcelomatheusgauy@gmail.com
mailto:mfinger@ime.usp.br
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


copies of the data. This can be done, for example, by masking parts of the input or by adding
Gaussian noise to it.

In this paper, we use transfer learning and data augmentation techniques to study SER in
Brazilian Portuguese speech. We participate in the shared task SER challenge, a challenge for
Brazilian Portuguese speech emotion recognition. This challenge made available a labeled
dataset of 625 audio files as training set for SER. Moreover, a dataset of 308 files was made
available as the test set. The training and test datasets consisted of short snippets of Brazilian
Portuguese speech, usually less than 15 𝑠 long, labeled neutral, non-neutral female and non-
neutral male (non-neutral for audios containing laughs, cries, etc).

For transfer learning, we employ Pretrained audio neural network (PANN) [7], which are
convolutional neural networks trained on a large dataset of audios (AudioSet [8]), consisting of
1.9 million audio clips distributed across 527 sound classes. By using the pretrained models
made available by the developers, and finetuning on the SER dataset for Brazilian Portuguese
speech, we are able to beat the proposed baselines of prosodic features and wav2vec features.
We achieve (via CNN10) F1-score of 0.73, up from 0.54 from the baselines. During finetuning,
we employ a data augmentation technique called SpecAugment [9].

We also tested the use of Transformer neural networks, pretrained on a large amount of
Brazilian Portuguese audio data [10]. However, we find that, with the current amount of available
data for SER, Transformers do not generalize their training performance to the validation and
test sets. This holds even while using most common techniques to prevent overfitting. The
same behaviour was also observed for more complex PANNs, such as CNN14.

2. Related Work

There is a large literature on SER in English [11, 12, 13, 14, 15, 16, 17, 18]. Moreover, there are a
lot of small datasets for SER in English, such as, RAVDESS [2], SAVEE [3] and IEMOCAP [4]. To
the best of our knowledge, the SER dataset for Brazilian Portuguese speech is the only available
dataset on the language. In addition, English datasets are usually classified in a different set of
labels. RAVDESS [2], for example, has the classes of calm, happy, angry, sad, fearful, surprise
and disgust. This contrasts with the classes of neutral, non-neutral female and non-neutral
male present in the SER dataset for Brazilian Portuguese speech. As such, comparisons of our
work with the state of the art in English language are not really possible. Nevertheless, the
authors of [18], the most recent work, obtain an average recall on RAVDESS of 84.3 percent
using wav2vec 2.0 [19]. On IEMOCAP, they obtain an average recall of 67.2 percent, also using
wav2vec 2.0.

Transfer learning is a very common technique in situations where the dataset available is small
in size. It has been effectively employed in computer vision [5, 20], language modelling [6, 21]
and audio tasks [7, 22, 18]. In the original PANN paper [7], authors propose several convolutional
neural networks pretrained on AudioSet which can be finetuned on other smaller datasets. In [18]
the authors use wav2vec 2.0 pretrained on Librispeech and finetuned on either RAVDESS or
IEMOCAP for speech emotion recognition. Finally, in [22] the authors provide a comprehensive
review on transfer learning methods used for speech and language processing tasks.

https://sites.google.com/view/ser2022/shared-tasks


3. Methodology

3.1. SER Dataset

To perform SER on Brazilian Portuguese speech, we use the training dataset (CORAA SER
version 1.0) provided for the challenge. This dataset was built from the C-ORAL-BRASIL I
corpus [23], with 625 audio files, typically less than 15𝑠-long, containing informal spontaneous
Brazilian Portuguese speech. These audio files are labeled neutral, non-neutral female, non-
neutral male. An audio is labeled non-neutral male if it is a male speaker and it contains
paralinguistic elements in the speech (such as laughing, crying, etc). Similarly, an audio is
labeled non-neutral female if it is a female speaker and the speech contains such paralinguistic
elements.

We split the official training dataset into training (80%), validation (10%) and test sets (10%).
The split was done in an arbitrary way to ensure that the three datasets were balanced (i.e.
contained relatively the same proportion of neutral, non-neutral female and non-neutral male
files). The training dataset consisted of 500 files, the validation dataset consisted of 63 files and
the test set of 62 files. The results we report are for the validation and test set performance.

As the official test dataset made available did not have labels, we have labeled it ourselves,
out of curiosity and to enable more consistent tests of the performance of the networks. While
the labels may not be perfect, they provide a close enough picture, so the performance of the
models can be measured as an average over multiple experiments (as we were observing high
variance). As such, we also provide results for the official test set with our unofficial labels. We
stress that we did not use the test set labels for any form of model or parameter selection.

Lastly, the PANNs we use have been trained on the AudioSet [8] dataset containing more
than 5000 hours of audio distributed across 527 classes.

3.2. PANN Architectures

Table 1 describes the three architectures we use. They are named CNN6, CNN10 and CNN14
after the 6-layer, 10-layer and 14-layer CNNs they represent. These are the same CNN network
architectures used in [7]. We take their pretrained models on AudioSet [8] to allow us to obtain
better generalization performances on the SER dataset.

The audios are preprocessed in the following way: the audios are first resampled to 32𝑘𝐻𝑧.
After that, we apply short-time Fourier transform [24] (with a window size of 1024 frames
and hop size of 320 frames) to the standard time-domain waveforms to obtain spectrograms.
Then, Mel filter banks are applied to spectrograms, followed by a logarithm operation to obtain
log Mel spectrograms. These preprocessing steps are commonly done when using CNNs for
audio [25, 26].

As described in Table 1, the CNN architectures used are composed of convolutional layers
with kernel 5 × 5 for CNN6, and 3 × 3 for CNN10 and CNN14. Each convolutional layer is
followed by batch normalization [27] and ReLU non-linearity [28] is used to allow for better
training convergence. Each such convolutional block is present 4 times in CNN6 and, in between,
an average pooling 2× 2 layer is applied (average pooling is observed to be better than max
pooling [29]). In CNN10 and CNN14, the convolutional blocks are always used in pairs before
an average pooling layer is applied. CNN10 contains 8 such convolutional blocks (4 pairs) and



Table 1
PANN architectures. We describe the layers of CNN6, CNN10 and CNN14.

CNN6 CNN10 CNN14
Log Mel Spectrogram 𝑛 frames × 64 mel bins(︀

5×5@64
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀ (︀
3×3@64

𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

(︀
3×3@64

𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

Avg Pooling 2×2 Avg Pooling 2×2 Avg Pooling 2×2(︀
5×5@128
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀ (︀
3×3@128
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

(︀
3×3@128
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

Avg Pooling 2×2 Avg Pooling 2×2 Avg Pooling 2×2(︀
5×5@256
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀ (︀
3×3@256
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

(︀
3×3@256
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

Avg Pooling 2×2 Avg Pooling 2×2 Avg Pooling 2×2(︀
5×5@512
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀ (︀
3×3@512
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

(︀
3×3@512
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

Global Avg Pool-
ing

Global Avg Pool-
ing

Avg Pooling 2×2

FC 512, ReLU FC 512, ReLU
(︀
3×3@1024
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

FC 527, Sigmoid FC 527, Sigmoid Avg Pooling 2×2(︀
3×3@2048
𝐵𝑁,𝑅𝑒𝐿𝑈

)︀
× 2

Global Avg Pool-
ing
FC 2048, ReLU
FC 527, Sigmoid

CNN14 contains 12 such convolutional blocks (6 pairs). All networks have a penultimate fully
connected layer to add extra representation ability, as well as a final 527 units fully connected
layer where a sigmoid is applied to obtain the probabilities for each class. In Table 1, the first
line describes the input of the networks, that is, 𝑛 frames of Log Mel Spectrogram with 64 mel
bins for each frame. Each subsequent line represents a layer of the networks. The numbers
following the @ sign represent the quantity of 5× 5 or 3× 3 feature maps used.

3.3. Transformer Encoder Architecture

In addition to experimenting with the PANNs, we also attempt to extract good performances
from Transformers. The Transformer architecture we use is equivalent to the Transformer
Encoder architecture from [30]. That is, we use a three-layer Transformer with multi-head
self attention. Each encoder layer is composed of two sub-layers. The first is a multi-head self-
attention network and the second is a fully connected feed-forward layer. Each sub-layer has a
residual connection followed by layer normalization [31]. The encoder layers and sub-layers
produce outputs of dimension 𝑑 (in experiments 𝑑 is either 128 or 512). The fully connected
feed forward network within each encoder layer has an inner dimension of 4𝑑. We feed the
Transformer Encoders the MFCC-gram of the audios, with each token fed to the Transformer
corresponding to a frame of the MFCC-gram [32]. We name these Transformers, the MFCC-
gram Transformers [32]. We use sinusoidal positional encoding so the Transformer has access
to the order of the sequence fed [30, 33]. The input frames are projected linearly to a hidden
layer of dimension 𝑑, as direct addition of acoustic features to positional encoding may lead to
training failure [33].



Typically, Transformers undergo two training phases: pretraining and finetuning. In the
pretraining phase, we make use of a technique called Time alteration [33] to pretrain the
Transformer in about 600 hours of Brazilian Portuguese audio data (in other words, we use
pretrained models from [10]). Time alteration is a technique that masks random spans of frames
of the MFCC-gram similarly to how time masking functions in SpecAugment (described in
subsection 3.4). During pretraining, the model is trained to reconstruct the masked frames. For
Brazilian Portuguese audio data, we use the corpora of NURC-São Paulo[34], NURC-Recife [35],
ALIP [36], SP2010 [37] and Programa Certas Palavras [38]. In the experiments, we also show
the performance of Transformers which do not undergo pretraining, that is, which we initialize
at random and do finetuning directly. We name those Transformers the Baseline MFCC-gram
Transformers. After pretraining, the Transformers are finetuned on the SER dataset.

3.4. Data augmentation: SpecAugment

The SER training dataset used for the challenge leans on the small side and contains about
50 minutes of audio. To mitigate the potential overfitting effects of a small training dataset,
we perform a common audio data augmentation technique called SpecAugment [9] on the
Mel spectrogram (or MFCC-gram) of the audio files before feeding it to the network’s layers.
SpecAugment consists in masking random spans of consecutive segments of the spectrogram
of the audios. Masking can be done along the time dimension (that is, on spans of consecutive
frames), or along the frequency dimension (that is, on spans of consecutive frequency channels).

Following [7], time masking is done by selecting a uniform length ℓ (chosen between 0 and
64) and a uniform frame start 𝑡 (chosen between 0 and 𝑇 − ℓ, where 𝑇 is the total number of
frames of the audio) and proceeding to mask the frames from 𝑡 to 𝑡+ ℓ− 1. We mask two such
blocks of consecutive frames. Frequency masking is similar to time masking but done along
the frequency dimension. So, a random uniform length ℓ is chosen (between 0 and 8) and a
uniform frequency band 𝑓 is chosen (between 0 and 𝐹 − ℓ where 𝐹 is the total number of Mel
frequency bins). The frequency bands from 𝑓 to 𝑓 + ℓ− 1 are masked to zero. As with time
masking, we mask two such blocks of consecutive frequency bands.

4. Results and Discussion

We will check the performance of the three proposed PANNs (CNN6, CNN10 and CNN14) on
the SER training and test datasets. In order to take advantage of the large pretraining done on
the AudioSet [8] dataset, we will use the pretrained models of CNN6, CNN10 and CNN14 made
available by the authors of [7]. These can be found in Zenodo. These pretrained models will be
finetuned on the SER training dataset in order to achieve better performance than the baseline.

Moreover, to showcase the massive level of transfer learning that is happening via the
pretrained models, we will show the performance of the three networks (CNN6, CNN10 and
CNN14) without the use of a pretrained model, that is, initializing their weights at random and
not making use of the AudioSet [8] pretraining. We call these three models the Baseline CNN6,
the Baseline CNN10 and the Baseline CNN14.

Lastly, we show the performance of three Transformers models. We analyze MFCC-gram
Transformers pretrained on about 600 hours of Brazilian Portuguese audio data, as well as,

https://zenodo.org/record/3987831


Baseline MFCC-gram Transformers (without pretraining) containing 512 and 128 units per
Encoder layer.

As mentioned before, the SER training dataset is split into a training (80%), validation (10%)
and test sets (10%). In Table 2, we report the 𝐹1 score performance of the nine models in the
validation and test datasets as well as in the official dataset (which was labeled by us). The
results in the table are averaged across 25 experiments, to better control the generally high
𝐹1 score variance between different experiments. Each experiment consisted of training the
model for 100 epochs for CNNs and 20 epochs for Transformers1 in the training set and the
best validation performance model (checked after each epoch) was saved and later analyzed
on the test set and official test set. The batch size used was 16 and the learning rate was
10−4 for the CNNs and we use a warmup learning rate schedule according to the formula
𝑑−0.5 ×𝑚𝑖𝑛(𝑠𝑡𝑒𝑝𝑛𝑢𝑚𝑏𝑒𝑟−0.5, 𝑠𝑡𝑒𝑝𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑤𝑎𝑟𝑚𝑢𝑝𝑠𝑡𝑒𝑝𝑠−1.5) for the Transformers as is
standard [6]. We use 𝑤𝑎𝑟𝑚𝑢𝑝𝑠𝑡𝑒𝑝𝑠 = 4000.

As can be seen on Table 2, the best results in the test set were attained by the CNN6 (0.62 𝐹1
score). Moreover, it seems that the test set built by us was inherently harder than the official
test set. In the official test set, the best result was obtained by CNN10 (0.74 𝐹1 score), in line
with it achieving also the best results on the validation set.

We observe that CNN14’s performance was significantly worse both on validation and test.
However, representation ability wise it is the most powerful of the PANN models. It is likely
that the SER dataset being so small meant CNN14 suffered from overfitting.

We also experienced overfitting issues when attempting MFCC-gram Transformers based
models. There, using pretraining techniques did not yield better performance. This is likely
because the pretraining data contained primarily voice, without laughs or cries, so the impor-
tant markers were not present in pretrained data. Moreover, no common technique (such as
dropout [39], L1 or L2 regularization [40], data augmentation techniques as SpecAugment [9]
and Mixup [41]) to prevent overfitting yielded good results. It seems that the reduced size of
the SER dataset is currently hindering performance in more complex networks, so a likely way
of dramatically improving results would be to increase the size of the available dataset.

Lastly, note that the three baseline PANN models are far away from beating the baselines
provided by the challenge. There is noticeable transfer learning benefit in using the pretrained
models on AudioSet [8]. This large difference illustrates again the fact that the SER dataset is so
small (50 minutes of audio) and that these networks suffer to generalize on it.

We have sent for evaluation in the challenge, the model which attained best test performance
(a CNN6 which officially reported 0.66 𝐹1-score) and the model which attained best validation
performance (a CNN10 which officially reported 0.73 𝐹1-score). Moreover, out of curiosity, we
show the confusion matrix of the CNN10 model sent for evaluation in Table 3. Observe that the
model classifies the vast majority of neutral and non-neutral females files correctly. Most of the
errors are done classifying non-neutral male files (often wrongly classified as neutral).

1As Transformer does not generalize, no advantage exists in training it for longer than 20 epochs.



Table 2
The mean and standard deviation of the 𝐹1 score is shown in the table below for the nine models (CNN6,
CNN10 and CNN14 and their respective baseline version, i.e., their versions without pretraining on
AudioSet [8], as well as MFCC-gram Transformers with and without pretraining and a smaller version
of MFCC-gram Transformers). The results shown are for the validation set, the test set and the official
test set. Labels for the official test set were created by us.

Model
𝐹1 score Validation per-
formance

𝐹1 score Test perfor-
mance

𝐹1 score Official test per-
formance

Baseline
CNN6

0.45± 0.06 0.36± 0.05 0.33± 0.03

Baseline
CNN10

0.58± 0.06 0.41± 0.09 0.42± 0.05

Baseline
CNN14

0.38± 0.06 0.33± 0.04 0.32± 0.03

CNN6 0.78± 0.05 0.62± 0.06 0.69± 0.04
CNN10 0.80± 0.06 0.57± 0.06 0.74± 0.04
CNN14 0.61± 0.11 0.54± 0.06 0.52± 0.10
MFCC-gram
Transformers
512 units

0.50± 0.04 0.36± 0.06 0.38± 0.03

Baseline
MFCC-gram
Transformers
512 units

0.57± 0.04 0.43± 0.08 0.43± 0.06

Baseline
MFCC-gram
Transformers
128 units

0.60± 0.05 0.45± 0.07 0.44± 0.04

Table 3
We plot the confusion matrix for the CNN10 model which was submitted to the challenge and attained an
𝐹1 score of 0.73 (on official labels). Note that the model has the most difficulty classifying non-neutral
male files correctly.

Confusion Ma-
trix

predicted neutral
predicted non-neutral
male

predicted non-neutral fe-
male

Neutral 244 2 5
Non-neutral
male

14 8 2

Non-neutral
female

6 1 26

5. Conclusion

In this paper, we have effectively used transfer learning to beat the proposed baselines in the
shared task SER challenge in Brazilian Portuguese speech. By using, the PANNs CNN6 and
CNN10, we have attained 𝐹1 score of 0.73 up from 0.54 from the baselines. We have also



observed that more complex networks, such as CNN14 and Transformers, while being in theory
more capable of attaining better performances, suffer from overfitting. As such, we determine
that probably the best way of improving results is by increasing the size of the training set.

Future work could involve increasing the size of the training set so that Transformers and
CNN14 generalize their training performances to the test set. In addition, pretraining Transform-
ers with audio data containing specifically laughs, cries and so on may prove useful. Moreover,
other data augmentation techniques could be used which might provide additional benefit in
terms of preventing overfitting.
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