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Abstract
Service-based systems (SBSs) have been widely used in recent years, however ensuring adequate service

quality is a significant challenge. To that end, managing the properties of service-based systems through

dynamic service selection is primordial. It is an important research problem in SBSs, which aims to select

proper services to meet user requirements. However, the dynamics of these systems make their design

extremely difficult and leading engineers to pursue new solutions and approaches to model and maintain

their Quality of Services. Quality-driven self-adaptation is a promising strategy for managing such

complexity while also allowing underlying software systems to accomplish functional and/or quality of

service requirements by autonomously adapting their behavior at runtime. In this regard, we defined a

formal approach for modeling quality-driven self-adaptive systems and ensuring that quality objectives

are constantly met in a previous work. In this paper, we aim to apply the proposed approach to a concrete

service-based system, the Travel Planner application, to assess the scalability and generality of our

approach, and show its effectiveness.

Keywords
Formal methods, HLPNs and PPNs, Quality-driven Self-adaptive systems, Uncertainty, Travel Planner

application.

1. INTRODUCTION

Service-based Systems [1] are highly dynamic software systems composed of several web

services. SBSs are widely used in e-commerce, online banking, e-health and many other applica-

tions. In these systems, services offered by third-party providers are dynamically composed into

workflows delivering complex functionality [2]. Unlike other types of systems, service-based

systems rely on service providers to ensure that their web services meet the agreed quality of

service. Providing adequate service quality is a crucial challenge and must be monitored in the

various activities of the service-based system lifecycle. An exemplar of these SBSs is the Travel

Planner Application (TPA) [3, 4] that provides services to search for flights, tourist attractions,

accommodation arrangements, and rental cars or bicycles. All these services are interdependent,

as the user cannot benefit from a service without having successfully benefited from the service

that precedes it, with the exception of the attraction information service that is independent of

the rest of the services. Due to this close interdependence between services, the failure of one
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service leads to the suspension of the whole system. For example, a failure in the flight booking

service systematically leads to the impossibility of benefiting from the remaining services, as

hotel reservations and car rentals.

In order to satisfy the user demands and to obtain an optimal functioning of the system, it

is necessary to ensure a continuous satisfaction of the quality of service, i.e., at least service

availability. Quality of service (QoS) refers to the non-functional characteristics of a service,

such as price, response time, reliability and availability [5, 6, 7, 8]. Besides, users of the Travel

Planner Application may have different budget limits and different response time requirements

for accessing the service. As such, the service needs to ensure that the demands of different users

are properly met. In other words, if a service fails, it needs to be replicated quickly. Therefore,

quality-driven self-adaptation dynamically changes the system behaviour.

In a previous work [9], we have defined a formal model for quality-driven decision-making

in Self-Adaptive Systems (SASs). We mainly leveraged a MAPE-K [10] loop-based model,

combining high-level Petri nets (HLPNs) and plausible Petri nets (PPNs), for the design of

quality-driven self-adaptive systems under uncertainty. In this model, the adaptation logic is

achieved through the adaptation actions that change the system configuration by updating its

properties. In the case of SBS, the adaption logic is limited to a simple action, which consists of

replicating the failed service.

Our aim in the present paper is twofold: to show the effectiveness of the proposed model

for guaranteeing a continuous satisfaction of the quality objectives of the Travel Planner

Application, and to establish the genericity of the model through its application in various

fields. The model allows achieving self-adaptation and ensuring the optimal functioning of the

Travel Planner Application. It uses HLPNs to define the data flows and quantify the quality

criteria considered for each service, and adopts PPNs to determine which service will replace the

faulty one through the concept of decision plausibility with respect to the adaptation strategy

envisaged for this system.

The remainder of the paper is structured as follows. Section 2 introduces the Travel Planner

Application (TPA), and its expected qualities. Section 3 briefly recalls the main concepts used in

this work. Section 4 formally describes the TPA modelling. Section 5 discusses and compares

the proposed TPA model regarding the existing ones. Finally, Section 6 concludes the paper.

2. TRAVEL PLANNER APPLICATION RUNNING EXAMPLE

The TPA is composed of the following five services [11]:

• Attraction information service, which searches for tourist attractions.

• Flight booking service, which searches for available flights.

• Hotel booking service, which seeks hotels and makes reservations.

• Bicycle rental service, for renting bikes.

• Car rental service, which allows renting cars.

In this example, searching for attractions may be done in parallel with a flight and an

accommodation booking. Once the search and booking process is completed, the car or bicycle

rental service will be invoked. The quality criteria considered for each service are: cost, reliability,

and availability [8].



• Price: the execution price is the amount of money that a service requester has to pay to

execute it.

• Reliability: is the probability that a request is correctly responded within the maximum

expected time frame. The reliability value is computed from historical data concerning

past invocations using the expression 𝑞𝑟𝑒𝑙(𝑠) = 𝑁𝑐(𝑠)/𝐾 , where 𝑁𝑐(𝑠) is the number of

times that the service s has been successfully delivered within the maximum expected

time frame, and K is the total number of invocations [8].

• Availability: is the probability that the service is accessible. the availability value of a

service s is computed using the following expression 𝑞𝑎𝑣(𝑠) = 𝑇𝑎(𝑠)/𝜃, where 𝑇𝑎 is the

total amount of time in which service s is available during the last 𝜃 seconds [8].

3. BACKGROUND

Petri nets have been initially proposed to model the behavior of a dynamic system with

discrete events [12]; they have then undergone several extensions and variants [13, 14, 15, 16]

to cover more concerns in system modelling and analysis. In what follows, first, we present two

types of Petri nets to be used in this work, high-level Petri nets (HLPNs) and plausible Petri

nets (PPNs). Then, we define the concept of uncertainty.

3.1. High-Level Petri Nets (HLPNs)

HLPNs are a well-defined semi-graphical technique for the specification, design and analysis

of systems. An HLPN is made up on a set of nodes (i.e. places and transitions) and a set of arcs

connecting places to transitions and vice-versa as in an ordinary Petri net but is extended in

the following way:

• each place is associated with a place type and can contain a collection of tokens corre-

sponding to that place type.

• Transitions are dotted with boolean expressions called guards.

• Additionally, arcs are inscribed with expressions called arc annotations. Whenever an

expression evaluates to true, a multiset of tokens is produced in the output places of the

corresponding transition according to arc’s weights and types.

3.2. Plausible Petri Nets (PPNs)

The combination of the principles of Petri nets with the foundations of information theory

resulted in a new model for Petri nets, called plausible Petri nets (PPNs) [14, 17]; which are a

hybrid variant of Petri nets composed of two types of places and transitions, namely, symbolic

and numerical, in order to describe both discrete and continuous behaviours of a system. In the

symbolic subnet, the discrete behavior is described using regular tokens, while in the numerical

subnet, continuous or numerical behavior is described with tokens that carry information about

the states of variables. A state of information about a given variable x ∈ 𝜒 is the probability

density function (PDF) of x over 𝜒 [18], where 𝜒 is the state space of a stochastic variable x. For

more details on PPNs, the reader is referred to [19].



The main feature of PPNs resides in their efficiency to jointly consider the evolution of a

discrete event system together with uncertain information about the system state using states

of information [14]. They provide a mapping between the possible numerical values of a state

variable and their relative plausibility, hence giving greater versatility for representing uncertain

knowledge using a more principled approach [19].

3.3. Uncertainty

Uncertainty in a software system is defined as the circumstances in which the behavior of the

system deviates from expectations due to the dynamics and unpredictability of various factors

within these systems [20]. Unpredictable changes and missing knowledge about the environ-

mental changes during system deployment refers to epistemic uncertainty. Researchers link

uncertainty in SASs to decision making. Therefore, it means the lack of sufficient information

or knowledge to make certain adaptation decisions.

4. TRAVEL PLANNER APPLICATION MODELLING

This section is dedicated to TPA formal modeling. First, we briefly describe the SAS formal

model [9]. Then, we present the necessary parameters to be identified to apply the model.

Finally, we present the resulting TPA formal model and illustrate it through an execution

scenario.

4.1. A Petri Net-based formal model for SASs

We defined a formal model that is a combination of HLPNs and PPNs with the goal of

mitigating uncertainties to ensure the continuous satisfaction of SAS QoSs and assisting the

decision-making process while selecting the proper adaptation plans (PPNs). It is made up of

two layers: the monitored one, which is modeled by HLPN, and the control one, composed of the

emulator for encoding and emulating the monitored layer to interact with the API and modeled

as a HLPN. The API is made up of a set of read/write primitives represented by the HLPN

transitions, and the managing system, which is a MAPE-K loop-based model that combines

HLPN and PPN. HLPNs contribute in the definition of data flows by using expression and

annotation principles to quantify the observed qualities among the model’s various components.

They allow the model to express more sophisticated data structures in a dynamic system.

PPNs are used to help and improve the decision-making process in presence of uncertainty,

allowing for the most appropriate adaption plans to be determined using the principle of decision

plausibility.

4.2. Model parameters

The Petri Net-based formal model proposed in [9] is generic and can be applied in several

areas and on different cases. However, to achieve our objectives and be able to model a quality-

driven SAS, we need to identify the necessary parameters of the control layer by performing

the following steps (see Figure 1):



1. Identify the overall qualities of the system;

2. Determine characteristics that allow quantifying system qualities as well as the contextual

uncertainties affecting the system behavior;

3. Model the managed system with the use of HLPN;

4. Parameterize the MAPE-K loop used in the control layer. This later is generic and

parameterized by: the functional system or layer, the quality objectives and the adaptation

actions.

Figure 1: Modelling a quality-driven SAS process.

The monitored layer represents the model of the managed system, it is defined in step 3.

Generally, this modelling describes the overall functioning of the system.

The quality objectives define requirements that the system aims to maintain and ensure, such as

reliability, availability, security and performance. These qualities are quantified using properties

already defined in step 2. The adaptation actions are the possible solutions and configurations

that restore the system quality and ensure the continuous satisfaction of the quality objectives.

4.3. The TPA formal model

The running example is a service-based system, which means that its quality depends on

the services it provides. Kotler [21] suggested that a service is any activity or benefit that one

party can give to another that is essentially intangible and does not result in the ownership of

anything. According to this definition and the functioning of the TPA, we model a service as a

HLPN place where tokens represent service instances. A service-QoS is determined regarding

its cost, reliability value and availability rate. In this example, we adapt the TPA by selecting the

more plausible service on the basis of a comparison of the QoS values of all services, since the

quality objectives are defined via thresholds in our approach. Besides, we focus on modelling

the system states/context elements and actions to be performed by the system, but in this case,

we are more interested with the system functioning process. The TPA architecture is given in

Figure 2.

The monitored layer model is organised in 4 phases: flight reservation, hotel reservation,

tourist attractions search, and rental phase. These phases enclose all services provided by the

TPA with the rental phase containing two services: car rental service and bike rental service.

The control layer monitors the service failures and adapts the system using the API primitives,



which are used inside the MAPE-K control loop to simulate the sensing and actuating actions

upon the monitored layer. All services are represented in the knowledge zone and used by the

MAPE elements. For readability raisons, we present the model of each layer separately.

Figure 2: The TPA architecture.

4.3.1. Monitored layer

Figure 3 represents the monitored layer model of the TPA, which is organised in 4 phases:

flight reservation, hotel reservation, tourist attractions search, and rental phase. Places repre-

sent the states of user requests; transitions represent user actions and services failure (ex:

fialedSearchFlight, failedSearchAttraction, failedSearchHotel. . . ). The user may initiate the flight

reservation phase, tourist attractions search phase, or both. Whenever he requests the flight

reservation service his request may be treated successfully by firing the transition flightReser-
vation producing a token that contains the flight information in the place flightReserved, this

will enable him to move to the next phase; or the service may fail and its identifier is passed to

serFailed place. This place contains the identifier of the failed services (flight, hotel and attraction
service). Service functioning is supervised by the monitor through the rentFailed place, which

contains the identifier of the failed car rental service and bike rental service, in order to perform

adaptation. After a successful flight reservation phase, the user can start the 2𝑛𝑑 phase by

requesting the hotel reservation service, which may also fail or be successfully executed. The

tourist attractions search phase allows users to consult tourist attractions; finishing this phase

successfully produces a token containing information about the searched tourist attraction in

the rentingService place. This place also contains tokens representing the reserved hotel infor-

mation. At the end, the user may execute the rental phase to rent a car or a bicycle whenever

the accommodation arrangements have been made through the hotel service. In addition, he

can rent them after requesting the attraction service directly.



Figure 3: Travel planner application model.

4.3.2. Control layer

In this section, we detail the TPA adaptation logic represented by the managing system of

Figure 2; whose model is given in Figure 4 where the black transitions represent the cross-

zone ones, and the blue places and transitions represent the plausible ones. We are limited in

this example to the following adaptation strategies: if the flight booking service or the hotel

reservation service fails, the corresponding service will be replaced by the service with a higher

reliability value; if the attraction information service fails, it will be replaced by the service with

the lower cost value.

1. Knowledge

Since TPA is a service-based system, its services are represented by places in the knowledge

base (HotelSrvices, FlightServices, AttreactionServices. . . ). Each service instance is represented

as a token in the corresponding place. Each token is a tuple containing the necessary data to

identify the service, which are the service identifier s, its cost, the number of times that the

service s has been successfully delivered (𝑁𝑐), the number of invocations (K), and the total

amount of time in which it is available during the last 𝜃 seconds (𝑇𝑎).

2. Monitor

Since a service may fail at any time while treating a user request, the monitor element is

responsible of the recovering of the failed service information by monitoring the place serFailed
using the transition getFailedService, which is a read primitive of the API. Then, it filters the

result to determine the failed service data and passes them to the analyser element.



Figure 4: Travel planner application adaptation logic.

3. Analyser

It calculates the reliability of the service in the case of the flight reservation/hotel reservation

services failure, by firing transitions getFlightSerReliability and getHotelSeReliability, respectively,

and calculates service cost in the case of attraction information service failure; these values are

calculated using formulas presented in Section 2. The calculated values are transmitted to the

planner element.

4. Planner

Its task is to select the proper service instance from the existing ones with regard to adaptation

strategy requirements. It uses the concept of plausibility to select the most appropriate service.

For example, the transition getGreaterReliabilitySerF allows determining the flight service with

the greatest reliability value. When the planner task selects the best service, the executor is

triggered.

5. Executor

It updates the failed service with the selected one by firing transition according to the service

(setFlightService, setAttractionService, or setHotelService), representing the write primitive of the

API. In fact, it updates the corresponding place marking.

4.4. Execution Scenario

The proposed model is simulated and validated using the extended PNemu
1

framework;

where we defined a new class "HLPN" to model the managed system and its environment by an

HLPN; we have modified the emulator class to be able to emulate models specified as HLPN;

then we have redefined some primitives of the API to capture the HLPN concepts, such as

getTokens and setTokens primitives.

1

PNemu has been released as an open source software, available at https://github.com/SELab-unimi/pnemu.



Table 1
TPA services information.

Service Identifier Cost 𝑁𝑐(𝑠) K 𝑇𝑎

Attraction service

AS1 18 21 25 250
AS2 16 35 40 192
AS3 20 10 16 180
AS4 14 19 20 290

Flight service

FS1 15 20 30 280
FS2 17 47 50 295
FS3 13 16 20 199
FS4 25 15 25 245

Hotel service

HS1 15 30 33 285
HS2 19 16 16 275
HS3 21 33 40 264
HS4 25 19 25 235

We assume an initial configuration of the system containing 4 instances of each service,

which are attraction information service, flight reservation service, hotel reservation service,

bicycle rental service, and car rental service. We specify each instance by a token of type tuple

containing service instance information; see Table 1. We have considered the same parameters

as presented in [3], which are service identifier, cost, the amount of times that the service has

been successfully delivered (𝑁𝑐), the number of invocations (K), and the total amount of time in

which it is available during the last 𝜃 seconds (𝑇𝑎); 𝜃 is defined by system administrator. Table 1

is limited to services that are modelled in Figure 4; some values are retrieved from the files

used in [11] and others are randomly chosen; we assume that 𝜃 = 300 seconds. A part of the

HLPN instance representing the monitored layer is given in Figure 5; it corresponds to the flight

reservation phase, the presence of a token in place searchFlightRes means that the list of flights

displayed in the user interface are given by this service (FS4).

Figure 5: Flight reservation phase model instance.



We assume that the a user requests the flight reservation service, but unfortunately the later

fails (FS4). To maintain and ensure a continuous satisfaction of the quality objectives, the system

tries to replace it by another service with the higher reliability value, thus the analyser element

calculates the reliability value for each instance of the flight reservation service. Then, it sends

the results to the planner element in order to select the plausible service, which is the service

with the higher reliability value, service FS2 for instance. The selected service is resumed by the

executor using the write primitive of the API; it updates the place marking by the new token

representing the selected service. Simulation results are illustrated in Figure 6.

Figure 6: Simulation result of self-adaptive travel planner application.

5. DISCUSSION

In recent years, some studies have modelled the TPA using different methods and tools.

In [3], TPA is modelled by Agent Flow’s where authors are interested with cost analysis, ex-

ecution duration, reliability and reputation quality; they developed a non-formal framework

to execute the proposed model, which is specific to SBSs and doesn’t deals with uncertainty.

In [22], a formal model of TPA is proposed, it is based on parameterized Discrete-Time Markov

Chains (DTMC). In this model, authors are interested with analyzing cost and reliability qualities.

The developed framework for model execution is also specific to SBSs and doesn’t deal with

uncertainty. The model is also used in [11] and implemented with lotus@runtime, which is

dedicated to SAS, but its applicability has been demonstrated by SBSs. The models proposed

in these works do not separate the system from its adaptation logic, this makes the models

application-specific and not applicable to other systems, contrary to our model. These short-

comings lead to the limitations of these model applicability and the difficulty of generalizing

them to study different cases and in different fields.

In this paper, we applied our formal model to TPA; it combines HLPNs with PPNs to model

both self-adaptation and manage uncertainties. The generality of our model is confirmed by

this case study; all we have to do is to specify the parameters of the control layer. The model

is used to represent several applications in various fields, such as SBSs and aircraft planning

in [9]. Furthermore, it takes charge of uncertainty and manages it at different levels of the

decision-making process. The above discussion is summarized in Table 2.



Table 2
TPA modelling synthesis.

Model Formal Executability uncertainty Generality QoS
Agent Flow’s - + - - Cost, Reliability,

Availability, Reputa-
tion

DTMC + + - - Cost, reliability
Our model + + + + Cost, reliability

6. CONCLUSION

We proposed a formal approach for modeling and analyzing quality-driven self-adaptive

systems that evolve under uncertainty while still preserving and assuring the continuous

satisfaction of an acceptable quality of service. In this paper, we demonstrate the generality

and effectiveness of our approach. The Travel Planner Application case study is a real-world

problem that has been modelled with our approach. The findings show how HLPN can be

used to model and gather the monitored data to facilitate the autonomous and adaptive service

replication decision-making. This example demonstrates how service-based systems can be

adapted using a new formalism such as our Petri net-based approach. As a result, our approach

is generic and adaptable to any system.

As future work, in the short term we plan to verify some properties of the TPA model. In

the middle term, we intend to create a model generator that converts HLPN model to Markov

chains model so that we can use model checkers in conjunction with AI techniques to verify

system properties and avoid the combinatorial explosion problem.
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