
1 

 

Parameter Debugging (Regulation) Method of Helicopters 
Aircraft Engines in Flight Modes Using Neural Networks 
 

Serhii Vladov, Yurii Shmelov and Ruslan Yakovliev  

 
Kremenchuk Flight College of Kharkiv National University of Internal Affairs, Peremohy street, 17/6, 
Kremenchuk, Poltava Region, Ukraine, 39605 

  

Abstract  
The work is devoted to solving the urgent scientific and practical problem of parameters 

debugging (regulation) of helicopters aircraft gas turbine engines (GTE) in flight modes 

using neural network technologies. A universal mathematical model has been developed of 

parameters debugging (regulation) aviation gas turbine engines, which is based on the 

operation algorithm of the control device, which leads to the elimination of the mismatch of 

the control elements of aircraft GTE, using the A. M. Lyapunov functions. To solve this 

problem, a neural network of feedforward propagation was used in the work with the use of 

adaptive elements, which made it possible to obtain a graph of the dependence of the 

objective function of specific fuel consumption on the r.p.m. and, as a consequence, to clarify 

the values of these parameters.  
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1. Introduction 

An analysis of helicopter accidents by engine type showed that helicopter accidents with 

reciprocating engines were more frequent in the early stages of helicopter operation, but as gas turbine 
engines became more popular, the trend changed significantly close to 10 years ago. Recent data 

show that the number of emergency and catastrophic situations of helicopters with gas turbine engines 

has increased compared to the number of accidents and disasters of helicopters with piston engines. 

As a result, further research is needed to improve the safety of flights of helicopters with gas turbine 
engines. Thus, the task of debugging (regulating) the parameters of aircraft gas turbine engines of 

helicopters, solved in this work, is today an urgent scientific and practical task [1–4]. 

2. Literature review 

An analysis of works in this area shows [5–7] that the currently existing algorithms and programs 
that implement this process are not without drawbacks, among which the main ones are: 

– the lack of a universal methodology that implements this task (most enterprises in the industry 

are guided by their own developments); 
– the requirement for the availability of large volumes of a priori and a posteriori information on 

the fleet of gas turbine engines; 

– assignment of tight tolerances for each debugged parameter; 
– significant time spent on the process of debugging the parameters of the gas turbine engine 

associated with the need to solve the optimization problem: minimization of the quality / time 

functional, etc.  
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– In order to eliminate these shortcomings, in this work, a method is developed for solving the 
problem of debugging the parameters of a gas turbine engine, based on the use of neural network 

technologies. The peculiarity of the formulation and solution of this problem is that when constructing 

a neural network, as before, only experimentally obtained information is used, while the classical 

methods for solving this problem [5–7] require the use of average mathematical models of gas turbine 
engines, a description of the physics of the flowing processes, etc. 

3. Problem statement of debugging the parameters of helicopters aircraft 
engines  

According to [8], it is assumed that the parameters of an adjusted, normally functioning GTE in 

the space of controlled parameters, for example, on the plane of thermos gas dynamic parameters *

1X  

and *

2X  (fig. 1), correspond to a given nominal engine operating mode: * *

1 1optX X , * *

2 2optX X . It is 

assumed that the characteristics of the fleet of serviceable engines for the same measured parameters 
give some scatter relative to the specified nominal point, forming an scattering ellipse (in 

multidimensional space – an ellipsoid) (fig. 1). 
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Figure 1: Scattering ellipse of the parameters of aircraft GTE [8, 9] 

The departure of the operating point beyond this ellipse corresponds to abnormal changes in the 
parameters of an individual engine. Then the purpose of debugging the GTE parameters is to return 

the "dropped out" point to the ellipse (ellipsoid) by smoothly adjusting the GTE structural elements. 

According to [8], the controlled element of the GTE design is the throat area of the nozzle apparatus 

of the Fnoz engine. This parameter is available only in turbojet and turbofan engines and is absent in 
turboshaft engines (GTE with a free turbine), which are used as part of helicopter power plants.  

The solution to this problem in a neural network basis is presented in the form of the following 

sequence of steps [8]: 
– formation of a training sample based on the test results of the GTE fleet; 

– determination of the boundaries of variation of the variable parameter; 

– construction of a neural network model of an average gas turbine engine, the input parameters of 
which are the size of the jet nozzle diameter, and the outputs are the thermos gas dynamic parameters 

of the engine; 

– building an adjustment curve; 

– calculation of the required correction of the diameter of the jet nozzle of an individual GTE; 
– values clarification of thermos gas dynamic parameters of the adjusted engine for the corrected 

value of the diameter of the jet nozzle. 

In [9], an attempt was made to apply the solution to the problem of debugging the parameters of a 
gas turbine engine in a neural network basis [8] when operating the TV3-117 aircraft engine. It 

belongs to the class of aircraft gas turbine engines with a free turbine and it is used as part of the 

power plant of the Mi-8MTV helicopter. 
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4. Development of a universal mathematical model for debugging the 
parameters of aircraft GTE  

A universal mathematical model for debugging the parameters of an aircraft GTE is based on the 

operation algorithm of the control device, leading to the elimination of the mismatch ε, is calculated 

for each control element (CR) of the aviation GTE. The most universal is the approach based on the 

application of A. M. Lyapunov functions [10, 11]: 

 1 1, ;nV F , ,u     2 2, ;pV F , ,u   …  , ;i i iV F , ,u                        (1) 

where αi – parameter characterizing the position of the CR. In this case, the time derivative of each 

A.M. Lyapunov function and the non-positiveness condition 0idV

dt
  is imposed on it. Then, based on 

the stability conditions of the tuning process, the tuning algorithm is determined in the form 

 ,i n pF , ,u u   . Thus, the debugging of the aircraft GTE regulator is carried out according to the 

given parameters un and up. 
When using the direct method of A.M. Lyapunov, according to the stability conditions, the mutual 

influence of the CE position on the output parameters of the fuel regulator is compensated. Since the 

tuning algorithm for each CE will be convergent, then in the case of simultaneous tuning of the agreed 
characteristics of all CE, the entire process of debugging the fuel regulator will be convergent and 

stable. The main disadvantage of the proposed method is the possible inconsistency of the 

characteristics of various CE. Let us consider the process of debugging the uncoordinated 
characteristics of helicopters aircraft gas turbine engines using the example of a fuel dispenser (fig. 2). 
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Figure 2: Debugging diagram of an aircraft gas turbine engine fuel dispenser using an optimization 
algorithm  

The debugging of the fuel dispenser is carried out according to the reference model of the 

dispenser, which consists of series-connected aperiodic links with transfer functions: 
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In the first link (electromechanical actuator), the current signal I is converted into an angle of rotation 

α or displacement of the output element of the actuator; in the second link (metering unit), the angle of 
rotation α or displacement of the output element of the actuator is converted into a fuel consumption GT. 

The reference model of a fuel dispenser for helicopters aircraft GTE is linear:  

;E EA B I      ;E E

T TG C G D           (3) 

where AE, BE, CE, DE – specified reference coefficients of differential equations, which are calculated 

according to the expressions: 
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A real fuel dispenser for an aircraft GTE is a nonlinear continuous object, i.e.: 

   A B I ;         T TG C Q G D U ;                (5) 

where A, B, C, D – coefficient matrices; Ψ(α), Φ(I), Q(GT); U(α) – nonlinear functions. 

The equation of the adaptive model of the identified parameters has the form [12, 13]: 

   ;M M M MA B I         ;M M M M

T T MG C Q G D U                      (6) 

where АМ, ВМ, СМ, DМ – tunable coefficients equal at the end of the identification process to the 

coefficients of the equations describing the fuel dispenser; M , M , M

TG , M

TG  – output parameters of 

the adaptive model. 
When subtracting from equations (6) equations (5): 

    ;M

MA A B I B                       (7) 

    ;M M M M

T T M MG C Q G C Q D U D U                     (8) 

where ;MA A A    ;MB B B    ;MC C C    ;MD D D    ;M      ;M      

;M

T T TG G G    ;M

T T TG G G         ;M         ;M

T TQ Q G Q G    

     .MU U U      

The residual signals are equal: 

 1 ;MA B I                (9) 

   2

M M

T TG C Q D U C Q G D U .                (10) 

The values  , α, αM, 
MA  , TG , GT, 

M

TG , MC Q , MD U   are directly observable or 

calculated through directly measurable quantities. 

To minimize the residual vectors, the Lyapunov functions were chosen in the form of positive 

definite quadratic forms: 

 1

1
;

2

T TV A K A B L B          2

1
;

2

T TV C M C D N D          (11) 

where K, L, M, N – positive definite diagonal matrices of given constant coefficients; ΔAT, ΔBT, ΔCT, 

ΔDT – transposed matrices of differences of coefficients. 
Derivatives of quadratic forms are: 

1 ;T TV A K A B L B       2 ;T TV C M C D N D         (12) 

provided 

    
1 ;T

A B I
A

K K

          
        (13) 

    
1 ;T

A B I II
B

L L

       
        (14) 
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    
2 ;

T TT T
C Q G D U GG

C
M M

        
                   (15) 

    
2 ;

TT
C Q G D U

D
N N

          
       (16) 

    
2

1 ;V A B I           
2

2 ;TV C Q G D U          (17) 

process is steadily converging. 
Debugging equations implemented in analyzers can be written in matrix form: 

 1

TMA K     or  1 ;
TMA K dt        (18) 

 1

TMB L I    or  1 ;
TMA L I dt       (19) 

 2

TM

TC M Q G    or  2 ;
TM

TC M Q G dt       (20) 

 2

TMD N U     or  2 .
TMD N U dt        (21) 

The identified values of the АМ, ВМ, СМ, DМ coefficients describing a real fuel meter are compared 
with the AE, BE, CE, DE values of the reference meter model. Signals of differences of identifiable and 

reference coefficients 

;M EA A A    ;M EB B B    ;M EC C C    M ED D D     (22) 

used for debugging the fuel dispenser. The amount of movement of the actuators is determined by the 

sensitivity of the fuel meter to the movement of the CR. 

5. Development of a neural network classifier using a feedforward neural 
network  

The neural network stores the information portrait of the average statistical engine in one of its 
operating modes and, when the value n is fed to its input, calculates the values of the reduced parameter 

GT using a universal mathematical model for debugging the parameters of aircraft GTE. The architecture 

of the neural network is a three-layer feedforward network [8, 9] using adaptive elements (fig. 3). 

GTnTK

 
Figure 3: Neural network structure 

In general, some adaptive element transforms T the input vector x into the output vector y: 

 , ;y T x θ      (23) 

where θ – vector of the parameters of this transformation. Each adaptive element has a certain vector 
of parameters, the value of which is determined in the learning process. The adaptive elements are 

interconnected in the network structure with the help of bidirectional channels that ensure the passage 

of signals in the forward and reverse directions, which is schematically shown in fig. 4 [14]. 

It is assumed that there are two main operating modes for a neural network: operation mode and 
training mode. In the operating mode, direct passage is used, which allows, with a known 

transformation form T and a vector of parameters θ, to obtain the response yF of the element to some 

input signal xF. In teach mode, the parameter vector is adjusted based on the error signal xB. 
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Figure 4: Structure of signaling connections of the adaptive element 

6. Neural networks training 

In this paper, we consider supervised learning [15], in which a set of examples from a training set 

is consistently presented to a trained network. Examples are pairs of reference inputs and desired 
outputs. The learning process takes place cyclically, at each iteration, the signals are calculated for 

forward and backward propagation, after which the error signals are used to form local gradients of 

the vectors of the adaptable parameters. The calculated local gradients are used for the subsequent 
adjustment of the adapted parameters [16, 17]. The training modes used are the sequential mode 

(online), in which the parameters are adjusted after each example, and the batch, in which the 

adjustment is based on the cumulative local gradient – the sum of local gradients over all iterations of 

the examples from the training set. In both modes, the full cycle of presentation of a set of training 
patterns, which ends with the adjustment of parameters, is called the network training epoch. To 

quantitatively assess the quality of the network, a loss function is introduced that has the meaning of 

the root mean square error (RMSE): 

 
2

1

1
;

2

N

n n

n

E t z
N 

        (24) 

where N – number of templates presented; tn – desired, or target, output signal of the network in the      

n-th pattern; zn – output signal calculated by the network when the input signal is supplied from the      

n-th template. 
At this stage of the research, the authors consider only autonomous learning methods that use only 

those signals that are present in the considered element to adjust the vector of parameters of an 

adaptive element. The corrective change Δθт for the m-th element θт from the vector of adaptable 
parameters θ is calculated based on information obtained only from its local gradient δθm and the 

history of changes in this local gradient over epochs. Gradient descent method is the simplest method 

for training a network. The adaptable parameters θ is corrected by the value Δθi according to the 

expression: 

1 ;i i i            (25) 

where θi+1 – corrected value of the parameter, θi – original value of the parameter, Δθi – corrective 
change. In this case, the magnitude of the corrective change is determined by the expression: 

;i i            (26) 

where ε – coefficient of the learning rate, δθi – local gradient of the element. 

In expression (26), the minus sign in front of the coefficient is necessary to change the parameter θ 

as an argument of the function E in the direction of decreasing the value of the latter. It is important to 
pay special attention to the choice of the learning rate coefficient ε: a small value of the coefficient 

will lead to an increase in the time (number of iterations) required for training, but too large. A value 

will lead to destabilization of training due to an excessive increase in the parameter so that it will 
"slip" the optimal value. The value of the coefficient ε is taken from the condition: 

0 < ε < 1.      (27) 

The gradient descent method [18] is the basic method on the basis of which other autonomous 

methods of the first and so-called quasi-second order are built. 
One of the obvious improvements of the gradient descent method is the addition of the effect of 

inertia (momentum) when changing parameters. It is a method of averaging, which in some cases 

makes it possible to significantly increase the stability of the learning process (the parameters reach 
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their optimal values θopt). This method, in general, uses the average value of parameter changes in 
previous epochs to calculate the parameter measurement in the current epoch, which makes the 

parameter change smoother. The exponential average of the parameter measurements for all previous 

epochs is used; in this case, the expression for calculating the correction (26) takes the form: 

 1 1 ;i i i               (28) 

where Δθi – correcting change in the current (i-th) epoch, Δθi–1 – correcting change in the previous 

epoch, μ – coefficient of inertia, determines the measure of the influence of previous adjustments on 

the current one and, as a rule, is selected based on the condition 0 < μ < 1, ε – learning rate 
coefficient, δθi – local gradient of the element. 

The left side in expression (28) represents the influence of the previous adjustments of the value of 

the parameter θ on the current adjustment, while the corrective change of the previous epoch Δθi–1 is 
weighted by the inertia coefficient μ, therefore, the larger the coefficient of inertia, the stronger 

influence of the history of the parameter change on the current change. The right-hand side of the 

expression repeats the corresponding expression (26) for the gradient descent method, but includes a 

weighting coefficient (1 – μ) to take into account the share of the influence of previous epochs. In the 
case when the coefficient of inertia μ is equal to zero, the momentum method degenerates into a 

gradient descent method, while the history of measuring correction values for previous epochs does 

not affect the correction value of the current epoch (expression (28) formally turns into (26)). 
In [19], the method known as Delta-Bar-Delta is considered in detail. In contrast to the gradient 

descent and moment method, the fundamental extension of this method is that an individual learning 

rate coefficient is introduced for each adaptive parameter. After each training epoch, both the 

adjustment of the adaptable parameters and the adjustment of the learning rate coefficient take place. 
To simplify the calculations, consider one of the adaptable parameters, which we denote by θ. To 

correct its rate of change, an auxiliary parameter f is introduced, which also changes with the course 

of the epoch number according to the rule: 

 1 1 ;i i if f           (29) 

where the coefficient γ (0 < γ < 1) determines the "memory depth" of the accumulation of the history 

of the previous values of the gradient. For the current epoch, the auxiliary parameter f defines the 

gradient accumulated over the previous epochs. If the sign of the gradient value of the current epoch 

δθi coincides with the sign of the coefficient fi, then the learning rate increases, otherwise it decreases. 
The magnitudes of changes in the learning rate are determined by the expression: 

1

1

, if 0

, if 0

i i i

i

i i i

k f

f

 


  





  
 

  
      (30) 

The parameters φ and k, selected in the range from zero to one, determine how large the change in 
the training rate will be with each adjustment. The vector composed of the values of the velocities εi 

calculated by the expression (30) and the value of the gradient δθi are used in the expression (26) to 

calculate the new value of the vector of the adaptable parameters. 

7. Application of adaptive elements in a neural network classifier 

The use of autonomous teaching methods makes it possible to build relatively simple models of 

elements, the simplest of which are shown in fig. 5, a – d. Among the adaptive elements, the amplifier 

occupies a central place, since it is in it that the network coefficients are adjusted in accordance with 
the selected training method. The amplifier is shown schematically in fig. 5, a, it has one input and 

one output, while the output signal is determined by the expression: 

.f fy w x       (31) 

When the signal propagates back, the amplifier does not change its behavior, i.e., the output signal 

is w times the amplified input signal: 

;b by w x       (32) 

where xb – back propagating input signal; yb – back propagating output signal; w – gain, which is given by: 
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 ;fw f x      (33) 

which shows the dependence of the behavior of the element during backpropagation on the value of 

the first derivative of the function f at the point xf. 

xf

xf

xfyf

yf

yf

yf,1

yf,2

yf,N

xf,1

xf,2

xf,N

Fω

a                                                 b

c                                                 d  
Figure 5: The simplest elements of a neural network: a – adaptive multiplier; b – inertialess 
functional converter; c – splitter; d – adder [14] 

The amplifier in the process of training a neural network is able to change its own gain, while 

realizing the adaptive properties of the network. A functional converter is generally an element with 
one input, one output and a known transfer function f. The behavior of all functional transducers 

during forward and backward passage of signals is determined by their functions f and first 

derivatives f  . The functional converter is shown in fig. 5, b, its output signal for forward 

propagation is determined by the expression: 

 ;f fy f x       (34) 

where xf – forward-propagated input; yf – forward-propagated output; f – transform function. In 

backpropagation, the functional transducer is an amplifier, and the output signal is given by expression (32). 

Functional transducers are part of neurons, forming various types of the latter, while the 
transformation function is a function of neuron activation. For the presented elements, signal 

conversion functions were obtained for forward signal propagation and back propagation of the error. 

The composition of the simplest elements makes it possible to build classical structural elements of a 
feedforward network – a neuron and a neural layer, which, in turn, can also be described using the 

notation of adaptive elements. The classical neuron of the McCulloch-Pitts model in the paradigm of 

constructing a neural network based on simple adaptive elements [20] can be implemented 

algorithmically, or by a composition of the simplest elements (adders, amplifiers and functional 
converters). The algorithmic implementation, undoubtedly, has better performance, however, for 

greater clarity, the compositional model will be considered, it is shown in fig. 6, a. Input amplifiers 

are individual for each input signal, so their coefficients are, in fact, synoptic weights wi of the 
neuron. The functional transformer at the output as a transformation function contains the activation 

function of the neuron f. The block diagram of a neuron in reverse propagation is shown in fig. 6, b. 

The output signal of the neuron is formed as a result of the passage of the sum of the weighted 
input signals through the functional transducer:  

1

;
i

N

f i f

i

y f w x


 
  

 
       (35) 

where yf – output signal during direct transmission; f – activation function; 
if

x – i-th input signal; 

wi – i-th synaptic weight.  

When a signal propagates backward, the behavior of a neuron is determined by the behavior of its 
constituent elements, and in the general case, the output signal is determined by the expression: 

;
ib by x g w        (36) 
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Figure 6: Neuron decomposition: a – with direct signal transmission; b – with back propagation of 
the error [14] 

where 
iby  – i-th output signal of the network during backpropagation; xb – input signal of the network 

during backpropagation; g – gain of the functional transducer during backpropagation; wi – i-th 

synaptic weight. Taking into account the behavior of the functionally transformer (35), expression 

(36) takes the form: 

1

.
i i

N

b b i f i

i

y x f w x w


 
    
 
     (37) 

8. Results and discussion 

To implement a software prototype using the universal modeling language (UML) [21], a class 

hierarchy was developed, Python was used as a programming language, which, on the one hand, provides 
a simple form of writing mathematical expressions, on the other hand, broad opportunities in the field of 

object-oriented programming. The software implementation is divided into two parts – basic and 

additional. The basic part is made as a package and includes the logic necessary for the application to 

work, but does not contain data input and output tools. The additional part is designed to work in an 
interactive mode as part of the Sage computer mathematics system, a software package with a free 

license, united by a single user and software interface. An additional part uses the capabilities of Sage for 

data input and output: generation of training sequences, displaying graphs, building graphs and tables.  
The developed software prototype was used for numerical simulation of the application of a neural 

network to solve the problem of approximation and classification of input data. 

The dependence of the specific fuel consumption Ce of the TV3-117 aircraft engine on the 

rotational speed of the gas generator rotor r.p.m nTK (element of the throttle characteristic of the 
engine) was used as an input signal in the approximation problem. The input data is shown in fig. 7, a, 

but by points that are approximated by broken lines for ease of perception. Depending on the training 

method used, for a certain number of iterations, the synaptic weights of the neural network approach 
the optimal values. In fig. 7, a, and the triangles show the received output signal of the network, 

approximated by a broken line together with the original signal. In fig. 7, b shows a neural network 

graph built directly using the tools of the developed software prototype. 
The dependence of the root mean square error (RMSE) [22] during training for the gradient 

descent method is shown in fig. 8, a, where an increase in the initial coefficient of the training rate ε 

from 0.6 (continuous line) to 1.2 (dash-dotted line) allows to slightly speed up the training process 

and achieve better results in less time. However, a further increase in the training rate factor leads to a 
too fast adjustment of the synaptic weights. This leads to the fact that the weights oscillate around the 

optimal values, without reaching them – the RMSE takes on a similar oscillatory character. To 

demonstrate the effect of inertia, the learning rate coefficient ε = 1.2 was chosen, then the network 
was trained at three different inertia coefficients μ. The results of the influence of the effect of inertia 

are shown in fig. 8, b. An increase in the inertia coefficient in a number of cases leads to a slight 

change in the learning rate, and a further increase leads to a negative effect – the destabilization of the 
training process of the network as a whole. 
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Figure 7: Input data: a – dependence Ce = f(nTK) and the result of approximation; b – configuration of 
a neural network built by a software prototype 

 
    a             b 

Figure 8: Graph of the change in the mean square error during training for the methods: a – gradient 
descent (1 – ε = 0.6, μ = 0; 2 – ε = 1.2, μ = 0; 3 – ε = 1.8, μ = 0); b – gradient descent with inertia (1 – ε 
= 1.2, μ = 0.3; 2 – ε = 1.2, μ = 0.6; 3 – ε = 1.2, μ = 0.9) 

The greatest interest is the Delta-Bar-Delta method [23], the results of which are shown in fig. 9, a. In 
[24], it was suggested that in most cases the optimal set of parameters for this method are the following 
values of the parameters of expressions (29), (30): γ = 0.3, φ = 0.7, k = 0.5, which in fig. 9 corresponds to 
a continuous line. As can be seen from this graph, the deviation of the parameters from the optimal values 
can, in a particular case, lead to both positive and negative results. In the case of an excessive decrease in 
the learning rate ratio (dashed line), there is a significant learning gap. A decrease in the coefficient γ, 
which determines the degree of influence of the error gradients obtained in previous epochs and, at the 
same time, an increase in the coefficient k, and, as a consequence, an acceleration in the growth of the 
rate coefficient, makes it possible to obtain a significant improvement in the quality of training. 

To solve the problem of debugging the parameters of aircraft gas turbine engines of helicopters (on 
the example of TV3-117 aircraft gas turbine engine), as a training sample. We will use the values of the 
gas generator rotor r.p.m at the takeoff mode, reduced to absolute values [25, 26], given in table 1, and 

the parameters of the average engine fleet the next: 0.994TKn  ,  0.977eC  .  

Table 1 
Fragment of the training set 

nTK 0.998 0.998 0.992 0.992 0.991 0.995 0.991 0.996 0.998 0.989 0.991 0.993 

Ce 0.972 0.978 0.964 0.984 0.998 0.979 0.970 0.990 0.965 0.990 0.967 0.964 

The graph of the change in the learning error of the neural network depending on the number of 
neurons in the hidden layer is shown in fig. 10, whence it follows that the training error of the neural 
network is minimal when the number of neurons in the hidden layer is equal to 3 [8, 9]. 
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 a             b 

Figure 9: Graph of the change in the mean square error during training: a – for the Delta-Bar-Delta 
method (1 – ε = 1.2, μ = 0, γ = 0.7, φ = 0.5, k = 0.01; 2 – ε = 1.2, μ = 0, γ = 0.7, φ = 0.1, k = 0.01;   3 – ε 
= 1.2, μ = 0, γ = 0.3, φ = 0.5, k = 0.7; 4 – ε = 1.2, μ = 0, γ = 0.7, φ = 0.1, k = 0.01);  b – for all presented 
methods (1 – ε = 1.2, μ = 0.3; 2 – ε = 1.2, μ = 0; 3 – ε = 1.2, μ = 0, γ = 0.7, φ = 0.5, k = 0.1).  

 

Figure 10: Graph of the dependence of the neural network learning error on the number of neurons 
in the hidden layer [8, 9]  

Adjustment curve  e TKC f n  [8, 9] according to fig. 7, a is represented as: 

  4 3 20.0016 0.0195 0.0864 0.1774 0.4083.e TK TK TK TKC n n n n n           (38) 

where 
max

TK
TK

TK

n
n

n
  – relative value of the gas generator rotor r.p.m. 

Fig. 11 shows a graph of dependence of the objective function Ce(n) → min [8, 9] from the value 
of the gas generator rotor r.p.m nTK. In this case objective function minimum 0.20 is reached at the 

value r.p.m. 0.988. Thus, the correction of the mean value of nTK by 0.994 0.988 0.006correct

TKn    . 

According to [8, 9], the refined value of the specific fuel consumption Ce for the corrected value of 
the gas generator rotor r.p.m nTK = nTKopt = 0.988. The debugged engine (after adjusting the parameter 
nTK) will correspond to the parameters nTKopt = 0.988, Ce opt = 0.971. To demonstrate the use of a feed 
forward neural network with the use of adaptive elements for solving the problem of debugging the 
parameters of helicopters aircraft gas turbine engines in flight mode, a two-dimensional case of 
classification is considered. The practical application of this problem lies in the fact that one of two 
narrow-band random processes (RP) [27] is observed by means of a quadrature demodulator. It is 
known that the probability density of each of the processes is described by the expression [28, 29]: 
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 

  

  
  
 
  

 
    (39) 

where σN, σC – variances; mN, mC – mathematical expectations of the components of RP; N– 
corresponds to the values of the gas generator rotor r.p.m nTK; C – corresponds to the values of the 
specific fuel consumption Ce. 

 

Figure 11: Graph of the dependence of the objective function from the value of gas generator rotor 
r.p.m. 
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b 

Figure 12: Results: a – data of two classes (blue area – allowed values nTK and Ce; red area – invalid 
values nTK and Ce) and boundary lines at levels 0.983 (Limit value nTK), 0.988 (Value nTKopt); b – neural 
network for solving the classification problem 
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The input data for the neural network are the coordinates of points (fig. 12, a) on the plane {I, Q} 
belonging to one of two distinguishable classes corresponding to two random processes, the 
parameters of expression (39) for which are different. The network output must determine whether the 
point belongs to the first or second class. A network was created with two input neurons, two neurons 
in a hidden layer with sigmoid activation functions. The output neuron of the network also has a 
sigmoid activation function, which is necessary to obtain a limited output signal. It is assumed that the 
output signal of the network will be close to zero if the point belongs to the class "A" and close to one 
if the point belongs to the class "B". The created neural network is shown in fig. 12, b. 

9. Conclusions 

As a result of the research, the scientific and practical problem of debugging (adjusting) of 
helicopters aircraft gas turbine engines parameters (using the example of the TV3-117 aircraft engine) 
in flight modes using neural network technologies has been solved. 

The use of the neural network apparatus turns out to be effective in solving a wide range of poorly 
formalized problems associated with debugging of helicopters aircraft gas turbine engines parameters. 

The results of solving the problem of debugging the parameters of aircraft gas turbine engines 
show that the process of debugging the parameters is easily formalized in a neural network basis, and 
to calculate the required value of r.p.m, an adjustment curve can be used, built on the basis of training 
the neural network according of aircraft gas turbine engines throttle characteristics. 

The work uses a neural network of direct signal transmission, built on the basis of simple adaptive 
elements. A software prototype has been developed that implements adaptive elements within the 
framework of an object-oriented approach, as well as a specialized class library in Python for working 
in the sage environment. Thus, the obtained results of theoretical calculations and experimental research 
allowed to formulate the following position of scientific novelty of the work, which is as follows: further 
developed neural network method of adjusting the parameters of aircraft engines, which, through the use 
of universal mathematical model of adjusting the parameters of helicopters aircraft engines, the method 
of direct propagation of A.M. Lyapunov, as well as a neural network of direct propagation with adaptive 
elements, allowed to adjust the value of r.p.m. in accordance with the areas of permitted and prohibited 
values. 
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