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Abstract
Explainable Recommendation has attracted a lot of attention due to a renewed interest in explainable
artificial intelligence. In particular, post-hoc approaches have proved to be the most easily applicable
ones, since they treat as black boxes the increasingly complex recommendation models. Recent literature
has shown that for post-hoc explanations based on local surrogate models, there are problems related to
the robustness of the approach itself. This consideration becomes even more relevant in human-related
tasks, from transparency or trustworthiness points of view – like recommendation. We show how the
behavior of LIME-RS – a classical post-hoc model based on surrogates – is strongly model-dependent
and does not prove to be accountable for the explanations generated.
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1. Introduction

The explanation of a recommendation list plays an increasingly important role in the interaction
of a user with a Recommender System (RS) [2, 3, 4]. Given the explanation that a system
can provide to a user we identify at least two characteristics that the explanation part should
enforce [5, 6, 7]: (i) Adherence to reality: the explanation should mention only features
that really pertain to the recommended item. (ii) Constancy in the behavior: although the
explanation is generated based on some sample, and such a sample is drawn with a probability
distribution, the entire process should not exhibit a random behavior to the user. We study
here the application of LIME [8] to the recommendation process (LIME-RS [9]). LIME-RS is a
post-hoc algorithm that can explain the predictions of any recommender in a faithful way, by
approximating it locally with an interpretable model. While its black-box approach lets LIME-RS
be applicable for every RSs, the way the model is built – by drawing a huge random sample of
system behaviors – makes it lose both adherence and constancy, as our experiments show.
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2. Related Work

In recent years, the theme of Explanation in Artificial Intelligence has come to the foreground,
capturing the attention of the Machine Learning and related communities [5, 10, 11], among
others. This trend has also touched the research field of RSs [12, 13, 14, 15, 16, 17, 18]. Explainable
Recommendation is defined as the task that aims to provide suggestions to the users and make
them aware of the recommendation process, explaining also why that specific object has been
suggested. On the one hand, the model-intrinsic explanation strategy aims at creating
a user-friendly recommendation model or encapsulates an explaining mechanism. On the
other hand, a model-agnostic [19] approach, also known as post-hoc [20], does not require to
intervene on the internal mechanisms of the recommendation model and therefore it does not
affect its accuracy. Many post-hoc explanationmethods have been proposed for recommendation
models based on Matrix Factorization (MF) [20, 21, 22, 15, 23, 24, 25, 26, 27].

Our paper focuses on the operation of LIME-RS that applies the explanation model technique
LIME to the recommendation domain. The goal of LIME-RS is to exploit the predictive power
of the recommendation model 𝑓 (treated as a black box) to generate an explanation about the
suggestion of a particular item 𝑥 ∈ 𝒳 for a user. LIME-RS exploits a neighborhood of samples
{𝑥′ | 𝑥′ ∈ 𝒳} drawn from the training set according to a generic distribution, and compared
to the item 𝑥 to be explained, to train an interpretable model 𝑒 – tipically based on a linear
prediction. It seems obvious that the choice of the neighborhood is crucial within the process
of explanation generation by LIME-RS. One of the disadvantages of this approach is that it
sometimes fails to estimate an appropriate local replacement model; instead, it generates a
model that focuses on explaining the examples and is affected by more general trends in data.

These observations dictate the two research questions that motivated our work. RQ1: Can we
trust the surrogate-basedmodel which LIME-RS is built on, to generate always the same explanations
(Constancy), or does the extraction of a different neighborhood breaks down Constancy? RQ2:
Are LIME-RS explanations adherent to item content, despite the fact that the sampling function is
uncritical and based only on popularity?

3. Experiments

The datasets used for this phase of experimentation are Movielens 1M [28], Movielens Small [28],
and Yahoo! Movies1. As for the models to be used in this work, we selected two well-known
recommendation models that are able to exploit the information content of the items to produce
a recommendation: Attribute Item kNN (Att-Item-kNN) and Vector Space Model (VSM). The
implementation of both models is available in the evaluation framework ELLIOT [29, 30]. This
benchmarking framework was used to select the best configuration for the two recommendation
models by exploiting the corresponding configuration file2. After choosing the best configuration
(based on the nDCG metric [31, 32]) for each of the above two models, for each user 𝑢 we
generated the top-10 list 𝐿𝑢 of recommendations, and we examined the first item 𝑖1 on 𝐿𝑢.
Finally, each recommendation pair (𝑢, 𝑖1) is explained with LIME-RS. The explanation consists

1http://webscope.sandbox.yahoo.com/
2https://tny.sh/basic_limers
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of a weighted vector (𝑔, 𝑤)𝑖 where 𝑔 is the genre of the movies in the dataset – i.e., the features
– and 𝑤 is the weight associated to 𝑔 by LIME-RS within the explanation. Then, this vector is
sorted by descending weights to highlight, in the first positions, the genres of the movies which
played a key role within the recommendation. These operations are then repeated 𝑛 = 10 times
while changing the seed each time. At this point, for each pair (𝑢, 𝑖1), we have a group of 10
explanations ordered by descending values of 𝑤.
RQ1.We consider only the first five features in the sorted vector representing the explanation of
each recommendation. In order to verify the constancy of the behavior of LIME-RS, given a (𝑢, 𝑖1)
pair, we exploit the 𝑛 previously generated explanations for this pair. Then for 𝑘 = 1, 2, … , 5,
we define 𝐺𝑘 as the multiset of genres that appear in 𝑘-th position – for instance, if “Sci-Fi”
occurs in the first position of 7 explanations, then “Sci-Fi” occurs 7 times in the multiset 𝐺1, and
similarly for other genres and multisets. Then, we compute the frequency of genres in each
position as follows: given a position 𝑘, a genre 𝑔, and the number 𝑛 of generated explanations
for a given pair (𝑢, 𝑖1), the frequency 𝑓𝑔𝑘 of 𝑔 in 𝑘-th position is computed as 𝑓𝑔𝑘 =

||{𝑔 | 𝑔∈𝐺𝑘}||
𝑛 ,

where || ⋅ || denotes the cardinality of a multiset. Then, all this information is collected for each
user in five lists — one for each of the 𝑘 positions — of pairs ⟨𝑔, 𝑓𝑔𝑘⟩ sorted by frequency. One
can observe that the computed frequency is an estimation of the probability that a given genre
is put in that position within the explanation generated by LIME-RS sorted by values. Hence,
the pair ⟨𝑔,max (𝑓𝑔𝑘)⟩ describes the genre with the highest frequency in the 𝑘-th position of
the explanation for a pair (𝑢, 𝑖1). Finally, it makes sense to compute the mean 𝜇𝑘 of the highest
probability values in each position 𝑘 of the explanations for each pair (𝑢, 𝑖1). Formally, by setting

a position 𝑘, the mean 𝜇𝑘 is computed as 𝜇𝑘 =
∑|𝑈 |

𝑗=1max(𝑓𝑔𝑘)𝑗
|𝑈 | , where 𝑈 is the set of users whom it

was possible to generate a recommendation for. Observing the value of 𝜇𝑘, we can state to what
extent LIME-RS is constant in providing the explanations until the 𝑘-th feature: the higher the
value of 𝜇𝑘, the higher the constancy of LIME-RS concerning the 𝑘-th feature.
RQ2. With the aim at providing an answer about the adherence to reality of LIME-RS, we make
a comparison between the genres claimed to explain a recommended item and its actual genres.
Indeed, the explanations about an item should fit the list of genres the item is characterized by.
This means that, in an ideal case, all highly weighted features within the explanation should
match the genres of the item. We intersected each explanation limited to the set 𝐸𝑘 of its first
𝑘 genres with the set of genres 𝐹𝑖1 characterizing the first recommended item, for 𝑘 = 1, 2, 3.
Upon completion of this operation for all the 𝑛 explanations generated for each (𝑢, 𝑖1) pair, we
computed the number of times we obtained an empty intersection of these sets, normalized by
the total number of explanations 𝑛 × |𝑈 |, in order to understand to what extent an explanation
is (not) adherent to the item. Formally, for a given value of 𝑘, the value 𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑘 is computed

as 𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑘 =
∑𝑛×|𝑈 |

𝑗=1 [(𝐸𝑘∩𝐹𝑖1)𝑗=∅]

𝑛×|𝑈 | , where 𝑈 is the set of users of the dataset for whom it was
possible to generate a recommendation, 𝑛 is the number of generated explanations for each pair
(𝑢, 𝑖1), and by Σ[⋯] we mean that we sum 1 if the condition inside [⋯] is true, and 0 otherwise.
One can note that 𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑘 ∈ [0, 1], where a value of 1 indicates the worst case in which for
none of the 𝑛 explanations under consideration at least one genre of the item is in the first
𝑘 features of the explanation. In contrast, the lower the value of 𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒𝑘, the higher the
adherence of LIME-RS.



Table 1
Constancy. A value equals to 1 means that the genre(s) in the first 𝑘 position(s) is always the same.
Adherence. A value equals to 0 means one genre is always among the real genres of the movie.

𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒1 𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒2 𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑐𝑒3
Att-Item-kNN

Movielens 1M 0,9130 0,7822 0,6927 0,6288 0,5727 0,2774 0,1105 0,0488
Movielens Small 0,8830 0,7426 0,6639 0,60459 0,5616 0,2364 0,0651 0,0180
Yahoo! Movies 0,9230 0,8016 0,7232 0,6528 0,5830 0,3597 0,1202 0,0476

VSM

Movielens 1M 0,8929 0,7953 0,7729 0,7726 0,7801 0,5357 0,2539 0,1088
Movielens Small 0,9464 0,8636 0,8343 0,8138 0,8049 0,4384 0,1674 0,0403
Yahoo! Movies 0,9732 0,9209 0,8887 0,8884 0,9056 0,1013 0,01348 0,0021

Table 1 shows the different behaviors for Att-Item-kNN and VSM with respect to the two
novel defined metrics. From the constancy point of view, Att-Item-kNN seems to guarantee a
good constancy in explanations up to the third feature. This suggests that an explanation that
exploits the first three features of the list produced by LIME-RS could be barely considered as
reliable (i.e., reaching a constancy of 0.69 on Movielens 1M). In contrast, VSM exhibits a much
more ”stable” behavior, demonstrating in all cases (except for the first feature with Movielens
1M) better performance than Att-Item-kNN in terms of constancy, From the adherence point
of view, the results show that Att-Item-kNN shows good performance regarding adherence
and identifies 3 times out of 4 the first fundamental feature of the explanation among those
present in the set of features originally associated with the item. As expected, if the number 𝑘
of LIME-RS-reconstructed features increases, the number of times such a set has a nonempty
intersection (with the features belonging to the item) – i.e., adherence – increases. One can note
that Att-Item-kNN on Yahoo! Movies shows the worst behavior in terms of adherence. VSM
shows a different behavior. Despite the excellent performance regarding constancy, one can
observe that on both Movielens datasets, the performance in terms of adherence is poor, and
worse for Movielens 1M than for Movielens Small. Surprisingly, on Yahoo! Movies, VSM the
errors are almost negligible.

4. Conclusion

In our experiments, some evidence started to emerge highlighting that the adopted explanation
model is conditioned not only by the accuracy of the black-box model it tries to explain but
also by the quality of the side information used to train the model. The latter result deserves to
be adequately investigated to search for a link at a higher level of detail. We plan to apply our
experiments also to other recommendation models, to see whether the problems with adherence
and constancy that we found for the two tested models show up also in other situations. We
will also investigate what impact structured knowledge has on this performance by exploiting
models capable of leveraging this type of content. In addition, it would also be the case to try
different reference domains with richer datasets of side information to understand what impact
content quality has on this type of explainer.
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