
Formal design and verification of cryptographic
circuits: Application to symmetric block ciphers
Abir. BITAT1, Salah MERNIZ1

1MISC Laboratory, IFA departement, NTIC Faculty, Abdelhamid MEHRI-Constantine2 University

Abstract
Cryptographic circuits have become indispensable in most systems where security is the main criteria.
That is why it is important to verify the correctness of their design. In this paper we propose a formal
methodology for design and verification of the cryptographic circuits; it combines two techniques, the
SAT Solver technique, which is automatic and has been used to verify the correctness of combinational
logic parts; and, the induction technique, which has been used for sequential logic parts.

The proposed approach consists of using the functional Hardware Description Language (HDL) Lava
to describe both behavioural and structural aspects of a circuit; using Finite State Machines (FSMs). And
then to verify the specification and check the equivalence of the implementation against it, in order to
prove the circuit’s correctness.

To show the features of the proposed approach, it was applied to verify implementations of both se-
quential and pipelined architectures of the symmetric block cipher AES (Advanced Encryption Standard).

Keywords
Formal design, Formal verification, Cryptographic circuits, Functional approach, FSMD, Finite State
Machine with Data-path, Symmetric cryptography, AES, Functional language, Functional HDL

1. Introduction

Nowadays networks are trusted with extremely sensitive information; hence the importance of
cryptography which makes its security possible. As a consequence, cryptographic co-processors
have become indispensable in many modern applications. A co-processor is a hardware module
that adds functions to a standard CPU; a cryptographic one adds cryptographic IP cores special-
ized for encryption and decryption operations. Due to the sensitivity of the security matter; it
is important to design and implement these circuits correctly.

Circuits design process goes through several steps; the first one consists in converting the
informal description of the design to an algorithmic specification. From this latter, a micro-
architectural implementation is derived through refinement; followed by a series of design steps
reducing the abstraction levels until a realizable description is obtained. After each of these
design steps; a verification process is performed.

Design verification of hardware can either concern non functional aspects like time, power
and layout, or functional verification; this latter, consists in checking that the structural imple-
mentation provides the same behavior mentioned in the behavioral specification; which can

RIF 2022: The 11th Seminary of Computer Science research at Feminin, March 10, 2022, Constantine, Algeria
$ abir.bitat@univ-constantine2.dz (Abir. BITAT); salah.merniz@univ-constantine2.dz (S. MERNIZ)
� 0000-0003-1748-4286 (Abir. BITAT); 0000-0001-6544-7063 (S. MERNIZ)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:abir.bitat@univ-constantine2.dz
mailto:salah.merniz@univ-constantine2.dz
https://orcid.org/0000-0003-1748-4286
https://orcid.org/0000-0001-6544-7063
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

be done in quite a few ways, such as simulation, formal proof, and semi-formal verification in
which the former techniques are combined.

In this work, we use formal methods in order to design and verify the cryptographic cir-
cuits through functional verification. In section 2 we discuss related literature. In section 3,
we explain our design and verification methodology. In section 4, we demonstrate how we
applied our approach in order to verify sequential and pipelined architectures of the symmetric
cryptographic circuit AES. And finally conclusions are drawn in section 5.

2. Related works

Imperative HDLs like VHDL and verilog, are still the most used for describing digital circuits.
Therefore, the majority of the existing similar works are based on using them [1], [2], [3],
[4], [5]. These languages are intended for description, simulation and synthesis of hardware;
but not for formal verification due to their lack of formal semantics; in addition, they do not
allow descriptions of the highest levels of design. As a consequence, most of the mentioned
works use the simulation technique [2], [3], [4], which is not sufficient for critical systems
such as the cryptographic circuits because it does not guarantee the absence of errors. It is
possible to use formal verification on circuits described with imperatives HDLs, but with a great
deal of difficulties; the behavioral specification that hides all implementation details therefore
needs more powerful abstraction and structuring mechanisms [5]. For the verification of such
complex circuits, deductive methods were used [1]; which is quite difficult, because it requires
user guidance through all the verification process. Symbolic computation was used for the
verification of cryptographic circuits in some algebraic approaches [6], [7]; similarly to the work
presented herein, they use the hierarchy technique in order to reduce the complexity of design
and therefore simplify the verification task. Equivalence checking and completion functions
were used in a formal approach [8] for the verification of RTL descriptions in imperative
HDL VHDL. A language and tool that support automated formal verification of cryptographic
assembly code was proposed in [9]. As for the pipelined implementations of cryptographic
circuits; the imperative HDL VHDL was used for the description and simulation of some crypto-
processors in [10]; and formal verification was applied, but no details about the method that
was used were mentioned.

Even though there exists several functional approaches that were applied for the verification
of digital circuits; to the best of our knowledge; beside the work presented herein, there is only
one approach for the implementation and verification of cryptographic circuits [11]. However;
this approach uses the functional language only for the behavioral specification; but it uses
an imperative HDL for the structural implementation; which brings back some translation
difficulties between the two descriptions.

3. The proposed approach

The design process of a circuit is divided into several steps, where the implementation resulting
on a certain abstraction level is used as the specification on the next lower one. A verification
phase is mandatory after each step, to avoid the propagation of errors between the abstraction

levels. Therefore, in order to verify the correctness of a certain implementation, it is sufficient
to compare it to its already verified specification. The most challenging verification step is that
of the highest levels of abstraction; this difficulty is caused by the gap between descriptions as
the majority of HDLs don’t allow ones at those levels.

In this work, we propose a methodology of formal design and verification for the cryp-
tographic circuits, we target the higher levels of abstraction, and we verify that the micro-
architectural description of a cryptographic circuit is equivalent to the algorithmic one.

The other attribute of our proposed approach is that we use the functional language Haskell
and its embedded HDL Lava to describe the circuits. This choice is motivated by their interesting
characteristics such as: having formal descriptions that can be reasoned about; the composition
of functions in the same way that complex circuits are composed; having much more concise
descriptions, which makes finding errors easier; and last but not least, Lava has some incorpo-
rated tools for formal verification of circuits; which in our knowledge have never been used for
the verification of the cryptographic circuits.

A FSMD (Finite State Machine with Datapath) model provides a systematic approach for
designing sequential circuits; it combines a controller, modeled as a FSM, and a dapapath. We
model both descriptions of the circuit (behavioral and structural) as FSMs.

A FSM in Haskell is a recursive function fsm, which represents the output function; it takes
as input a 𝑠𝑖−1 with the next state function called step, like shown in the following form:

𝑓𝑠𝑚 𝑛 𝑠𝑖 = 𝑓𝑠𝑚 (𝑛− 1) 𝑠𝑗

𝑤ℎ𝑒𝑟𝑒

𝑠𝑗 = 𝑠𝑡𝑒𝑝 𝑠𝑖

Since the two descriptions are at different levels of abstraction, they deal with different types
of data; therefore, a mapping function abs is needed between the two them. Thus, in order to
verify the implementation; the following theorem must be proved:

∀ 𝑠𝑖 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑓𝑠𝑚𝑆 (𝑎𝑏𝑠 𝑠𝑖) = 𝑎𝑏𝑠 (𝑓𝑠𝑚𝐼 𝑠𝑖) (1)

The proof of this theorem must be decomposed. Since both descriptions are hierarchical, we
need to start by verifying the simplest components at the lowest level of hierarchy. Once they
are verified, the verification of the upper components that they compose becomes possible.

The combinational parts of the implementation can be verified automatically using the SAT
solver tool of Lava. As for the sequential parts; we use induction and equational reasoning.

When performing equivalence checking using SAT solvers, if the two descriptions are equiv-
alents, the output of the Xor gate should be always False. If the output becomes True for any
input sequence, it means that the SAT solver found a satisfiable assignment, which implies that
the descriptions are producing different outputs for the same input.

In order to verify that two descriptions are equivalent, we have to define a safety property
that expresses their equivalence. A safety property states that some condition is always true.
This property is also defined as a function in the following form:

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐸𝑞𝑢𝑖𝑣 𝑖𝑛 = 𝑜𝑘

𝑤ℎ𝑒𝑟𝑒

𝑜𝑢𝑡1 = 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛1 𝑖𝑛

𝑜𝑢𝑡2 = 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛2 𝑖𝑛

𝑜𝑘 = 𝑜𝑢𝑡1 <==> 𝑜𝑢𝑡2𝑎𝑎

To verify this property we use the Lava function satzoo, which is a call to the satisfiability
solver: 𝑠𝑎𝑡𝑧𝑜𝑜 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐸𝑞𝑢𝑖𝑣.

Since we want to verify that a component implements correctly its specification (which works
with a different data type); the equivalence property should be defined in the following way
instead:

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐸𝑞𝑢𝑖𝑣 𝑖𝑛 = 𝑜𝑘

𝑤ℎ𝑒𝑟𝑒

𝑜𝑢𝑡1 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑎𝑏𝑠 𝑖𝑛)

𝑜𝑢𝑡2 = 𝑎𝑏𝑠 (𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛)

𝑜𝑘 = 𝑜𝑢𝑡1 <==> 𝑜𝑢𝑡2𝑎𝑎

Now, for the verification of the sequential part, which is the FSM it self, meaning the imple-
mentation of the whole circuit; we use induction like we mentioned previously. So, we start
by verifying the base case (a); then we prove (b) that if the property holds for a step n; then it
should hold for the following step n-1.

(𝑎) 𝑓𝑠𝑚𝑆 0 (𝑎𝑏𝑠 𝑠𝑖) = 𝑎𝑏𝑠 (𝑓𝑠𝑚𝐼 0 𝑠𝑖)

(𝑏) 𝑓𝑠𝑚𝑆 𝑛 (𝑎𝑏𝑠 𝑠𝑖) = 𝑎𝑏𝑠 (𝑓𝑠𝑚𝐼 𝑛 𝑠𝑖) ⇒
𝑓𝑠𝑚𝑆 (𝑛− 1) (𝑎𝑏𝑠 𝑠𝑖) = 𝑎𝑏𝑠 (𝑓𝑠𝑚𝐼 (𝑛− 1) 𝑠𝑖)

The proposed approach for verifying both sequential and pipelined architectures is summa-
rized in Fig.1. We start by checking if the behavioural description of the sequential architecture
holds the verification property (1) ; then, we verify the sequential implementation against its
specification (2). As for the pipelined architecture, we verify the equivalence of its specifica-
tion to the sequential one (3); and finally we verify its implementation against the verified
specification (4).

We prove the verification property (1) and equivalence property (3) using Lava’s SAT solver.
We also use this latter to verify the inner sub-components of the circuits, like shown in Fig.2.
Then we will be able to prove the equivalence properties (i.e. (2), and (4)) using induction.

4. Application and results

Advanced Encryption Standard (AES) [14] is a symmetric block cipher, constructed based on
the Rijandael system; it encrypts blocks of 128 bits using a key of 128 bits size, 129, or 256 bits
depending on the system’s version. We demonstrate our proposed approach on AES128.

The encryption consists of ten identical rounds of processing; each of which includes four
steps: sub bytes, shift rows, mix columns and add key; except for the last one, where the mix

Figure 1: Global view of the proposed approach.

Figure 2: Automatic verification of the combinational parts.

columns function is not performed. The decryption on the other hand, uses the inverse of these
functions in a different order.

The key expansion function uses the cipher key to produce sub-keys in the same number of
rounds. In this work, we pre-calculate the sub-keys in advance.

4.1. Formal design of the Sequential architecture

The basic hardware architecture used to implement an encryption or decryption unit of the
symmetric AES cipher is shown in Fig.3. This architecture characteristics is that only one block
of data is encrypted at a time.

Figure 3: Basic iterative architecture.

4.1.1. Behavioural description

The AES core is composed of three units: encryption unit, decryption unit, and key expansion
unit in order to pre-calculate the sub-keys. It is defined by the function seqSpecAES, which takes
as inputs a text text, a key key and the operation type op.

𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐴𝐸𝑆(𝑜𝑝, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦) = 𝑡𝑒𝑥𝑡𝑁𝑒𝑤

𝑤ℎ𝑒𝑟𝑒

𝑘𝑒𝑦𝑠 = 𝑘𝑒𝑦𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑆 10 𝑘𝑒𝑦

𝑡𝑒𝑥𝑡𝑁𝑒𝑤 = 𝑖𝑓(𝑜𝑝 == 1) 𝑡ℎ𝑒𝑛 (𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠))

𝑒𝑙𝑠𝑒 (𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠))𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

The function seqSpecEnc converts the text from ascii to hexadecimal, and decomposes it into
blocks of 128bits, and send them sequentially to the function that encrypts one block of data.
The behavioral description of this encryption unit is expressed as a FSM in Lava, represented by
the recursive function seqSpecEncFSM, which takes as input the stat 𝑠𝑖 which is composed of: the
round number n, one block of the plain text pt, the current cipher text ct, and the pre-calculated
sets of sub-keys keys; and it calculates the round cipher text using the next state function
stepSeqSpecEnc.

𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀 (𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠) = 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀 ((𝑛− 1), 𝑝𝑡, 𝑐𝑡𝑁𝑒𝑤, 𝑘𝑒𝑦𝑠)

𝑤ℎ𝑒𝑟𝑒

𝑠𝑒𝑙 = (𝑛 == 10)

𝑠𝑒 = (𝑛 == 1)

𝑖𝑡 = 𝑚𝑢𝑥𝑆 (𝑠𝑒𝑙, 𝑎𝑑𝑑𝐾𝑒𝑦𝑆 ((𝑘𝑒𝑦𝑠!!0) , 𝑝𝑡), 𝑐𝑡)

𝑐𝑡𝑁𝑒𝑤 = 𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑠𝑒, 𝑖𝑡, 𝑘𝑒𝑦𝑠!!(10− (𝑛− 1)))

𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑠𝑒, 𝑖𝑡, 𝑖𝑘) = (𝑐𝑡𝑁𝑒𝑤)

𝑤ℎ𝑒𝑟𝑒

𝑐𝑡𝑁𝑒𝑤 = 𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑖𝑘,𝑚𝑢𝑥𝑆(𝑠𝑒, 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆 𝑖𝑡),

𝑚𝑖𝑥𝐶𝑙𝑚𝑠𝑆(𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆 𝑖𝑡))))

The selector sel controls whether to take the initial plain text pt or the current round cipher
text ct; and the selector se controls whether to perform the mix Columns function or not.

The seqSpecDecFSM function is a FSM as well that represents the behavioral description of
the decryption unit.

𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐𝐹𝑆𝑀 (𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠) = 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐𝐹𝑆𝑀 ((𝑛− 1), 𝑝𝑡𝑁𝑒𝑤, 𝑐𝑡, 𝑘𝑒𝑦𝑠)

𝑤ℎ𝑒𝑟𝑒

𝑠𝑒𝑙 = (𝑛 == 10)

𝑠𝑒 = (𝑛 == 1)

𝑖𝑡 = 𝑚𝑢𝑥𝑆 (𝑠𝑒𝑙, 𝑎𝑑𝑑𝐾𝑒𝑦𝑆 ((𝑘𝑒𝑦𝑠!!10) , 𝑐𝑡), 𝑝𝑡)

𝑐𝑡𝑁𝑒𝑤 = 𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐(𝑠𝑒, 𝑖𝑡, 𝑘𝑒𝑦𝑠!!(𝑛− 1))

𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐(𝑠𝑒, 𝑖𝑡, 𝑖𝑘) = (𝑝𝑡𝑁𝑒𝑤)

𝑤ℎ𝑒𝑟𝑒

𝑝𝑡𝑁𝑒𝑤 = 𝑚𝑢𝑥𝑆(𝑠𝑒, 𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑖𝑘, (𝑖𝑛𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑖𝑛𝑣𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆 𝑖𝑡)))

, 𝑖𝑛𝑣𝑀𝑖𝑥𝐶𝑙𝑚𝑠𝑆(𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑖𝑘, (𝑖𝑛𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑖𝑛𝑣𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆 𝑖𝑡)))))

4.1.2. Structural description

The hardware implementation of AES is described in the same hierarchical way as the behavioral
description; it is composed of three components : the key expansion function keyExpansionI,
the encryption function seqImpEnc, and the decryption function seqImpDec.

𝑠𝑒𝑞𝐼𝑚𝑝𝐴𝐸𝑆(𝑜𝑝, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦) = 𝑡𝑒𝑥𝑡𝑁𝑒𝑤

𝑤ℎ𝑒𝑟𝑒

𝑘𝑒𝑦𝑠 = 𝑘𝑒𝑦𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝐼 10 𝑘𝑒𝑦

𝑡𝑒𝑥𝑡𝑁𝑒𝑤 = 𝑖𝑓(𝑜𝑝 == 1) 𝑡ℎ𝑒𝑛 (𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠))𝑒𝑙𝑠𝑒 (𝑠𝑒𝑞𝐼𝑚𝑝𝐷𝑒𝑐

(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠))

The encryption function seqImpEnc converts the text from ascii to hexadecimal to binary
and decompose it into blocks of 128bits and send it sequentially block by block to the function
seqImpEncFSM, which is the FSM that models the structural description of the encryption unit.

𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀 (𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠) = 𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀 ((𝑛− 1), 𝑝𝑡, 𝑐𝑡𝑁𝑒𝑤, 𝑘𝑒𝑦𝑠)

𝑤ℎ𝑒𝑟𝑒

𝑠𝑒𝑙 = (𝑛 == 10)

𝑠𝑒 = (𝑛 == 1)

𝑖𝑡 = 𝑚𝑢𝑥𝐼 (𝑠𝑒𝑙, 𝑎𝑑𝑑𝐾𝑒𝑦𝐼 ((𝑘𝑒𝑦𝑠!!0), 𝑝𝑡), 𝑐𝑡)

𝑐𝑡𝑁𝑒𝑤 = 𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐(𝑠𝑒, 𝑖𝑡, 𝑘𝑒𝑦𝑠!!(𝑛− 1))

𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐(𝑠𝑒, 𝑖𝑡, 𝑖𝑘) = (𝑐𝑡𝑁𝑒𝑤)

𝑤ℎ𝑒𝑟𝑒

𝑐𝑡𝑁𝑒𝑤 = 𝑎𝑑𝑑𝐾𝑒𝑦𝐼(𝑖𝑘,𝑚𝑢𝑥𝐼(𝑠𝑒, 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼 𝑖𝑡),

𝑚𝑖𝑥𝐶𝑙𝑚𝑠𝐼(𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼 𝑖𝑡))))

The inner components of this circuit (seqImpEncFSM), like muxI, addKeyI... are defined in
terms of their structure using gates, unlike the muxS, addKeyS... which express the behavior of
that component.

𝑚𝑢𝑥𝑆(𝑠𝑒𝑙, 𝑎, 𝑏) = 𝑖𝑓 𝑠𝑒𝑙 𝑡ℎ𝑎𝑛 𝑎 𝑒𝑙𝑠𝑒 𝑏

𝑚𝑢𝑥𝐼(𝑠𝑒𝑙, 𝑎, 𝑏) = 𝑜𝑟𝐼 (𝑎𝑛𝑑𝐼 𝑠𝑒𝑙 𝑎) (𝑎𝑛𝑑𝐼 (𝑛𝑜𝑡𝐼 𝑠𝑒𝑙) 𝑏)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

The hardware implementations of the main four components of AES are the followings:

– Add Key: is implemented using the bitwise XOR gate; and therefore it is the inverse of
itself.

– Shift Rows: is a left cyclic shift of bits. The inverse shift rows is a right cyclic shift.
– Sub Bytes: relies on operations in the Galois Field GF (28); it can be implemented using

only logic i.e. implementing circuits for the multiplication operation, the inverse operation,
and for the affine transformation operation; or using the S-boxes, or Look-Up-Tables
(LUTs); which are implemented as Read Only Memories (ROMs). We need 16 8x8 bit
ROMs for the encryption and 16 for the Inverse Sub Bytes.

– Mix Columns: relies on operations in GF(28) as well, and can be expressed using only
logic or LUTs too; which are implemented as 8x8 bit ROMs for each of the multiplication
operations of both encryption and decryption process.

seqImpDecFSM function represents the structural description of the decryption unit.

4.2. Formal design of the Pipelined architecture

There are several architectures possible for pipelined block ciphers [15] ; we chose the one with
inner-round pipelining depicted in Fig.4. with four pipeline stages. This makes it possible to
encrypt four blocks simultaneously.

Figure 4: Basic iterative with inner-round pipelining.

4.2.1. Behavioral description

Similarly to the sequential architecture; AES is composed of three units: encryption, decryption,
and key expansion. This latter is the same as in the sequential architecture.

𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐴𝐸𝑆(𝑜𝑝, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦) = 𝑡𝑒𝑥𝑡𝑁𝑒𝑤

𝑤ℎ𝑒𝑟𝑒

𝑘𝑒𝑦𝑠 = 𝑘𝑒𝑦𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝑆 10 𝑘𝑒𝑦

𝑡𝑒𝑥𝑡𝑁𝑒𝑤 = 𝑖𝑓(𝑜𝑝 == 1) 𝑡ℎ𝑒𝑛 (𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑡𝑒𝑥𝑡,

𝑘𝑒𝑦𝑠))𝑒𝑙𝑠𝑒 (𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐷𝑒𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠))𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

The function pipeSpecEnc converts the text from ascii to hexadecimal, decomposes it into
blocks of 128bits, and send them to the function pipeSpecEncFSM that encrypts four blocks of
data. Unlike in the sequential architecture, where the number of states equals the number of
rounds; in this architecture, more internal states appear; which represents the pipeline stages
registers. Thus, the next-state function stepPipeSpecEnc is a recursive function that takes as
input the number of internal step n, the pre-calculated keys keys, and the current state of the
four stages registers (c1,c2,c3,c4).
𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑝4𝑏𝑙𝑜𝑐𝑘𝑠, 𝑘𝑒𝑦𝑠) = 𝑐4𝑏𝑙𝑜𝑐𝑘𝑠
𝑤ℎ𝑒𝑟𝑒
𝑒 = 𝑚𝑖𝑥𝐶𝑙𝑚𝑠𝑆(𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑝4𝑏𝑙𝑐𝑘𝑠!!0, (𝑘𝑒𝑦𝑠!!0)))))
𝑑 = 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑝4𝑏𝑙𝑐𝑘𝑠!!1, (𝑘𝑒𝑦𝑠!!0))))
𝑐 = 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑏3 = 𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑝4𝑏𝑙𝑐𝑘𝑠!!2, (𝑘𝑒𝑦𝑠!!0)))
𝑏 = 𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑝4𝑏𝑙𝑐𝑘𝑠!!3, (𝑘𝑒𝑦𝑠!!0))
(𝑛, (𝑐1, 𝑐2, 𝑐3, 𝑐4), 𝑘) = 𝑠𝑡𝑒𝑝(34, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)
𝑐𝑡1 = 𝑎𝑑𝑑𝐾𝑒𝑦𝑆((𝑘𝑒𝑦𝑠!!10), 𝑐3)
𝑐𝑡2 = 𝑎𝑑𝑑𝐾𝑒𝑦𝑆((𝑘𝑒𝑦𝑠!!10), (𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆 𝑐2))

𝑐𝑡3 = 𝑎𝑑𝑑𝐾𝑒𝑦𝑆((𝑘𝑒𝑦𝑠!!10), 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆 𝑐1))
𝑐𝑡4 = 𝑎𝑑𝑑𝐾𝑒𝑦𝑆((𝑘𝑒𝑦𝑠!!10), (𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑎𝑑𝑑𝐾𝑒𝑦𝑆((𝑘𝑒𝑦𝑠!!9), 𝑐4)))))
𝑐4𝑏𝑙𝑜𝑐𝑘𝑠 = [𝑐𝑡1, 𝑐𝑡2, 𝑐𝑡3, 𝑐𝑡4]

𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠) = 𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐((𝑛− 1), (𝑏𝑛, 𝑐𝑛, 𝑑𝑛, 𝑒𝑛), 𝑘𝑒𝑦𝑠)
𝑤ℎ𝑒𝑟𝑒
𝑘 = 𝑤ℎ𝑎𝑡𝐾𝑒𝑦 𝑛 𝑘𝑒𝑦𝑠
𝑐𝑛 = 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆 𝑏
𝑑𝑛 = 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆 𝑐
𝑒𝑛 = 𝑚𝑖𝑥𝐶𝑙𝑚𝑠𝑆 𝑑
𝑏𝑛 = 𝑎𝑑𝑑𝐾𝑒𝑦𝑆 (𝑘, 𝑒)

The decryption function pipeSpecDecFSM is also a FSM; it’s next-state function is step-
PipeSpecDec.

4.2.2. Structural description

Like for the sequential architecture, the hardware implementation of pipelined AES is described
in the same hierarchical way as its behavioral description; it is composed of three components
: the key expansion function keyExpansionI, the encryption function pipeImpEnc, and the
decryption function pipeImpDec.

𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐴𝐸𝑆(𝑜𝑝, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦) = 𝑡𝑒𝑥𝑡𝑁𝑒𝑤

𝑤ℎ𝑒𝑟𝑒

𝑘𝑒𝑦𝑠 = 𝑘𝑒𝑦𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛𝐼 10 𝑘𝑒𝑦

𝑡𝑒𝑥𝑡𝑁𝑒𝑤 = 𝑖𝑓(𝑜𝑝 == 1) 𝑡ℎ𝑒𝑛 (𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠)) 𝑒𝑙𝑠𝑒 (𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐷𝑒𝑐

(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠))𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

The encryption function PipeImpEnc converts the text from ascii to hexadecimal to binary
and decompose it into blocks of 128bits and send them to the function pipeImpEncFSM, which is
the FSM that models the structural description of the encryption unit.

𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀(𝑝4𝑏𝑙𝑜𝑐𝑘𝑠, 𝑘𝑒𝑦𝑠) = 𝑐4𝑏𝑙𝑜𝑐𝑘𝑠

𝑤ℎ𝑒𝑟𝑒

𝑒 = 𝑚𝑖𝑥𝐶𝑙𝑚𝑠𝐼(𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼(𝑎𝑑𝑑𝐾𝑒𝑦𝐼(𝑝4𝑏𝑙𝑐𝑘𝑠!!0, (𝑘𝑒𝑦𝑠!!0)))))

𝑑 = 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼(𝑎𝑑𝑑𝐾𝑒𝑦𝐼(𝑝4𝑏𝑙𝑐𝑘𝑠!!1, (𝑘𝑒𝑦𝑠!!0))))

𝑐 = 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼(𝑎𝑑𝑑𝐾𝑒𝑦𝐼(𝑝4𝑏𝑙𝑐𝑘𝑠!!2, (𝑘𝑒𝑦𝑠!!0)))

𝑏 = 𝑎𝑑𝑑𝐾𝑒𝑦𝐼(𝑝4𝑏𝑙𝑐𝑘𝑠!!3, (𝑘𝑒𝑦𝑠!!0))

(𝑛, (𝑐1, 𝑐2, 𝑐3, 𝑐4), 𝑘) = 𝑠𝑡𝑒𝑝𝐼(34, (𝑏4, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)

𝑐𝑡1 = 𝑎𝑑𝑑𝐾𝑒𝑦𝐼((𝑘𝑒𝑦𝑠!!10), 𝑐3)

𝑐𝑡2 = 𝑎𝑑𝑑𝐾𝑒𝑦𝐼((𝑘𝑒𝑦𝑠!!10), (𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼𝑐2))

𝑐𝑡3 = 𝑎𝑑𝑑𝐾𝑒𝑦𝐼((𝑘𝑒𝑦𝑠!!10), (𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼𝑐1)))

𝑐𝑡4 = 𝑎𝑑𝑑𝐾𝑒𝑦𝐼((𝑘𝑒𝑦𝑠!!10), (𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼(𝑎𝑑𝑑𝐾𝑒𝑦𝐼((𝑘𝑒𝑦𝑠!!9), 𝑐4)))))

𝑐4𝑏𝑙𝑜𝑐𝑘𝑠 = [𝑐𝑡1, 𝑐𝑡2, 𝑐𝑡3, 𝑐𝑡4]

𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠) = 𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐((𝑛− 1), (𝑏𝑛, 𝑐𝑛, 𝑑𝑛, 𝑒𝑛), 𝑘𝑒𝑦𝑠)

𝑤ℎ𝑒𝑟𝑒

𝑘 = 𝑤ℎ𝑎𝑡𝐾𝑒𝑦 𝑛 𝑘𝑒𝑦𝑠

𝑐𝑛 = 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼𝑏

𝑑𝑛 = 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼𝑐

𝑒𝑛 = 𝑚𝑖𝑥𝐶𝑙𝑚𝑠𝐼𝑑

𝑏𝑛 = 𝑎𝑑𝑑𝐾𝑒𝑦𝐼(𝑘, 𝑒)

The pipeImpDecFSM function represents the decryption FSM; it’s next-state function is
stepPipeImpDec.

4.3. Formal verification

In order to verify that both sequential and pipelined architectures implement correctly the
behavior of their specifications; seven theorems have to be proved.

1. First we need to verify the correctness property of the initial specification, which is
expressed by the following theorem:

∀𝑚, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑚) = 𝑚 (2)

2. Then we need to verify the equivalence of the implementation of the encryption unit to
its specification:

∀𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠; 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
(3)

3. And the equivalence of the decryption unit implementation against its specification:

∀𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠; 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐷𝑒𝑐𝐹𝑆𝑀(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
(4)

4. Afterwards, we need to verify the equivalence between the specification of the pipelined
text encryption unit and the sequential one :

∀ 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠; 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠) = 𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠) (5)

5. And the equivalence between the specification of the pipelined text decryption unit and
the sequential one:

∀ 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠; 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠) = 𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐷𝑒𝑐(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠) (6)

6. Finally, we need to verify the equivalence of the pipelined implementation of the encryp-
tion unit against its specification:

∀𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠; 𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
(7)

7. And respectively, we need to verify the equivalence of the pipelined implementation of
the decryption unit against its specification:

∀𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠; 𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐷𝑒𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐷𝑒𝑐𝐹𝑆𝑀(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
(8)

4.3.1. Formal verification of the sequential architecture

Theorem (2) is written in Lava in the following form:

𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑝𝑡, 𝑘𝑒𝑦𝑠) = 𝑜𝑘

𝑤ℎ𝑒𝑟𝑒

𝑝𝑡0 = 𝑓𝑟𝑜𝑚𝐿𝑖𝑠𝑡𝑇𝑜𝑆𝑡𝑎𝑡𝑒 𝑝𝑡

𝑘𝑒𝑦𝑠0 = 𝑓𝑟𝑜𝑚𝐿𝑖𝑠𝑡𝑇𝑜𝐿𝑖𝑠𝑡𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝑠 𝑘𝑒𝑦𝑠

(𝑛1, 𝑝𝑡1, 𝑐𝑡1, 𝑘1) = 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀 (10, 𝑝𝑡0, [[[]]], 𝑘𝑒𝑦𝑠0)

(𝑛2, 𝑝𝑡2, 𝑐𝑡2, 𝑘2) = 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐𝐹𝑆𝑀 (10, [[[]]], 𝑐𝑡1, 𝑘𝑒𝑦𝑠0)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑜𝑘 = 𝑝𝑡0 <==> 𝑝𝑡2

Because lists are infinite structures, we need to define a verification property that is explicit
about the sizes:

𝑣𝑒𝑟𝑖𝑓𝑃𝑟𝑜𝑝𝐹𝑜𝑟𝑆𝑖𝑧𝑒 𝑛 𝑚 =

𝑓𝑜𝑟𝐴𝑙𝑙 (𝑙𝑖𝑠𝑡 𝑛) $ ∖ 𝑝𝑡 − >

𝑓𝑜𝑟𝐴𝑙𝑙 (𝑙𝑖𝑠𝑡 𝑚) $ ∖ 𝑘𝑒𝑦𝑠 − >

𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑝𝑡, 𝑘𝑒𝑦𝑠)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

To prove this property we call the satzoo function:
𝑠𝑎𝑡𝑧𝑜𝑜 𝑝𝑟𝑜𝑝𝑉 𝑒𝑟𝑖𝑓𝐹𝑜𝑟𝑆𝑖𝑧𝑒 128 1408 (1408 is the total of eleven 128bit size keys); it returns
Valid, which means that the specification holds that property.

In order to be able to prove theorem (3) and (4), we need to verify the descriptions internal
components; using the same method as for theorem (2); to the multiplexer component, the main
four operations (sub bytes, shift rows, mix columns, and add key), and their inverses:

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐸𝑞𝑢𝑖𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠 𝑠 = 𝑜𝑘𝑎𝑎

𝑤ℎ𝑒𝑟𝑒

𝑥 = 𝑓𝑟𝑜𝑚𝐿𝑖𝑠𝑡𝑇𝑜𝑆𝑡𝑎𝑡𝑒 𝑠

𝑜𝑢𝑡1 = 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆 (𝑎𝑏𝑠 𝑥)

𝑜𝑢𝑡2 = 𝑎𝑏𝑠 (𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼 𝑠)

𝑜𝑘 = 𝑜𝑢𝑡1 <==> 𝑜𝑢𝑡2

𝑝𝑟𝑜𝑝𝐸𝑞𝑢𝑖𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐹𝑜𝑟𝑆𝑖𝑧𝑒 𝑛 =

𝑓𝑜𝑟𝐴𝑙𝑙 (𝑙𝑖𝑠𝑡 𝑛) $ ∖ 𝑠 − >

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐸𝑞𝑢𝑖𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠 𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑠𝑎𝑡𝑧𝑜𝑜 𝑝𝑟𝑜𝑝𝐸𝑞𝑢𝑖𝑣𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐹𝑜𝑟𝑆𝑖𝑧𝑒 128

All these properties were satisfied and gave back the answer Valid; which means that the
implementations of these components are correct.

The sub-circuit stepSeqImpEnc that is composed of the previously verified components is also
correct according to the theorem proved above.

∀ 𝑖𝑛, 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑎𝑏𝑠 𝑖𝑛) = 𝑎𝑏𝑠(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼 𝑖𝑛), 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

∀ 𝑖𝑛, 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑎𝑏𝑠 𝑖𝑛) = 𝑎𝑏𝑠(𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼 𝑖𝑛),

∀ 𝑖𝑛, 𝑚𝑖𝑥𝐶𝑙𝑚𝑛𝑠𝑆(𝑎𝑏𝑠 𝑖𝑛) = 𝑎𝑏𝑠(𝑚𝑖𝑥𝐶𝑙𝑚𝑛𝑠𝐼 𝑖𝑛),

∀ 𝑖𝑛, 𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑎𝑏𝑠 𝑖𝑛) = 𝑎𝑏𝑠(𝑎𝑑𝑑𝐾𝑒𝑦𝐼 𝑖𝑛),

∀ 𝑖𝑛, 𝑚𝑢𝑥𝑆(𝑎𝑏𝑠 𝑖𝑛) = 𝑎𝑏𝑠(𝑚𝑢𝑥𝐼 𝑖𝑛),

⇒ ∀ 𝑖𝑛, 𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠 𝑖𝑛) = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐 𝑖𝑛)

Now that all the inner-components are verified, we verify the encryption FSM using induction.

Basis:

𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(0, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(0, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)

𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀(0, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(0, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)

⇒ 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(0, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀(0, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))

Induction step:
∀ 𝑛 ∈ 𝐼𝑛𝑡; 𝑝𝑡, 𝑐𝑡 ∈ [[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]; 𝑘𝑒𝑦𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]];
𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
⇒ 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠((𝑛−1), 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀((𝑛−1), 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
= 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀((𝑛− 1), 𝑝𝑡, 𝑐𝑡𝑖, 𝑘𝑒𝑦𝑠))
𝑤𝑖𝑡ℎ 𝑐𝑡𝑖 = 𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐 𝑐𝑡
𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
= 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑛, 𝑎𝑏𝑠 𝑝𝑡, 𝑎𝑏𝑠 𝑐𝑡, 𝑎𝑏𝑠 𝑘𝑒𝑦𝑠)
= 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀((𝑛− 1), 𝑎𝑏𝑠 𝑝𝑡, 𝑐𝑡𝑠, 𝑎𝑏𝑠 𝑘𝑒𝑦𝑠)
𝑤𝑖𝑡ℎ 𝑐𝑡𝑠 = 𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐 (𝑎𝑏𝑠 𝑐𝑡)
𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠 𝑐𝑡) = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑆𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐 𝑐𝑡)
⇒ 𝑐𝑡𝑠 = 𝑎𝑏𝑠 𝑐𝑡𝑖
= 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀((𝑛− 1), 𝑎𝑏𝑠 𝑝𝑡, 𝑎𝑏𝑠 𝑐𝑡𝑖, 𝑎𝑏𝑠 𝑘𝑒𝑦𝑠)
= 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠((𝑛− 1), 𝑝𝑡, 𝑐𝑡𝑖, 𝑘𝑒𝑦𝑠))

⇒ 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠((𝑛− 1), 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))
= 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀((𝑛− 1), 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))

We verified the correctness of the decryption unit’s implementation in the same way.

⇒ ∀ 𝑛 ∈ 𝐼𝑛𝑡; 𝑝𝑡, 𝑐𝑡 ∈ [[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]; 𝑘𝑒𝑦𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙𝐵𝑜𝑜𝑙]]]];
𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐷𝑒𝑐𝐹𝑆𝑀(𝑛, 𝑝𝑡, 𝑐𝑡, 𝑘𝑒𝑦𝑠))

⇒ ∀ 𝑜𝑝 ∈ 𝐼𝑛𝑡, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦 ∈ [𝐶ℎ𝑎𝑟];
𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐴𝐸𝑆(𝑎𝑏𝑠(𝑜𝑝, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦)) = 𝑎𝑏𝑠(𝑠𝑒𝑞𝐼𝑚𝑝𝐴𝐸𝑆(𝑜𝑝, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦))

4.3.2. Formal verification of the pipelined architecture

For the verification of the pipelined behavioral description against the sequential one, we verify
the equivalence of their upper components that encrypts multiple blocks of data; because the
next state in the sequential FSM consists of the result after one round; however, the next state
in the pipelined FSM is the result of one inner-round pipeline stage.
𝑒𝑞𝑢𝑖𝑣𝑃𝑟𝑜𝑝𝑆𝑒𝑞𝑃 𝑖𝑝(𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠) = 𝑜𝑘
𝑤ℎ𝑒𝑟𝑒
𝑡𝑥𝑡 = 𝑓𝑟𝑜𝑚𝑇𝑒𝑥𝑡𝑇𝑜𝐵𝑙𝑜𝑐𝑘𝑠 𝑡𝑒𝑥𝑡
𝑘𝑠 = 𝑓𝑟𝑜𝑚𝐿𝑖𝑠𝑡𝑇𝑜𝑆𝑡𝑎𝑡𝑒 𝑘𝑒𝑦𝑠
𝑜𝑢𝑡1 = 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑡𝑥𝑡, 𝑘𝑠)
𝑜𝑢𝑡2 = 𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑡𝑥𝑡, 𝑘𝑠)
𝑜𝑘 = 𝑜𝑢𝑡1 <==> 𝑜𝑢𝑡2

𝑒𝑞𝑢𝑖𝑣𝑃𝑟𝑜𝑝𝑆𝑒𝑞𝑃 𝑖𝑝𝐹𝑜𝑟𝑆𝑖𝑧𝑒 𝑛 𝑚 =
𝑓𝑜𝑟𝐴𝑙𝑙 (𝑙𝑖𝑠𝑡 𝑛) $ ∖ 𝑡𝑒𝑥𝑡 − >
𝑓𝑜𝑟𝐴𝑙𝑙 (𝑙𝑖𝑠𝑡 𝑚) $ ∖ 𝑘𝑒𝑦𝑠 − >
𝑒𝑞𝑢𝑖𝑣𝑃𝑟𝑜𝑝𝑆𝑒𝑞𝑃 𝑖𝑝 (𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦𝑠)

We can only verify the property for a fixed text size at the time.
𝑠𝑎𝑡𝑧𝑜𝑜 𝑒𝑞𝑢𝑖𝑣𝑃𝑟𝑜𝑝𝑆𝑒𝑞𝑃 𝑖𝑝𝐹𝑜𝑟𝑆𝑖𝑧𝑒 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑒𝑥𝑡) 128

For the implementation of the pipelined architecture, we check its equivalence to the behav-
ioral description using induction. Since the inner components are the same for the sequential
architecture we do not need to verify their equivalence.

∀ 𝑛 ∈ 𝐼𝑛𝑡; 𝑏, 𝑐, 𝑑, 𝑒 ∈ [[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]]; 𝑘𝑒𝑦𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙𝐵𝑜𝑜𝑙]]]];

𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠 (𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐 (𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠))

Basis:

𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠(0, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(0, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)

𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐(0, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(0, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)

⇒ 𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠(0, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐(0, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠))

Induction step:
∀ 𝑛 ∈ 𝐼𝑛𝑡; 𝑏, 𝑐, 𝑑, 𝑒,∈ [[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]], 𝑘𝑒𝑦𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]];
𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) ⇒

𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠((𝑛−1), (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐((𝑛−1), (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠))

𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠))
= 𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐((𝑛, (𝑎𝑏𝑠 𝑏, 𝑎𝑏𝑠 𝑐, 𝑎𝑏𝑠 𝑑, 𝑎𝑏𝑠 𝑒), 𝑎𝑏𝑠 𝑘𝑒𝑦𝑠))
= 𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(((𝑛− 1), (𝑏𝑠, 𝑐𝑠, 𝑑𝑠, 𝑒𝑠), 𝑘𝑒𝑦𝑠))
𝑤𝑖𝑡ℎ 𝑏𝑠 = 𝑎𝑑𝑑𝐾𝑆(𝑎𝑏𝑠 𝑒, 𝑘)
𝑐𝑠 = 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑎𝑏𝑠 𝑏)
𝑑𝑠 = 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑎𝑏𝑠 𝑐)
𝑒𝑠 = 𝑚𝑖𝑥𝐶𝑙𝑚𝑛𝑠𝑆(𝑎𝑏𝑠 𝑑)

𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠))
= 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐((𝑛− 1), (𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝑒𝑖), 𝑘𝑒𝑦𝑠))
𝑤𝑖𝑡ℎ 𝑏𝑠 = 𝑎𝑑𝑑𝐾𝐼(𝑒, 𝑘)
𝑐𝑖 = 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼𝑏
𝑑𝑖 = 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼𝑐
𝑒𝑖 = 𝑚𝑖𝑥𝐶𝑙𝑚𝑛𝑠𝐼𝑑

𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑎𝑏𝑠 𝑒, 𝑘) = 𝑎𝑏𝑠(𝑎𝑑𝑑𝐾𝑒𝑦𝐼(𝑒, 𝑘)) ⇒ 𝑏𝑠 = 𝑎𝑏𝑠 𝑏𝑖

𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑎𝑏𝑠 𝑏) = 𝑎𝑏𝑠(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼 𝑏) ⇒ 𝑐𝑠 = 𝑎𝑏𝑠 𝑐𝑖
𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑎𝑏𝑠 𝑐) = 𝑎𝑏𝑠(𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼 𝑐) ⇒ 𝑑𝑠 = 𝑎𝑏𝑠 𝑑𝑖
𝑚𝑖𝑥𝐶𝑙𝑚𝑛𝑠𝑆(𝑎𝑏𝑠 𝑑) = 𝑎𝑏𝑠(𝑚𝑖𝑥𝐶𝑙𝑚𝑛𝑠𝐼 𝑑) ⇒ 𝑒𝑠 = 𝑎𝑏𝑠 𝑒𝑖

⇒ 𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(((𝑛− 1), (𝑏𝑠, 𝑐𝑠, 𝑑𝑠, 𝑒𝑠), 𝑘𝑒𝑦𝑠))
= 𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(((𝑛− 1), (𝑎𝑏𝑠 𝑏𝑖, 𝑎𝑏𝑠 𝑐𝑖, 𝑎𝑏𝑠 𝑑𝑖, 𝑎𝑏𝑠 𝑒𝑖), 𝑘𝑒𝑦𝑠))
= 𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠((𝑛− 1), (𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝑒𝑖), 𝑘𝑒𝑦𝑠)
= 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐((𝑛− 1), (𝑏𝑖, 𝑐𝑖, 𝑑𝑖, 𝑒𝑖), 𝑘𝑒𝑦𝑠))

⇒ ∀ 𝑛 ∈ 𝐼𝑛𝑡; 𝑏, 𝑐, 𝑑, 𝑒,∈ [[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]], 𝑘𝑒𝑦𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]];
𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐(𝑎𝑏𝑠(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠))

We verify the decryption unit in the same way as the encryption one.

∀ 𝑛 ∈ 𝐼𝑛𝑡; 𝑏, 𝑐, 𝑑, 𝑒,∈ [[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]], 𝑘𝑒𝑦𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]];
𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐷𝑒𝑐(𝑎𝑏𝑠(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑠𝑡𝑒𝑝𝑃 𝑖𝑝𝑒𝐼𝑚𝑝𝐷𝑒𝑐(𝑛, (𝑏, 𝑐, 𝑑, 𝑒), 𝑘𝑒𝑦𝑠))

Now that we verified the equivalence between the pipelined step function’s implementation
and its specification; the equivalence of the upper-components is verified.

∀ 𝑏𝑙𝑜𝑐𝑘𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]], 𝑘𝑒𝑦𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]];
𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑏𝑙𝑜𝑐𝑘𝑠, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐸𝑛𝑐𝐹𝑆𝑀(𝑏𝑙𝑜𝑐𝑘𝑠, 𝑘𝑒𝑦𝑠))

∀ 𝑏𝑙𝑜𝑐𝑘𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]], 𝑘𝑒𝑦𝑠 ∈ [[[[𝑆𝑖𝑔𝑛𝑎𝑙 𝐵𝑜𝑜𝑙]]]];
𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐷𝑒𝑐𝑐𝐹𝑆𝑀(𝑎𝑏𝑠(𝑏𝑙𝑜𝑐𝑘𝑠, 𝑘𝑒𝑦𝑠)) = 𝑎𝑏𝑠(𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐷𝑒𝑐𝐹𝑆𝑀(𝑏𝑙𝑜𝑐𝑘𝑠, 𝑘𝑒𝑦𝑠))

⇒ ∀ 𝑜𝑝 ∈ 𝐼𝑛𝑡, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦 ∈ [𝐶ℎ𝑎𝑟];
𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐴𝐸𝑆(𝑎𝑏𝑠(𝑜𝑝, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦)) = 𝑎𝑏𝑠(𝑝𝑖𝑝𝑒𝐼𝑚𝑝𝐴𝐸𝑆(𝑜𝑝, 𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦))

In table I, we show how long the verification process took for the main sub-components and
of the complete AES sequential circuit. As we can notice, all the theorems that has been proved
automatically using the Lava’s SAT solver, took less than 2s. As for theorems (3) and (4), which
express the equivalence between the sequential encryption FSM specification (sEFSMS) and its
implementation (sEFSMI), and between the sequential decryption FSM specification (sDFSMS)
and its implementation (sDFSMI) respectively; they were proved manually using induction in
a simple straightforward way. Each of these theorems took from 3 to 5 minutes to be proved.
This makes the total amount of time needed for the verification of the whole circuit 490.5 s (A =
the total of the Automatic verification / M = the total of the Manual verification).

Table II shows the time that was taken for the verification of the AES pipelined circuit.
Theorems (5) and (6), which express the equivalence between the specification of the sequential
architecture and that of the pipelined one, where proved automatically using Lava’s SAT solver.
As for the verification of the pipelined implementation against its verified specification, we
proved theorems (7) and (8) using induction. This makes the total of the verification time for
the pipelined circuit 421.97 s.

Component Property Theorem
number

Method Verification
Time (s)

AES Spec ∀𝑥,𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑥) = 𝑥
.............. (1)

SAT 1.05

Mux ∀𝑥,𝑚𝑢𝑥𝑆(𝑎𝑏𝑠 𝑥) = 𝑎𝑏𝑠(𝑚𝑢𝑥𝐼 𝑥) SAT 1.78
Xor ∀𝑥, 𝑥𝑜𝑟𝑆(𝑎𝑏𝑠 𝑥) = 𝑎𝑏𝑠(𝑥𝑜𝑟𝐼 𝑥) SAT 0.73
AddKey ∀𝑥, 𝑎𝑑𝑑𝐾𝑒𝑦𝑆(𝑎𝑏𝑠 𝑥) = 𝑎𝑏𝑠(𝑎𝑑𝑑𝐾𝑒𝑦𝐼 𝑥) SAT 1.08
SubBytes ∀𝑥, 𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝑆(𝑎𝑏𝑠 𝑥) =

𝑎𝑏𝑠(𝑠𝑢𝑏𝐵𝑦𝑡𝑒𝑠𝐼 𝑥)
SAT 1.18

ShiftRows ∀𝑥, 𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝑆(𝑎𝑏𝑠 𝑥) =
𝑎𝑏𝑠(𝑠ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠𝐼 𝑥)

SAT 1.18

MixClms ∀𝑥,𝑚𝑖𝑥𝐶𝑙𝑚𝑛𝑠𝑆(𝑎𝑏𝑠 𝑥) =
𝑎𝑏𝑠(𝑚𝑖𝑥𝐶𝑙𝑚𝑛𝑠𝐼 𝑥)

SAT 0.86

KeyExp ∀𝑥, 𝑘𝑒𝑦𝐸𝑥𝑝𝑆(𝑎𝑏𝑠 𝑥) = 𝑎𝑏𝑠(𝑘𝑒𝑦𝐸𝑥𝑝𝐼 𝑥) SAT 0.72
AESEnc ∀𝑥, 𝑠𝐸𝐹𝑆𝑀𝑆(𝑎𝑏𝑠 𝑥) =

𝑎𝑏𝑠(𝑠𝐸𝐹𝑆𝑀𝐼 𝑥) (2)
Induction ≃ 300

InvSubBytes ∀𝑥, 𝑖𝑛𝑣𝑆𝐵𝑆(𝑎𝑏𝑠 𝑥) = 𝑎𝑏𝑠(𝑖𝑛𝑣𝑆𝐵𝐼 𝑥) SAT 0.72
InvShiftRows ∀𝑥, 𝑖𝑛𝑣𝑆𝑅𝑆(𝑎𝑏𝑠 𝑥) = 𝑎𝑏𝑠(𝑖𝑛𝑣𝑆𝑅𝐼 𝑥) SAT 0.6
InvMixClms ∀𝑥, 𝑖𝑛𝑣𝑀𝐶𝑆(𝑎𝑏𝑠 𝑥) = 𝑎𝑏𝑠(𝑖𝑛𝑣𝑀𝐶𝐼 𝑥) SAT 0.6
AESdec ∀𝑥, 𝑠𝐷𝐹𝑆𝑀𝑆(𝑎𝑏𝑠 𝑥) =

𝑎𝑏𝑠(𝑠𝐷𝐹𝑆𝑀𝐼 𝑥) (3)
Induction ≃ 180

Total
(AESseq

A= 10.5

Circuit) M= 480

Table 1
Verification time of the sequential AES circuit and its inner-components.

Finally, in table III, we recapitulate the different works related to the proposed approach. As
we can see, the majority of the existing works are based on an imperative approaches. These
approaches are well suited for simulation [2],[3], but we notice that it is still possible to use them
for formal verification as well [1],[4],[5],[8],[9],[10]. In this case, the description for the design
and verification is long and complex. Only one functional approach beside ours exists that
targeted the cryptographic circuits [11]; no details about the verification time were mentioned.
A couple of the existing works are based on an algebraic approach [6],[7]; similarly to our work,
they use the hierarchy technique for proof decomposition; which makes the verification process
easier. As we can see, our proposed methodology takes half the time for the verification of the
same cryptographic circuit.

5. Conclusions

In this paper, we presented a formal design and verification methodology for symmetric cryp-
tographic circuits. We combine the two techniques (induction and SAT solver) for verifying
different parts of the implementation. The proposed approach was demonstrated over both
sequential and pipelined architectures of the symmetric cipher AES128. As prospects, we aim
to optimize the methodology into a fully automtic one, and to be able to design and verify the

Component Property Theorem
number

Method Verification
Time (s)

AESencSpec ∀𝑥, 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐸𝑛𝑐 𝑥 = 𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐸𝑛𝑐 𝑥
............ (4)

SAT 1.12

AESdecSpec ∀𝑥, 𝑠𝑒𝑞𝑆𝑝𝑒𝑐𝐷𝑒𝑐 𝑥 = 𝑝𝑖𝑝𝑒𝑆𝑝𝑒𝑐𝐷𝑒𝑐 𝑥
............ (5)

SAT 0.85

AESencImp ∀𝑥, 𝑝𝐸𝐹𝑆𝑀𝑆(𝑎𝑏𝑠 𝑥) =
𝑎𝑏𝑠(𝑝𝐸𝐹𝑆𝑀𝐼 𝑥) (6)

Induction ≃ 240

AESdecImp ∀𝑥, 𝑝𝐷𝐹𝑆𝑀𝑆(𝑎𝑏𝑠 𝑥) =
𝑎𝑏𝑠(𝑝𝐷𝐹𝑆𝑀𝐼 𝑥) (7)

Induction ≃ 180

Total (AE-
Spip

A= 1.97

Circuit) M= 420

Table 2
Verification time of the pipelined AES circuit.

Work Approach Verification Method Cryptographic circuit Verification
Time (s)

[5] 2003 Imperative Formal methods DES 59
[10] 2004 Imperative Formal methods/simulation AES128 /
[1] 2006 Imperative Theorem proving SHA1 /
[8] 2007 Imperative Equivalence checking Pipelined KASUMI 180 .. 540
[11] 2007 Functional Formal methods AES128 /
[4] 2008 Imperative Equivalence checking Pipelined KASUMI 180 .. 540
[6] 2012 Algebraic Formal methods AES128 datapath 800
[7] 2014 Algebraic Formal methods AES128 844
[3] 2014 Imperative Simulation AES256 /
[2] 2015 Imperative Simulation TDES /
[9] 2017 Imperative Formal methods Pipelined AES128 2300
This work Functional Formal methods Sequential AES128 490.5
This work Functional Formal methods Pipelined AES128 421.97

Table 3
Comparative table of the related literature’s verification methods and time.

super-scalar architectures.

References

[1] Toma, D. "Vérification Formelle des systèmes numériques par démonstration de théorèmes:
application aux composants cryptographiques" (Doctoral dissertation) (2006).

[2] Singh, Kirat Pal, and Shivani Parmar. "Design of high performance MIPS cryptography
processor based on T-DES algorithm." arXiv preprint arXiv:1503.03166 (2015).

[3] Ali, Imran, Gulistan Raja, and Ahmad Khalil Khan. "A 16-Bit Architecture of Advanced
Encryption Standard for Embedded Applications." 2014 12th International Conference on
Frontiers of Information Technology. IEEE, (2014).

[4] Lam, Chiu Hong. "Verification of pipelined ciphers". MS thesis. University of Waterloo,
(2009).

[5] Clarke, E., Kroening, D. "Hardware verification using ANSI-C programs as a reference". In
Proceedings of the ASP-DAC Asia and South Pacific Design Automation Conference. pp.
308-311. IEEE. (2003).

[6] Homma, Naofumi, Kazuya Saito, and Takafumi Aoki. "A Formal Approach to Designing
Cryptographic Processors Based on 𝐺𝐹 (2𝑚) Arithmetic Circuits." IEEE Transactions on
Information Forensics and Security vol. 7, no 1, p. 3-13. (2011).

[7] Homma, Naofumi, Kazuya Saito, and Takafumi Aoki. "Toward formal design of practical
cryptographic hardware based on Galois field arithmetic." IEEE Transactions on Computers.
vol. 63, no 10, p. 2604-2613 (2013).

[8] Lam, Chiu Hong, and Mark D. Aagaard. "Formal Verification of a Pipelined Cryptographic
Circuit Using Equivalence Checking and Completion Functions." 2007 Canadian Conference
on Electrical and Computer Engineering. IEEE, p. 1401-1404. (2007).

[9] Bond, Barry, et al. "Vale: Verifying high-performance cryptographic assembly code." 26th
USENIX Security Symposium (USENIX Security 17). p. 917-934. (2017).

[10] Kim, Ho Won, and Sunggu Lee. "Design and implementation of a private and public key
crypto processor and its application to a security system." IEEE Transactions on Consumer
Electronics.vol. 50, no 1, p. 214-224. (2004).

[11] Lewis, Jeff. "Cryptol: specification, implementation and verification of high-grade cryp-
tographic applications." Proceedings of the 2007 ACM workshop on Formal methods in
security engineering. p. 41-41.(2007).

[12] Wolfs, Davy, et al. "Design automation for cryptographic hardware using functional
languages." Proceedings of the 32nd WIC Symposium on Information Theory in the
Benelux. Werkgemeenschap voor Informatie-en Communicatietheorie.; Netherlands, p.
194-201. (2011).

[13] Guo, Xiaolong, et al. "Pre-silicon security verification and validation: A formal perspective."
Proceedings of the 52nd Annual Design Automation Conference. p. 1-6. (2015).

[14] Daemen, Joan, and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption
standard. Springer Science and Business Media, (2013).

[15] Gaj, K., and Chodowiec, P. (2009). FPGA and ASIC implementations of AES. In Crypto-
graphic engineering (pp. 235-294). Springer, Boston, MA.

	1 Introduction
	2 Related works
	3 The proposed approach
	4 Application and results
	4.1 Formal design of the Sequential architecture
	4.1.1 Behavioural description
	4.1.2 Structural description

	4.2 Formal design of the Pipelined architecture
	4.2.1 Behavioral description
	4.2.2 Structural description

	4.3 Formal verification
	4.3.1 Formal verification of the sequential architecture
	4.3.2 Formal verification of the pipelined architecture

	5 Conclusions

