
Tag-based embedding representations in neural
collaborative filtering approaches
Tahar-Rafik Boudiba1,2, Taoufiq Dkaki1

1IRIS/IRIT, UMR 5505 CNRS, 118 Route de Narbonne, F-31062, TOULOUSE CEDEX 9, France
2ADBI Accelarator Data & Business Intelligence, 8 rue rossini 75009 Paris, France

Abstract
Learning user-item interactions in collaborative systems have become a promising method to improve the
performance of collaborative filtering approaches. In such systems, contents surrounding users and items,
particularly user tags, have a key role since they are leveraged with collaborative filtering approaches.
Tags are commonly represented using the bag of words paradigm, although it is subject to ambiguity due
principally to the poor semantic relation between tags. Recent methods suggest the use of deep neuronal
architectures as they attempt to learn semantic and contextual word representations. On this basis, we
have addressed how to integrate semantically such content into different neural collaborative filtering
models for rating prediction. Based on effective models initially developed to learn user-item interaction,
in this paper, we have extended different neural collaborative filtering models for rating prediction to
evaluate the impact of using static or contextualized word embeddings within a neural collaborative
filtering strategy. Moreover, the presented models use dense tag-based user and item representations
extracted from pre-trained static Word2vec and contextual BERT. In addition, the paper emphasizes
the impact of using contextualized tag embedding neighbors in a neural graph collaborative filtering
approach that learns an aggregated function. Finally, to determine whether the use of different neural
architectures can influence the recommendation quality, we adapt neural architectures, including three
popular end-to-end learning models that are an MLP an autoencoder, and a Graph Neural Network. We
evaluated and compared all the models with recent baselines on several MovieLens datasets.

Keywords
Learning representation, folksonomies, deep learning, word embedding, social tagging,

1. Introduction

Deep learning (DL) techniques are the milestones of several recent recommendation engines.
Platforms such as Facebook1 and Pinterest2 have already shared their experience in using DL
for recommender systems (RS). In such platforms, Collaborative Filtering (CF) approaches are
mainly exploited. Such methods enable the users to get recommendations on favourite items.
When such methods are put into practice in RS, it implies being able to predict how users
will rate a particular item. Classical CF approaches are based either on Matrix Factorization
(MF) techniques or on simple user-item vector similarity methods. However, these models

CIRCLE (Joint Conference of the Information Retrieval Communities in Europe) 2022
$ Tahar-rafik.Boudiba@irit.fr (T. Boudiba); Taoufiq.Dkaki@irit.fr (T. Dkaki)
� 0000-0002-0877-7063 (T. Boudiba); 0000-0001-7116-9338 (T. Dkaki)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.facebook.com/
2https://www.pinterest.com/

1

mailto:Tahar-rafik.Boudiba@irit.fr
mailto:Taoufiq.Dkaki@irit.fr
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0001-7116-9338
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

share the property of being essentially linear since they combine user and item latent factors
linearly. In contrast, DL models for RS have the main property of learning multiple level of
representation and hence have enabled the deep integration of several type of content. As result,
recent neural collaborative filtering approaches capture more complex user-item interactions
and enable high-level abstractions for content description. Such content often makes reference
to user’s tags since they are commonly used to describe items and users’ profiles using the
bag of words representation. Although such representations commonly appearing as one-hot
vectors are efficient for computing user-item similarity, many problems such as ambiguity and
vocabulary mismatch have been raised [1]. In this sens, common NLP techniques suggest the
use of dense representations in the forme of eitheir user or item agregated semantic embedding
vectors extracted from pre-trained Word2vec neural language model [2, 3]. However, how
to include efficiently such embedding vectors at the top layer of a neural CF architecture?
A design choice is to combine the two embedding vectors, then feed them through multiple
fully connected layers to get the likelihood that a user interacts with an item. In that way,
multiplying the embedding vectors element-wise with each other or simply concatenating
them might be a raisonnable technique to integrate both user and item dense representations
in a neural CF model. Some works have discussed text embedding aggregation techniques
[4] others have suggested the concatenation of mean Word Embedding since they compute
word average embedding representations [3]. Recent neural approaches for recommendation
consider in addition other relationships such as neighborhood proximity among graph-based
approaches. Such approaches have been proposed to explore multi-layer neighbor embedding
representations. Since these embeddings are integrated with neural CF architectures this has
resulted in Neural Graph CF (NGCF) approaches [5]. In this paper, we have considered tag
embeddings as the starting point for integrating explicitly a tag-based vocabulary within neural
collaborative filtering models. However, such initiative raises some research issues, such as
determining the most efficient neural architecture to use or defining the best tag embedding
representations. At this end, we handle dense tag-based representations that we exploit within
effective neural CF models for rating prediction. We have developed several neural models that
combine neural CF with tagging information integrated into a training process. For this purpose,
we handled word vector representation to include more valuable tag’ semantic and so to enhance
neural CF models ability to generalize. We compared different tag embedding representations
from pre-trained static (Word2vec) and contextual BERT models. Furthermore, we evaluated
the impact of using such tag embeddings through several neuronal model’s architecture that
is an MLP, an autoencoder and a graph-based neural collaborative architecture. We provided
empirical results from MovieLens Dataset 10 M, 20M et 25M. The main contributions of this
paper are summarized as follows:

• Integrate efficiently tag-embedding representations into several neural CF models.
• Evaluate the impact of static/contextual embedding representations and comparing model

architecture.
• Evaluate impact of multi-layer neighbor static/contextual embedding representations to

be exploited in a neural graph CF model.
• Extensive series of experiments on real data from several MovieLens data sets.

2

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

The remaining of the paper is organized as follows. The next section presents some back-
ground and reviews recent research works related to content-based recommendation using
neuronal networks and word vector representation. We gathered works that describe neural
approaches from a collaborative filtering point of view, specifying the most used neural ar-
chitectures. Section 3 highlights the basis of our proposed models. Section 4 details datasets,
evaluation metrics, and experimental settings. Section 5 gives the evaluation results and dis-
cusses performance comparison with baselines. Following these sections, we will draw our
conclusion in the final section.

2. Background and related works

DL methods have made breakthroughs in data representation learning from various data
sources. As result, recent neural recommendation models have been able to handle learning
representations of user preferences, item features and textual interactions [6, 1]. Yet, neural
recommendation models attempt to introduce in addition, tag semantic-aware representations
based on distributional tag semantic used as features [6]. In this area, Musto et al., [7] exploit
Word2vec approach to learn a low dimensional vector space word representation and exploited
it to represent both items and user profiles in a recommendation scenario. Zhang et al., [8]
proposed to integrate traditional matrix factorization with Word2vec for user profiling and
rating prediction. Liang et al., [9] exploited pre-trained word embeddings from Word2vec to
represent user tags and construct item and user profiles based on the items’ tags set and users’
tagging behaviors. They use deep neural networks (DNNs) and recurrent neural networks
(RNNs) to extract the latent features of items and users to predict ratings. Moreover, TagEm-
bedSVD [10] uses pre-trained word embedding from Word2vec for tags to enhance personalized
recommendations that are integrated to an SVD model in the context of cross-domain CF. Other
works [11, 1] take advantage of network embedding techniques to propose embedding-based
recommendation models that exploit CF approaches. Along with learning content representation
for recommendation, exploiting rating patterns often require the use of a neural network-based
embedding model that is first pre-trained. Features are extracted and integrated into a CF model
by fusing those features with latent factors thanks to non-linear transformations that better
leverage abstract content representations and so perform higher quality recommendations.
Since pre-training word embedding from large-scale corpus became widely used in different
information retrieval tasks, it was also exploited to generate recommendations by ranking user-
item matrix from users’ similar tags vocabulary. Models such as Word2vec [12] or GloVe [13] for
instance learned meaningful user tag representations by modeling tag co-occurrences. However,
these methods don’t consider the deep contextual information that some single content words
may suffer. Moreover, they do not handle unknown words. In contrast, contextualized word
representations such as BERT [14], have been proposed to overcome the lack of static word
embeddings, since it was shown that such contextual neural language model improves the
performance of many downstream tasks. Yet, graph-based neuronal approaches[15, 16, 17] have
considered heterogeneous graphs as they try to overcome the missing of relationship modeling
in features-based neural recommendation models. Such approaches have been proposed to
explore multi-layer neighbor embedding representations [18]. Neural graph network models

3

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

consider content information features extracted from either graph properties [19] or learned
from node embedding representations [20]. Particularly, Neural Graph Collaborative Filtering
(NGCF) approaches exploit feature representations of the user-item graph structure by propa-
gating either user-based or items-based content embeddings on it [21]. Such process is often
the result of learning aggregation functions that allow deep-based relationship modeling among
both user-item interaction and content features. In this way, Graph Convolutional Networks
(GCNs) have also been exploited through learning aggregator functions which required addi-
tional layers to obtain a convolution neighborhood aggregation by neighborhood’s embeddings
at these layers [22]. As result, deep semantic representations are extracted using embeddings
propagation on user-item graph structure. An instance of such method is used in Ying et al,.
[23] since it employs multiple graph convolution layers on an item-item graph in Pinterest 3

image recommendation.
In the following, we introduce some recommendation models of the literature that have

handled neural CF approaches [24, 25, 26]. Those models resolved user rating prediction. Some
of them have been adapted to include tagging content [27, 28, 29], they are mostly composite
through which multiple neural building modules compose a single distinguishable function that
is trained end-to-end. Here, we introduce some summary definitions related to tagging that will
allow us to address later most common architectures and topologies giving recommendation
strategies for each of them. A folksonomy 𝐹 can be defined as a 4-tuple 𝐹 = (𝑈, 𝑇, 𝐼, 𝐴),
where U is the set of users annotating the set of items 𝐼 , 𝑈 = {𝑢1, 𝑢2, ...𝑢𝑀} where each 𝑢𝑖
is a user. 𝑇 is the set of tags that includes the vocabulary expressed by the folksonomy. 𝐼 is
the set of tagged items by user 𝐼 = {𝑖1, 𝑖2...𝑖𝑁}. 𝐴 = {𝑢𝑚, 𝑡𝑘, 𝑖𝑗} ∈ 𝑈 × 𝑇 × 𝐼 is the set of
annotations of each tag 𝑡𝑘 to an item 𝑖𝑗 by user 𝑢𝑚. We have also considered 𝑅 as the set of
user ratings 𝑟𝑢,𝑖 .

2.1. MLP-based neural collaborative filtering for Recommendation

Approaches of neural collaborative filtering (NCF) for rating prediction often involves dealing
with binary property of implicit data. Some works [30, 31, 26] have in addition discussed
the choice of the neural architecture to be implemented. A possible instance of the neural CF
approach can be formulated using a multi-layer perceptron (MLP). As addressed in [30] the input
layer (the embedding layer) is a fully connected layer that maps the sparse representations to
dense feature vectors. It consists of two feature vectors 𝑣𝑓(𝑢) and 𝑣𝑓(𝑖) that describe user 𝑣𝑈(𝑢) and

item 𝑣𝐼(𝑖) represented initially through one-hot encoding. The obtained user (item) embedding
can be seen as the latent vector for user (item). The user embedding and item embedding are
then fed into neural CF layers to map the latent vectors to prediction scores. Final output layer
is the predicted score �̂�𝑢,𝑖, and training is performed by minimizing the point wise loss between
�̂�𝑢,𝑖 and its target value 𝑟𝑢,𝑖. NCF predictive model can be formulated as:

�̂�𝑢,𝑖 = MLP(𝑃 𝑇
𝑢 . 𝑣𝑓(𝑢), 𝑄

𝑇
𝑖 . 𝑣

𝑓
(𝑖)|𝑃𝑢, 𝑄𝑖,ΓMLP) (1)

𝑃𝑢 ∈ R𝑀×𝐾 and 𝑄𝑖 ∈ R𝑁×𝐾 are latent factor matrix for users and items respectively.
Γ𝑀𝐿𝑃 denotes the model parameters of the interaction function that is defined as a multi-layer
3https://www.pinterest.fr/

4

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

neural network.

2.2. Autoencoder-Based collaborative filtering for Recommendation

Another way to consider neural CF is to approach user-item rating as a matrix 𝑋 ∈ 𝑅𝑚×𝑛

with partially observable row vectors that form a user 𝑢 ∈ the set of users 𝑈 = {1...𝑚} given
by the set of user ratings 𝑟(𝑢) = {𝑋𝑢1...𝑋𝑢𝑚} ∈ 𝑅 and column vectors from the set of items
𝑖 ∈ 𝐼 = {1...𝑛} also given by their corresponding ratings 𝑟(𝑖) = {𝑋𝑖1...𝑋𝑖𝑛}. An efficient
neural method to encode each partially observed vector into law-dimensional latent space is to
handle an autoencoder architecture as suggested in [25] that will reconstruct the output space
to predict missing ratings for recommendation [25, 32, 24]. Given a set of rating vectors 𝑟(𝑢)
and 𝑟(𝑖) ∈ R𝑑, the autoencoder solves:

𝑚𝑖𝑛𝜃

∑︁
𝑟∈𝑅

= ||𝑟 − ℎ(𝑟; 𝜃)||2 (2)

Where ℎ(𝑟; 𝜃) is the reconstruction of input 𝑟 ∈ R𝑑 that is defined as:

ℎ(𝑟; 𝜃) = 𝑓(𝑊.𝑔(𝑉 𝑟 + 𝜇) + 𝑏) (3)

𝑓(.) and 𝑔(.) are activation functions associated to the encoder and decoder respectively and
𝜃 gather model parameters; 𝑊 ∈ R𝑑×𝑘 and 𝑉 ∈ R𝑘×𝑑 are weight matrices and 𝜇 ∈ R𝑘 , 𝑏 ∈ R𝑁

biases. In an item-based recommendation perspective, the autoencoder applies 𝑟(𝑖) as the set of
input vectors. Weights associated to those vectors are updating during backpropagation.

2.3. Neural Graph Collaborative Filtering for Recommendation

NGCF approaches are particular in the sens that they exploit embeddings of users and items
represented initially as a graph structure. Most of them adopt a user-item bipartite graph of as it
much represents user-item interactions [15, 20, 16]. Promising recent methods suggest learning
user and item representations from their bipartite associated graph by stacking multiple
embedding propagation layers to allow high-order connectivity from user-item interactions
[21]. Other works [15] learn aggregator functions that induce the embedding of a new node
given its features and neighborhood. In the following we formalized what can be associated
to a neural graph-based collaborative filtering approach for user rating prediction based on
multiple embedding aggregation layers. This neural graph-oriented approach is designed to
exploit node embeddings from neighborhood aggregation. Given a bipartite weighted graph of
user-item 𝒢 = (𝒱, ℰ , 𝐴,𝒳), with 𝒱 = {𝒱𝑢 ∪ 𝒱𝑖}, ℰ denotes the set of undirected weighted
edges representing user ratings, 𝐴 is the adjacency matrix and 𝒳 ∈ R𝑚×𝑛 is defined as the
node feature matrix.

Let ℎ0𝑣 = 𝑥𝑢𝑣 with 𝑣 ∈ 𝒱𝑢 be the user node feature at the 0th layer. Then, At the k-th layer :

ℎ𝑘𝑣 = 𝛿(𝑊𝑘

∑︁
𝑢∈𝑁(𝑣)

ℎ𝑘−1
𝑢

|𝑁(𝑣)|
+𝐴𝑘ℎ

𝑘−1
𝑣) (4)

5

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

ℎ𝑘−1
𝑣 is the embedding of user node 𝑣 ∈ 𝒱𝑢 from previous layer. |𝑁(𝑣)| is the number of the

neighbors of node 𝑣. The sum expressed in the equation enables aggregate neighboring features
of node 𝑣 from previous layer. 𝛿 is the activation function (Tanh) that enables non-linearity. 𝑊𝑘

and 𝐴𝑘 are trainable parameters. The final embedding after K layers (𝑘 ∈ {1...𝐾}) is extracted
from the output layer: 𝑧𝑢𝑣 = ℎ𝐾𝑣 after K layers. This can be expressed as a matrix multiplication
form for the whole graph as:

𝐻 𝑙+1 = 𝛿(𝐻 𝑙𝑊 𝑙
0 + �̃�𝐻 𝑙𝑊 𝑙

1) (5)

In such a way that �̃� = 𝐷−1/2𝐴𝐷−1/2 with 𝐴 represents adjacency matrix and 𝐷 represents
the degree matrix. Thereafter, after applying similar process to item nodes embeddings to get
𝑧𝑖𝑣 with 𝑣 ∈ 𝒱𝑖, one way is to employ a concatenated operator ⊕ on both user and item final
embeddings to obtain 𝑧𝑢⊕𝑖

𝑒 = 𝑧𝑢𝑣 ⊕ 𝑧𝑖𝑣 that represents the edge embedding 𝑒𝑢,𝑖 between a user
node 𝑣𝑢 and item node 𝑣𝑖, with 𝑒𝑢,𝑖 = [𝑣𝑢, 𝑣𝑖]. These edge embeddings are passed through a
link regression layer to obtain predicted user-item ratings. The model is trained end-to-end by
minimizing a regression loss function (RMSE or root mean square error between predicted and
true ratings) using stochastic gradient descent (SGD) updates of the model parameters, with
minibatches of user-item training edges fed into the model.

3. Overview of the proposed models

In this section, we introduce our tag-aware neural models for recommendation. More explicitly,
we integrate tag-based embeddings into CF neural architectures, namely a Multilayer perceptron,
an autoencoder and a neural graph based model. More explicitly, to integrate side information
into predictive neural models a naive approach consists of appending additional user/item bias
to the rating prediction. We estimate that computing those biases can be handled either by
hand-crafted engineering or by implementing an appropriate CF strategy. A simple Neural
collaborating filtering framework architecture implies considering the input layer(embedding
layer) as a fully connected layer that projects sparse representation of users and items to dense
vectors. To integrate explicitly tags vocabulary in a neural model for rating prediction, we have
made use of feature vectors that we have considered as tag vector representations sharing a
common embedding space using projection matrices. The obtained user (item) embedding can
be seen as the latent vector for the user (item) in the tag latent space. Feature vectors 𝑣𝑓(𝑢) and

𝑣𝑓(𝑖) are reconsidered since we have projected tag representations into lower dimension using
projected matrices E and F. Consequently, tag-based vector representation is expressed as a

user feature vector 𝑣𝑓(�̃�):

𝑣𝑓(�̃�) =
1

|𝑇𝑢|
∑︁
𝑡𝑘∈𝑇𝑢

𝐸(𝑡𝑘) (6)

Such as 𝑡𝑘 ∈ R𝑐 is the embedding vector associated with tag k, and c denotes the embedding
dimension. 𝐸 denotes the projection matrix with 𝐸 ∈ R𝑑×𝑐.

Similarly, if 𝐹 denotes the projection matrix with 𝐹 ∈ R𝑑×𝑐, then the item feature vector

𝑣𝑓
(�̃�)

is expressed as:

6

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

𝑣𝑓
(�̃�)

=
1

|𝑇𝑖|
∑︁
𝑡𝑘∈𝑇𝑖

𝐹 (𝑡𝑘) (7)

We denoted 𝑇𝑢 the set of tags of a user 𝑢 and 𝑇𝑖 as the set of related tags describing a particular
item. Moreover, we have obtained embeddings for tags from Word2vec and BERT pre-trained
neural model by handling projection matrices E and F ∈ R𝑑×𝑐.

3.1. CF-based MLP model

Extended tag-based NCF predictive model can be reformulated relying on the previous NCF
model that has been described in section 3.1 equation (1) as:

�̂�𝑢,𝑖 = MLP(𝑣𝑓(�̃�), 𝑣
𝑓

(�̃�)
, 𝜃MLP) (8)

The user and item embeddings can be fed into a multi-layer neural model.
Where, �̂�(𝑢, 𝑖) is the rating score for a user on an item. Figure 1(𝒞) details an instance

of the model. Prediction Pipeline exploits user and item vectors extracted from dense space
representation (Figure 1(𝒜)), hidden layers are added to learn interactions between user and
item latent features, a regressor at the last hidden layer is set to produce the final rating. (Figure
1(𝒜)) is a dynamic module in which dense representations are computed through inner product
of user and items embedding’ representations. Tag embedding representations are extracted
from neural pre-trained language model (Figure 1(ℰ)).

3.2. CF-based Autoencoder model

Following the autoencoder paradigm, instead of encoding user vectors containing user ratings
to be predicted like in Autorec [25], we have extended a multilayered autoencoder architecture
to integrate element wise product of pre-trained tag-based embeddings. Such embeddings are
concatenated with the user rating representations and are projected on a dimensional latent
(hidden) space. As such, user’ rating 𝑟(𝑢𝑚, 𝑖𝑙) of a particular user is reconstructed using an
objective function 𝜃 that minimizes :∑︁

||𝑟(𝑢𝑚, 𝑖𝑙)⊕ (𝑣𝑓(�̃�) ⊗ 𝑣𝑓
(�̃�)
)− ℎ(𝑟(𝑢𝑚, 𝑖𝑙)⊕ (𝑣𝑓(�̃�) ⊗ 𝑣𝑓

(�̃�)
); 𝜃)||2

(9)

Where (𝑟(𝑢𝑚, 𝑖𝑙), 𝜃) is the reconstruction of the input 𝑟(𝑢𝑚, 𝑖𝑙) ∈ R𝑑. The operator ⊗
denotes element-wise multiplication between user and item feature vectors. The operator ⊕
denotes a concatenation operator. 𝑡𝑎𝑛ℎ is the selected activation function. Figure 1(ℬ) presents
a detailed instance of the model. Prediction Pipeline exploits user and item vectors extracted
from dense space representation. Such representations are concatenated with user rating and
fed as input of the autoencoder model. Layers are added to learn interactions between user and
item latent features to be compressed in a dense space. User’s ratings reconstruction from the
dense space produce the final rating.

7

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

Figure 1: Extended NCF based on an MLP (on the right) and an Autoencoder (on the left), Graph-based
NCF architecture based on tag feature embeddings and aggregator functions

3.3. Neural graph CF-based model

As part of collaborative filtering approaches, neural graph- based networks consider for the
most [20, 19, 15] bipartite graphs of users and items in a recommendation context, where edges
represent the rating interactions between the users and the items. From the bipartite graph 𝐺
defined in section 2.1.3 where nodes’ classes are derived from the set of user nodes 𝒱𝑢 and the
set of item nodes 𝒱𝑖 respectively. Each edge corresponds to whatever user’s rates an item. Each
edge 𝑒𝑢,𝑖 ∈ ℰ is associated to a value 𝑟(𝑢,𝑖) ∈ {0, 1}.In order to learn the topological structure of
each class of node neighborhoods, the idea is to aggregate feature information from node’s local
neighborhood [15], however in this paper we handled node’s features from pre-trained static
and contextual tag embeddings model. Users’ nodes features are taken from mean average users’
tags embedding vectors, equivalently items’ nodes features are represented throws the mean
average of their tag embeddings vectors. We have previously explored a simple neighborhood
aggregation process in section 2.0.3. By defining a neighborhood function 𝑁(𝑣), that is set to a
fixed-size (in our experiments K=2), the bipartite graph is sampled as the model learn a function
that generates aggregates from tag-based textual feature node neighbors. This method can
be generalized by applying different aggregation methods to nodes ∈ 𝐺 by concatenating the
features with the nodes itself. For this purpose, we have associated each node 𝑣 ∈ {𝒱𝑢 ∪ 𝒱𝑖} to

features from word vector representation by joining tag-based vector representation 𝑣𝑓(�̃�) and

𝑣𝑓
(�̃�)

(Figure 1(𝒢)). We have designed a mean aggregation function that is commonly used since

it imply element wise mean of the feature vectors in ℎ𝑘−1
𝑢 . We have also designed a convolution

aggregator function that we have detailed next.

8

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

3.3.1. Mean aggregator function

Since the rating interactions between users and items are represented as a bipartite graph
𝐺 = (𝑈, 𝑉,𝐸), 𝒱𝑢 and 𝒱𝑖 corresponds respectively to users and items sets. Thus, aggregation
mean tag embedding features from the neighbors of the node 𝑣 ∈ {𝒱𝑢 ∪ 𝒱𝑖} is processed given
the following update rule (Figure1𝒟(𝒜′)):

ℎ𝑘𝑁(𝑣) =
1

|𝑁(𝑣)|
𝐷𝑝[ℎ

𝑘−1
𝑣]

We give the forward pass through layer 𝑘 as follows:

ℎ𝑘𝑣 = 𝛿(𝑐𝑜𝑛𝑐𝑎𝑡[𝑊 𝑘
𝐼 𝐷𝑝[ℎ

𝑘−1
𝑣],𝑊 𝑘

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ
𝑘
𝑁 (𝑣)] + 𝑏𝑘)

Where, ℎ𝑘𝑣 is the output node 𝑣 at layer 𝑘,
𝑊 𝑘

𝐼 and 𝑊 𝑘
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 are trainable parameters, 𝑏𝑘 is an optional bias, 𝑑𝑘 is node feature dimen-

sionality at layer 𝑘, 𝛿 is a non linear activation function (Tanh), 𝐷𝑝 is a random dropout with
probability 𝑝 applied to its argument vector used to reduce model’s over-fitting. 𝑁(𝑣) represent
the neighborhood of a node 𝑣 ∈ {𝒱𝑢 ∪ 𝒱𝑖} . The number of trainable parameters in layer k for
the mean aggregator is 𝑑𝑘.𝑑𝑘−1 + 𝑑𝑘.

3.3.2. Convolutional aggregator function

To generalize the collaborative filtering process from a graph convolutional network perspective,
we adopted a GCN aggregator [15] (Figure1𝒟(𝒜′)), that concatenates nodes from the previous
layer representation ℎ𝑘−1

𝑣 with the aggregated neighborhood vectors ℎ𝑘𝑁(𝑣). Features are
updated given the following equation:

ℎ𝑘𝑁(𝑣) =
1

|𝑁(𝑣)|+ 1
(ℎ𝑘−1

𝑣 +
∑︁

𝑣∈𝑁(𝑣)

ℎ𝑘−1
𝑣) (10)

Forward pass through layer 𝑘 is defined as:

ℎ𝑘𝑣 = 𝛿(𝑊 𝑘.ℎ𝑘𝑁(𝑣) + 𝑏𝑘) (11)

Where, 𝑊 𝑘, is a trainable weight matrix, shared between all nodes 𝑣 ∈ {𝒱𝑢 ∪ 𝒱𝑖}. The
size of 𝑊 𝑘 is given as 𝑑𝑘 × 𝑑𝑘−1. The number of trainable parameters in layer 𝑘 for the GCN
aggregator is 𝑑𝑘.𝑑𝑘−1 + 𝑑𝑘.

4. Experiments

In this section, we have conducted experiments intending to answer the following research
questions:
RQ1: Are tag-based contextual embeddings efficient representations to be used in a neural

CF model compared to static tag-based embedding representations?
RQ2: Which extended neural collaborative architecture perform significant improvement

and ranking quality for a rating prediction task?

9

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

From there, an underlying research question can be derived, it concerns the various methods
used for aggregating tag embeddings. Assuming that, the methods used for aggregating tag
embeddings may affect the performance of recommendation models.
RQ3: Are contextual neural graph embeddings more efficient representations to be used

in a neural collaborative filtering architecture ? regarding such process, which aggregator
function should leads to better recommendation performance? A mean aggregator function? a
convolutional aggregator function?

4.1. Experimental Settings

1. Datasets: The data sets describe 5-stars ratings and free-text tagging from MovieLens,
a movie recommendation service. We extracted user annotations from the ML-10M,
ML-20M, and ML-25M data sets. Only users that have annotated and rated at least 20
movies were selected. We observed from Table 1 an unequal distribution of user rating
classes, because of users trend scoring items with good rating values. This can lose
models capacity to generalize. To overcome, we over-sample minority classes [33] by
duplicating samples from the minority class and adding them to the training data.

2. Hyper-parameters: After splitting the data in each dataset into random 90%, 10%
training and testing sets, we hold 10% of the training set for hyper-parameters tuning.
Then, we conducted 5 cross-fold validation strategy in each dataset and averaged RMSE
measure. We have applied a grid search for hyper-parameters tuning such as the learning
rate that we tuned among values ∈ {0.0001, 0.0005, 0.001, 0.005}, latent dimensions
∈ {100, 200, 300, 400, 500, 1000} for both autoencoder and MLP architecture. We
handled the Neural Collaborative Autoencoder with a default rating of 2.5 for testing set
without training observations. Graph neuronal and convolutional models handled same
dataset, except that models derived from these approaches handle edges prediction throw
bipartite graph samples. We tuned the dropout ratio 4 from values ∈ {0.0, 0.1, , 0.8}, we
have also defined the neighbor nodes embeddings features at a particular layer of 2. The
models were optimized thanks to the well known Adam optimizer.

3. Evaluation Metrics: We have evaluated rating prediction using two metrics: Mean
Absolute Error (MAE) and Root Mean Square Error(RMSE). Both of them are widely
used for rating prediction in recommended systems. Given a predicted rating �̂�𝑢,𝑖 and a
ground-truth rating 𝑟𝑢,𝑖 from the user 𝑢 for item 𝑖, the RMSE is computed as:

𝑅𝑀𝑆𝐸 =

√︃
1

𝑁

∑︁
𝑢,𝑖

(𝑟𝑢,𝑖 − �̂�𝑢,𝑖)2 (12)

Where 𝑁 indicates the number of ratings between users and items.

4The Dropout layer randomly sets input units to 0 with a frequency of rate at each step during training time, which
helps prevent over-fitting

10

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

MAE is computed as follows:

𝑀𝐴𝐸 =
1

𝑁

∑︁
𝑢,𝑖

|𝑟𝑢,𝑖 − �̂�𝑢,𝑖| (13)

Indeed, we have also evaluated ranking accuracy using NDCG (Normalized Discounted
Cumulative Gain [34]) at 10. For this purpose, we assumed rating values at 5 as being
a good appreciation of a user regarding a movie. In contrast, rating values under 3 are
considered as bad. Hence, the rating value of each movie is used as a gained value for
its ranked position in the result. The gain is summed from the ranked position from 1
to 𝑛. To compute 𝑁𝐷𝐶𝐺, relevance scores are set to six(5) points scale from 1 to 5 and
denotes the relevance score from low to strong relevance. We set the Ideal DCG for user
movies ranked in decreasing order of their ratings. NDCG values presented further are
averaged over user testing set.

4.2. Tag-based embedding representations

We have considered tag-based embeddings thanks to word vector representations. We have
extracted such tag-based embedding representations from pre-trained neural language models.
Owing to the users’ writing discrepancy, users’ tags semantic meaning is often ambiguous.
Tags can be composed of several words and may contain subjective expressions. They can also
be unique words which can occasionally lead to a lack of context. That makes it difficult to
integrate tags explicitly in an effective neural CF architecture. Our main objective is to map
users, items and their tags’ interaction in the same latent space. Rather to exploit straightly
dimensional latent space representations of users and items like in most neural collaborative
approaches [30, 35], we propose to project first both users’ and items’ representations into a
dense tag space representation. Both previous neural approaches are somehow representative
of our objective since they are from CF. We assume that users and items are represented by
their corresponding tags. Particularly, they are represented from the aggregate average of their
tag embedding representations.

1. Static Word2vec tag-based embdddings: We have handled static tag-based embedding
vectors from Word2vec. We have exploited pre-trained vectors trained on part of Google
News dataset (about 100 billion words) and have extracted user’s tags embedding by
associating them to a vector of a well known fixed size for each tag. However, we found
that some tags were out of tag vocabulary, since those user tags represent respectively 8%,
5%, 5% of our Movielens Datasets 10M, 20M and 25 millions ratings. We fixed this issue
by initiate those samples with random vector values. The inability to handle unknown or
out-of-vocabulary words is one of limitation encountered when using such pre-trained
model. Finally, each set of tags per user is represented through a multidimensional vector
of 𝑑𝑖𝑚 = 300.

2. Contextualized BERT tag-based embdddings: We have addressed extracting contextualised
embeddings from BERT neural language model. For this purpose, we have assumed that
the fist token which is ’[CLS]’ that captures the context is treated as sentence embeddings
[36]. The word embedding sequence corresponding to each set of tags is entered into

11

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

the pre-trained model. We have then handled the activation from the last layers of
BERT model since the features associated with the activation in these layers are far more
complex and include more contextual information. These contextual embeddings are
used as input to our proposed models. Thus, each set of tags per user is represented
through a multidimensional embedding vector of 𝑑𝑖𝑚 = 768. We have implemented the
pre-trained bert-base model 5 (12 blocks of hidden dimension 768, 12 heads for attention)
and defining the ’[CLS]’ which indicates the beginning of a sequence as well as the ’[SEP]’
that we used as a separation between two tags of a same sequence.

Collection 10M 20M 25M
Number of users 71567 138000 162541
Number of movies 10681 27000 62423

TAS(Tag assignment) 95580 465000 1093360
Ratings 10000054 2000000 25000095
Nodes 7114 20555 35363
Edges 24564 126080 210725
Period Dec-2015 Oct-2016 Nov-2019

Table 1
Statistical details of the 10M, 20M and 25M collections from MovieLens

5. Evaluation and Performance comparison

First, to solve the RQ1, we extended neural models [30, 25] by handling static and contextual
tag-based embedding representations. We compared those models with recent neural models
from CF that we set as baselines. We evaluated rating score accuracy using RMSE (Root Mean
Square Error) and MAE (Mean Absolut Error). Then, to address RQ2, we have implemented an
MLP and an autoencoder-based CF architecture then, we compared the performance of each
neural model according to tag-based embedding representations with which such models were
integrated. Moreover, ranking accuracy metric was carried out among the different neural
models using NDCG (Normalized Discount Cumulative Gain) at 10. Finally, to answer RQ3, we
managed to exploit user/item based tag embeddings thanks to an aggregate function that is
learned from training samples of user-item graphs. Such function operates either by performing
element wise multiplication between the tag embedding neighbor vectors of a given node or
by concatenating tag embedding vectors with their tag embedding neighbor vectors to get the
embedding of that node.

We have detailed bellow all the models that are included in the neural models Comparative
study.

• Neural GMF-MLP[30]: Is a neural CF approach that exploits a multi-layer perceptron
(MLP) to learn the user–item interaction function. The bottom input layer consists of two

5BERT was pre-trained on a corpus composed of 11,038 unpublished books belonging to 16 different domains and
2,500 million words from English Wikipedia text passages

12

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

vectors that describe user u and item i in a binarized sparse vector (one-hot encoding),
such model employ only the identity of a user and an item as input feature.

• Neural CF-MLP++: Is an extension of Neural CF-MLP, the model integrates in the
bottom input layer two feature vectors that are described as tag embedding features of
users and items. These features are extracted from word vector representation. User and
item feature vectors are extracted from tag-based embeddings, with 300-dimensional
word vectors from pre-trained Word2vec model Neural CF-MLP++

𝑊𝑜𝑟𝑑2𝑣𝑒𝑐 and Neural
CF-MLP++

𝐵𝐸𝑅𝑇 that exploits a 768-dimensional word vectors from pre-trained BERT
model.

• U-Autorec [25] U-AutoRec is a neural CF framework for rating prediction that exploits
an autoencoder architecture. It takes user vectors as input and reconstructs them in
the output layer. The values in the reconstructed vectors are the predicted value of the
corresponding position.

• CF-Autoencoder++ Our autoencoder-based neural collaborative approach that inte-
grates as input tag embedding features by performing element-wise multiplication on
their word vector representations and do concatenate such representations with user/item
rating vectors to get the reconstructed ratings. We have termed the autoencoder-based
model using static tag vector representations as CF-Autoencoder ++

𝑊𝑜𝑟𝑑2𝑣𝑒𝑐 meanwhile
CF-Autoencoder++

𝐵𝐸𝑅𝑇 stands for autoencoder-based model using contextual tag vec-
tors.

• CF-GNN++
𝑀𝑒𝑎𝑛𝐴𝑔𝑔(𝑘=2)

Our NGCF tag-based predictive model that generates node em-
beddings by sampling and aggregating features (tag embeddings) from nodes local neigh-
borhood using a mean aggregation function that operates at neighborhood of 𝑘 = 2.
We distinguish between the NGCF model that handles features extracted from tag-based
embeddings using 300-dimensional tag vectors extracted from pre-trained Word2vec
model and that we term CF-GNN𝑀𝑒𝑎𝑛𝐴𝑔𝑔(𝑘=2)𝑊𝑜𝑟𝑑2𝑣𝑒𝑐 and CF-GNN𝑀𝑒𝑎𝑛𝐴𝑔𝑔(𝑘=2)𝐵𝑒𝑟𝑡

that exploits 768-dimensional tag vectors from pre-trained BERT model.
• CF-GCN++

𝑀𝑒𝑎𝑛𝐴𝑔𝑔(𝑘=2)
We do consider this NGCF model as being convolutional since it

learn convolutional aggregator function that concatenate the node’s previous layers repre-
sentations with the aggregated neighborhood vectors. We differentiate between the model
that handles features extracted from tag-based static embeddings with 300-dimensional tag
vectors from pre-trained Word2vec model and that we term CF-GCN𝑀𝑒𝑎𝑛𝐴𝑔𝑔(𝑘=2)𝑊𝑜𝑟𝑑2𝑣𝑒𝑐

and CF-GCN𝑀𝑒𝑎𝑛𝐴𝑔𝑔(𝑘=2)𝐵𝑒𝑟𝑡 that exploit 768-dimensional tag vectors from pre-trained
BERT model.

• Hinsage [15] is a model that employs a technique for computing node representations in
an inductive way. This method operates by sampling a fixed-size neighborhood of each
user/item node and then performing a specific aggregator over all the sampled neighbors’
feature vectors. This model learns general-purpose node embeddings that use the graph
structure and particularly node features. It was evaluated for a rating prediction task
using demographic users information (no tags information).

• TRSDL [9]: Tag-aware recommender system that uses a deep neural networks (DNNs)
and recurrent networks (RNNs) to extract latent features of both users and items. In
their model Liang et al., [9] use Word2Vec for mapping user tags to k-dimensional dense

13

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

Figure 2: At the top of this figure, we presented each neural model’s error distribution. At the bottom,
we gave model’s validation scores after 20 epochs

vectors in order to represent tags with word embeddings. Their model have the ability to
construct item and user profiles based on the item’s tags and the user’s tagging behaviors.
They then utilizes deep neural networks (DNNs) and recurrent neural networks (RNNs)
to extract the latent features of the item and the user, respectively.

Models
Evaluation measures

ML-10M ML-20M ML-25M
MAE RMSE ndcg@10 MAE RMSE ndcg@10 MAE RMSE ndcg@10

Neural CF-MLP++
𝑊2𝑣 0.77 0.98 0.43 0.88 0.96 0.381 0.84 1.01 0.42

Neural CF-MLP++
𝐵𝑒𝑟𝑡 0.72 0.93 0.46 0.791 0.86 0.42 0.791 0.83 0.46

CF-Autoencoder++
𝑊2𝑣 0.83 1.1 0.411 0.85 0.97 0.39 0.80 1.02 0.42

CF-Autoencoder++
𝐵𝑒𝑟𝑡 0.76 0.96 0.42 0.811 0.89 0.44 0.798 0.865 0.445

U-Autorec [25] 0.82 1.09 0.38 0.84 1.07 0.37 0.81 1.01 0.40
Neural CF-MLP[30] 0.73 0.98 0.44 0.89 1.025 0.39 0.87 0.92 0.43
CF-GNN++

𝑀𝑒𝑎𝑛𝐴𝑔𝑔(𝑘=2)
𝑊2𝑣 0.88 1.10 0.47 0.80 1.02 0.49 0.82 1.04 0.44

CF-GNN++
𝑀𝑒𝑎𝑛𝐴𝑔𝑔(𝑘=2)𝐵𝑒𝑟𝑡 0.774 0.89 0.451 0.78 0.85 0.441 0.772 0.799 0.471

CF-GCN++
𝑐𝑜𝑛𝑣 𝐴𝑔𝑔(𝑘=2)𝑊2𝑣

0.798 0.821 0.47 0.74 0.838 0.464 0.79 0.801 0.465

CF-GCN++
𝑐𝑜𝑛𝑣 𝐴𝑔𝑔(𝑘=2)𝐵𝑒𝑟𝑡 0.715 0.791 0.48 0.723 0.782 0.47 0.712 0.787 0.48

HINSAGE [15] 0.75 0.85 0.48 0.771 0.801 0.448 0.74 0.791 0.475
TRSDL [9] 0.73 0.810 0.45 0.74 0.820 0.461 0.75 0.87 0.44

Table 2
A synthesis of RMSE and MAE values for each model including 𝑛𝑑𝑐𝑔@10 scores, the best scores are in
bold.

14

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

5.1. Effects on recommendation quality and ranking (RQ1)

Results of our experiments are synthesized in Table 2. Initially, as regards to ML-10M dataset,
top RMSE and MAE scores are valued from CF-GCN++

𝑐𝑜𝑛𝑣 Agg(𝑘=2)𝐵𝑒𝑟𝑡 model with 𝑀𝐴𝐸 =
0.715 and 𝑅𝑀𝑆𝐸 = 0.791. Our proposed contextual tag embeddings based NGCF model
has also achieved top quality ranking to reach 𝑁𝐷𝐶𝐺@10 = 0.48. We have noticed that the
static tag-based embedding extension of this model that is CF-GCN++

𝑐𝑜𝑛𝑣 Agg(𝑘=2)𝑊2𝑉 has
also achieved good results outperforming most of the baselines except TRSDL model [9] that
has reached 𝑀𝐴𝐸 = 0.73, 𝑅𝑀𝑆𝐸 = 0.810 with a ranking metric of 𝑁𝐷𝐶𝐺@10 = 0.45.
Regarding to Hinsage model [15] that reached 𝑀𝐴𝐸 = 0.75, 𝑅𝑀𝑆𝐸 = 0.85 with a ranking
score of 𝑁𝐷𝐶𝐺@10 = 0.48 and CF-GNN++

𝑀𝑒𝑎𝑛 Agg(𝑘=2)𝐵𝑒𝑟𝑡 model that reached 𝑀𝐴𝐸 =
0.774 and 𝑅𝑀𝑆𝐸 = 0.89 with a ranking quality that achieved 𝑁𝐷𝐶𝐺@10 = 0.451, we
might be tempted at first sight to claim that NGCF approaches describe strong performance
compared with other neural collaborative approaches no matter which tag embeddings we
have integrated to the models. However, by considering the significant performance of the
neural models that integrate contextualized tag embeddings such as Neural CF-MLP++

𝐵𝑒𝑟𝑡 that
has achieved scores valued to 𝑅𝑀𝑆𝐸 = 0.72 and 𝑀𝐴𝐸 = 0.93 or even the autoencoder
model CF-Autoencoder++

𝐵𝑒𝑟𝑡 that has risen 𝑅𝑀𝑆𝐸 = 0.96 and 𝑀𝐴𝐸 = 0.76, our thoughts then
focused to determine which model’s architecture performs better among all the proposed neural
architectures that effectively do integrate static/contextual tag embedding representations or
those who additionally have aggregated tag-based neighborhood embeddings.

Furthermore, in ML-20M dataset, the same NGCF model named CF-
GCN++

𝑐𝑜𝑛𝑣 Agg(𝑘=2)𝐵𝑒𝑟𝑡 has shown top RMSE and MAE score with 𝑀𝐴𝐸 = 0.723
and 𝑅𝑀𝑆𝐸 = 0.802. This confirms the performance of NGCF approaches combined
with contextualized tag embeddings. It also appeared that such models reach top quality
ranking, additionally, ranking metric score shown that the most competitive baseline is
Hinsage [15] with a ranking quality that does not exceed 𝑁𝐷𝐶𝐺@10 = 0.448. Both
CF-GCN++

𝑐𝑜𝑛𝑣 Agg(𝑘=2)𝐵𝑒𝑟𝑡 and CF-GNN++
𝑀𝑒𝑎𝑛 Agg(𝑘=2)𝐵𝑒𝑟𝑡 models have the highest

ranking scores with 𝑁𝐷𝐶𝐺@10 = 0.47 and 𝑁𝐷𝐶𝐺@10 = 0.441 respectively. This is
the case even if those models do not use the same aggregation technique nor the same
tag embeddings process. In this regard, we found that mean aggregator function which is
operated with static tag embeddings in a NGCF process named CF-GNN++

𝑀𝑒𝑎𝑛 Agg(𝑘=2)𝑊2𝑉
has performed well and obtained 𝑀𝐴𝐸 = 0.80, 𝑅𝑀𝑆𝐸 = 0.94 with a ranking quality
of 𝑁𝐷𝐶𝐺@10 = 0.464 which is a score that outperforms the autoencoder-based model
extension named CF-Autoencoder++𝐵𝑒𝑟𝑡 with 𝑁𝐷𝐶𝐺@10 = 0.44 since this model has
already achieved 𝑀𝐴𝐸 = 0.811 and 𝑅𝑀𝑆𝐸 = 0.89.This demonstrates the efficiency of such
aggregation function.

Finally, in ML-25M dataset, impact of contextualized tag embeddings on models is defi-
nitely established since both RMSE and MAE scores have shown significant improvements
compared to baselines. Such is the case for Neural CF-MLP++

𝐵𝑒𝑟𝑡 model that has reached
𝑀𝐴𝐸 = 0.791, 𝑅𝑀𝑆𝐸 = 0.83 for a quality ranking of 𝑛𝑑𝑐𝑔@10 = 0.46. It is likewise for
CF-Autoencoder++𝐵𝑒𝑟𝑡 model with RMSE and MAE scores to 𝑀𝐴𝐸 = 0.79, 𝑅𝑀𝑆𝐸 = 0.86
and a ranking quality to 𝑁𝐷𝐶𝐺@10 = 0.445. On top of that, impact of aggregator func-
tions are also distinguishable through NCGF model scores since we noticed that results were

15

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

much improved using a convolutional aggregator function applied to contextualized tag embed-
dings. CF-GCN++

𝑐𝑜𝑛𝑣 Agg(𝑘=2)𝐵𝑒𝑟𝑡 model performed best RMSE and MAE scores comparing
to CF-GNN++

𝑀𝑒𝑎𝑛 Agg(𝑘=2)𝐵𝑒𝑟𝑡 model which exploits a mean aggregator function despite
such model integrates contextualized tag embeddings. We ensure that those results can be
strengthened by increasing the training data.

5.2. Effects on error distribution (RQ2)

In the following, we have discussed the effectiveness of our approaches on predicting user
ratings with an acceptable amount of error. We highlighted impact of exploiting contextualized
tag-based embedding representations through studying error distribution when predicting
user ratings. Such impact is summarized at the top of Figure 2. Error distribution values have
been presented among testing sets of the data sets ML-10M, ML-20M and ML-25M. This is to
propose an overview of the error distributions resulted from baselines compared with those
from our predictive models that do integrate tag-based static or contextualized embedding
representations and describe specific architectures for each model.

First, in ML-10M dataset we observe that error distribution values from the models exploiting
contextual tag embeddings such as CF-MLP++

𝐵𝑒𝑟𝑡 and CF-Autoencoder++
𝐵𝑒𝑟𝑡 are most located

in the interval ∈ [−1, 1] compared to the error distribution values of the other baselines.
We also observe that the NGCF models that are CF-GCN++

𝑐𝑜𝑛𝑣 Agg(𝑘=2)𝐵𝑒𝑟𝑡 and CF-
GNN++

𝑀𝑒𝑎𝑛 Agg(𝑘=2)𝐵𝑒𝑟𝑡 outperforming all other models with a number of 980 and 890 accu-
rate predictions respectively. Secondly, in ML-20M we notice that CF-GCN++

𝑐𝑜𝑛𝑣 Agg(𝑘=2)𝐵𝑒𝑟𝑡
model conduct to a large number of accurate predictions which are estimated to be 7220. Such
performance is closely followed by the CF-GNN++

𝑀𝑒𝑎𝑛 Agg(𝑘=2)𝐵𝑒𝑟𝑡 with a number of 4250
accurate predictions. Lastly, in ML-25M the same models reached 7980 and 7740 accurate
predictions respectively.

5.3. Impact of learning aggregated tag-based functions (RQ3)

We have given for each model the validation scores after 20 epochs, this allows us to estimate
the model’s capacity to generalize past the data that it was trained on. From the bottom of the
figure 2 we have Analyzed which models perform optimal convergence rate. It appears that
among the three collections that are ML-10M, ML-20M and ML-25M, the convergence rate of the
models are clearly more significant when it comes from neural graph approaches. Particularly,
CF-GNN++

𝑀𝑒𝑎𝑛 Agg(𝑘=2)𝐵𝑒𝑟𝑡 and CF-GCN++
𝑐𝑜𝑛𝑣 Agg(𝑘=2)𝐵𝑒𝑟𝑡 that are our NGCF models

that exploit fine-tuned tag embedding representations. This leaves us to believe that when
contextualized tag embeddings are aggregate throw neighborhood embeddings they give more
effective representations of users and items and enhance recommendation quality. We argue
that our NGCF approaches catch the multiple semantic dimensions that a tags can take have
including the abstract formalization of tag neighborhood embeddings that have conducted to
fine-gained representations.

16

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

6. Conclusion

Following the experiments, we came to the conclusion that exploiting neural graph models to
learn aggregation functions has enabled us to gain quality recommendations and improve rank-
ing quality. We have shown that handling a convolutional aggregator function can generalize
an efficient graph-based neural collaborative filtering process. It concatenates contextualized
tag embedding representations of user/item nodes from previous layer representations. This has
enabled us to gain more refined embedding features and achieved to catch non-trivial tagging
behavior.

References

[1] H. A. M. Hassan, G. Sansonetti, F. Gasparetti, A. Micarelli, Semantic-based tag recommen-
dation in scientific bookmarking systems, in: Proceedings of the 12th ACM Conference
on Recommender Systems, 2018, pp. 465–469.

[2] J. Manotumruksa, C. Macdonald, I. Ounis, Modelling user preferences using word em-
beddings for context-aware venue recommendation, arXiv preprint arXiv:1606.07828
(2016).

[3] A. Rücklé, S. Eger, M. Peyrard, I. Gurevych, Concatenated power mean word embeddings
as universal cross-lingual sentence representations, arXiv preprint arXiv:1803.01400 (2018).

[4] L. Wu, C. Quan, C. Li, Q. Wang, B. Zheng, X. Luo, A context-aware user-item representation
learning for item recommendation, ACM Transactions on Information Systems (TOIS) 37
(2019) 1–29.

[5] Y. E. Wang, C.-J. Wu, X. Wang, K. Hazelwood, D. Brooks, Exploiting parallelism oppor-
tunities with deep learning frameworks, ACM Transactions on Architecture and Code
Optimization (TACO) 18 (2020) 1–23.

[6] H. Liu, Y. Wang, Q. Peng, F. Wu, L. Gan, L. Pan, P. Jiao, Hybrid neural recommendation
with joint deep representation learning of ratings and reviews, Neurocomputing 374 (2020)
77–85.

[7] C. Musto, G. Semeraro, M. De Gemmis, P. Lops, Word embedding techniques for content-
based recommender systems: An empirical evaluation., in: Recsys posters, 2015.

[8] W. Zhang, Q. Yuan, J. Han, J. Wang, Collaborative multi-level embedding learning from
reviews for rating prediction., in: IJCAI, volume 16, 2016, pp. 2986–2992.

[9] N. Liang, H.-T. Zheng, J.-Y. Chen, A. K. Sangaiah, C.-Z. Zhao, Trsdl: Tag-aware recom-
mender system based on deep learning–intelligent computing systems, Applied Sciences
8 (2018) 799.

[10] M. Vijaikumar, S. Shevade, M. N. Murty, Tagembedsvd: Leveraging tag embeddings for
cross-domain collaborative filtering, in: International Conference on Pattern Recognition
and Machine Intelligence, Springer, 2019, pp. 240–248.

[11] L. Guo, Y.-F. Wen, X.-H. Wang, Exploiting pre-trained network embeddings for recom-
mendations in social networks, Journal of Computer Science and Technology 33 (2018)
682–696.

17

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

[12] Q. Le, T. Mikolov, Distributed representations of sentences and documents, in: International
conference on machine learning, 2014, pp. 1188–1196.

[13] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in:
Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), 2014, pp. 1532–1543.

[14] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[15] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in:
Advances in neural information processing systems, 2017, pp. 1024–1034.

[16] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks,
arXiv preprint arXiv:1609.02907 (2016).

[17] Z.-K. Zhang, T. Zhou, Y.-C. Zhang, Tag-aware recommender systems: a state-of-the-art
survey, Journal of computer science and technology 26 (2011) 767.

[18] H. Dai, B. Dai, L. Song, Discriminative embeddings of latent variable models for structured
data, in: International conference on machine learning, 2016, pp. 2702–2711.

[19] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data
mining, 2016, pp. 855–864.

[20] S. Cao, W. Lu, Q. Xu, Grarep: Learning graph representations with global structural
information, in: Proceedings of the 24th ACM international on conference on information
and knowledge management, 2015, pp. 891–900.

[21] X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering, in:
Proceedings of the 42nd international ACM SIGIR conference on Research and development
in Information Retrieval, 2019, pp. 165–174.

[22] L. Wu, L. Chen, P. Shao, R. Hong, X. Wang, M. Wang, Learning fair representations for
recommendation: A graph-based perspective, in: Proceedings of the Web Conference 2021,
2021, pp. 2198–2208.

[23] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, J. Leskovec, Graph convolutional
neural networks for web-scale recommender systems, in: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

[24] Y. Ouyang, W. Liu, W. Rong, Z. Xiong, Autoencoder-based collaborative filtering, in:
International Conference on Neural Information Processing, Springer, 2014, pp. 284–291.

[25] S. Sedhain, A. K. Menon, S. Sanner, L. Xie, Autorec: Autoencoders meet collaborative
filtering, in: Proceedings of the 24th international conference on World Wide Web, 2015,
pp. 111–112.

[26] W. Chen, F. Cai, H. Chen, M. D. Rijke, Joint neural collaborative filtering for recommender
systems, ACM Transactions on Information Systems (TOIS) 37 (2019) 1–30.

[27] G. K. Dziugaite, D. M. Roy, Neural network matrix factorization, arXiv preprint
arXiv:1511.06443 (2015).

[28] Y. Zuo, J. Zeng, M. Gong, L. Jiao, Tag-aware recommender systems based on deep neural
networks, Neurocomputing 204 (2016) 51–60.

[29] L. Zheng, V. Noroozi, P. S. Yu, Joint deep modeling of users and items using reviews for
recommendation, in: Proceedings of the tenth ACM international conference on web

18

Tahar-Rafik Boudiba et al. CEUR Workshop Proceedings 1–19

search and data mining, 2017, pp. 425–434.
[30] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in:

Proceedings of the 26th international conference on world wide web, 2017, pp. 173–182.
[31] W. Chen, H.-T. Zheng, X.-X. Mao, Extracting deep semantic information for intelligent

recommendation, in: International Conference on Neural Information Processing, Springer,
2017, pp. 134–144.

[32] R. Huang, N. Wang, C. Han, F. Yu, L. Cui, Tnam: A tag-aware neural attention model for
top-n recommendation, Neurocomputing 385 (2020) 1–12.

[33] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: synthetic minority
over-sampling technique, Journal of artificial intelligence research 16 (2002) 321–357.

[34] K. Järvelin, J. Kekäläinen, Cumulated gain-based evaluation of ir techniques, ACM
Transactions on Information Systems (TOIS) 20 (2002) 422–446.

[35] X. He, X. Du, X. Wang, F. Tian, J. Tang, T.-S. Chua, Outer product-based neural collaborative
filtering, arXiv preprint arXiv:1808.03912 (2018).

[36] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,
arXiv preprint arXiv:1908.10084 (2019).

19

	1 Introduction
	2 Background and related works
	2.1 MLP-based neural collaborative filtering for Recommendation
	2.2 Autoencoder-Based collaborative filtering for Recommendation
	2.3 Neural Graph Collaborative Filtering for Recommendation

	3 Overview of the proposed models
	3.1 CF-based MLP model
	3.2 CF-based Autoencoder model
	3.3 Neural graph CF-based model
	3.3.1 Mean aggregator function
	3.3.2 Convolutional aggregator function

	4 Experiments
	4.1 Experimental Settings
	4.2 Tag-based embedding representations

	5 Evaluation and Performance comparison
	5.1 Effects on recommendation quality and ranking (RQ1)
	5.2 Effects on error distribution (RQ2)
	5.3 Impact of learning aggregated tag-based functions (RQ3)

	6 Conclusion

