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Abstract  
The paper proposes the effective method for approximating solutions of evolutionary partial 
differential equation. This solutions used for dynamic analysis of the process of water erosion 
in the zone of soil aeration in an artificial agrolandscape as in hydrotechnical system. The 
method presented in this paper is based on the basis of Galerkin method, Greville algorithm 
and limited inverse propagation for the evolutionary component. The neural network 
representation for the solution of the partial differential equation approximately satisfies the 
boundary conditions at each integration step. The convergence of the approximate solution to 
the exact one is performed. The advantage of the method is that it is easily applicable to solve 
the partial differential equation in arbitrary limited areas, provides a reduction in the 
dimensionality of space before training. In addition, it is more efficient in complexity and 
accuracy than the finite element method and Deep Galerkin Method. The implementation of 
this method is shown by the example of the process of propagation of Cs-137, the precipitation 
of which on the surface occurred instantly at a fixed point in time. The problem is considered 
for the zone of strips in agricultural use on ramparts-terraces of the hydrotechnical system. The 
results of test calculations of the dynamics of the pollution propagation for two-dimensional 
profiles for the layers of the soil for the deep 0-20 cm are presented. These results can be 
considered as corresponding to the available experimental value of the pollutant concentration. 
 

Keywords  1 
Dynamic process, differential model, contamination, neural networks, pseudoinverse, Galerkin 
Method, piecewise smooth surface 

1. Introduction 

Determining the concentration of various anthropogenic pollutants in the soil environment and 
analysis of their movement is an important modern task. To solve it, various models are used: from the 
simplest models, which are based on regression equations and do not give the dynamics of spatial 
distribution of concentration in a selected area, to spatially distributed and evolutionary differential 
models that require significant computational resources and are often quite difficult to implement. But 
it is the model in the form of equations in partial derivatives that show us the dynamics of pollution. As 
examples, we give studies with evolutionary models for one (horizontal or vertical) profile in [1, 2], 
with models that have exact analytical solutions of differential equations, as in [1-3], with models in 
which simplification is performed in boundary conditions as in [3, 4] or other simplifications as in [5].  

Numerous scientific publications address various issues related to the spread of soil contamination. 
As is known, the implementation of differential spatially distributed mass transfer models involves the 
use of numerical methods, as in [6–10]. These are methods using finite-difference approximations (for 
example, [6, 11–12]). Due to the complexity of their numerical implementation and the problem of 
increasing measurability, scientific studies consider simplified boundary conditions in regular domains 
and spatial profiles of the smallest dimension, as well as difference models for which the answer to the 
stability and accuracy of the obtained approximations is known. The finite element method is popular 
in the application [10, 13, 14]. This method is common for approximating static models with arbitrary 
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domain shape. The direction of construction and research of neural network approximations of 
differential equations in partial derivatives is actively developing [15–18]. This opened up the 
possibility of obtaining approximations of differential models of mass transfer (both static and 
evolutionary) and does not lead to too large dimensions. Nevertheless, the question of effective solution 
of many practical problems of mass transfer is still open today. The presented work is an extension of 
research related to the control of the spread of pollution in the surface layers of the soil and the process 
of water erosion in the agricultural landscape. Our study is part of a study aimed at solving the problem 
of water erosion control in agricultural areas because the analysis of water erosion dynamics in this 
agro-landscape can be reduced to considering the mass transfer of Cs-137 in the surface layers of a 
given area. The task considered in the paper contains diffusion parameters (the effective diffusion 
coefficient and the speed of directed diffusion movement), the values of which are determined 
empirically with the help of special studies. Their reference values are given for certain types of soils 
under some average conditions. In practice, the values of diffusion parameters change with the change 
of soil moisture and temperature, and therefore their real values for a particular point in space and time 
will be slightly different. This point is the cause of additional error in the obtained numerical results.  

A neural network was used to solve the problem. It is constructed in a narrowed space and 
approximately satisfies the boundary conditions at each step of integration. Universal approximation 
properties of neural networks make it attractive to use them in our research. 

2. Problem Statement and its Solution  

Given the importance of effectively solving the problem of dynamic control of water erosion and 
analysis of the spread of surface contamination in agrolandscapes with arbitrary surface shapes, the 
paper considers the construction of an effective neural network method for solving a model problem 
based on convective diffusion equation (namely: numerical solution of the problem 137 in a limited 
area under the condition of instantaneous surface contamination at some initial time). The substance 
Cs-137 is a low-activity pollutant, the particles of which are mainly in solid form, transported with the 
movement of moisture, poorly supplied to plants. These properties allow you to use the dynamics of 
the distribution of this substance to detect the presence and analysis of the process of water erosion. For 
numerical simulation of the movement of radioactive contaminant Cs-137 in the surface layers of the 
soil, an artificial agro-landscape with a system of hydraulic rampart-terraces was selected with available 
experimental data on the distribution of contaminants in layers 0-40 cm deep for 11 years. 

The use of difference methods and the finite element method leads to a large number of calculations 
with matrices of very large sizes, the construction of calculations by these methods involves the 
accumulation of time error, so neural network methods are becoming increasingly popular. 

Therefore, the purpose of our work is to substantiate and develop an effective method for numerical 
simulation of class of evolution problems by giving a particular example of its application. 

The main tasks in the presented work are the construction of an effective method for numerical 
modeling of the dynamics of pollutant distribution and substantiation of the correctness and 
convergence of the obtained method. The objects of research are: neural networks and Galerkin-type 
methods for approximating the dynamics of the pollution process, which is described by the partial 
differential equation in a limited spatial region with a piecewise smooth boundary under the condition 
of instantaneous surface contamination.  

It is known that Cs-137 is a low-active substance that can be in the soil solution in only one state, is 
transmitted in the soil layers mainly in unchanged form (in solid form) with the movement of moisture. 
Due to the fact that the substance almost does not turn into a liquid form, it is poorly supplied to plants. 
Therefore, you can ignore the influence of vegetation on the process of mass transfer. We have that the 
migration of Cs-137 occurs convectively with the flow of moisture through the soil profile; the filtration 
flow is linear; soil saturated with water is isotropic, porous, uncompressed; the process of transfer to 
the soil solution is subject to Fick's law; the soil layers considered in the study do not intersect with the 
groundwater layers. Therefore, taking into account the substantiation of the monograph [19], we can 
use the diffusion approach, namely to use the convective diffusion equation when constructing a model 
equation in our study. For the practical implementation of the study, a system of hydraulic ramparts-
terraces in the artificial agro-landscape of the soil protection system of contour-ameliorative agriculture 
in the Kyiv region near the village of Khodosiyivka was chosen (Figure 1). In this system, each shaft-
terrace has a special construction (as in Figure 2) to prevent water erosion. In our study, only the surface 
layers of the agricultural strips of the shaft-terrace Т3 are considered (Figure 1). 
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Figure 1: Scheme of agrolandscape (T1-T6 — the rampart-terraces, 1-36 — measuring points of Сs-
137 concentration values 

 
Figure 2: The cross-section of rampart-terrace surface  (B — the width of the strip of agricultural use, 
L — the distance between the ramparts, α — the angle of inclination of the surface of the segment) 

 
In areas of agricultural use during tillage, the soil layers were not turned over (special tillage was 

used). Therefore, the impact of tillage on the distribution of pollutants did not occur and we can assume 
that the soil profile is uniform in depth and time. This was also the reason for using the diffusion 
approach. High difficulty in obtaining values of diffusion parameters in equations based on the 
convective approach are the reason for using the appropriate values given in reference sources for fixed 
soil types at average values of humidity, temperature and humus content. 

In our model equation, we used reference values of parameters and refined (as a solution of the 
inverse problem by experimental measurements from study [20]). It is clear that the use of reference 
values of parameters reduces the accuracy of the calculated results and the best option is to use refined 
values. Nevertheless, the refined values are calculated from the available experimental measurements, 
which also contain error. We cannot estimate both types of errors and this is not part of the research 
objectives. However, their presence affected the obtained numerical results. 

To achieve the goal of the study we will consider for the introduced differential model of the problem 
of controlling the dynamics of surface pollution of the agro-landscape and the available experimental 
values of pollutant concentration construction of the numerical method as an extension of Galerkin 
method for space component and Deep Galerkin Method for time component. The solution of the tasks 
allowed, based on the existing experience of using the Galerkin method, to narrow the space for the 
construction of neural networks and to obtain a new effective approach that has the properties of 
dynamism, convergence, adaptability. In our study we considered the surface soil layers of agricultural 
strips in the rampart-terrace T3 and points 13–16 with deep 0–40 cm in which the pollutant 
concentration was measured (Figure 1). The measurements of concentrations of contamination Сs-137 
were carried out by the Institute of Agriculture of UAAS from May 1986 (immediately after 
contamination of this territory) to summer 1996 for all 36 points of agrolandscape in soil layers 0-40 
cm deep. We selected for numerical simulation only the points located on agricultural strips of rampart-
terrace T3 for soil layers 0–20 cm deep.  Therefore,Cs-137 is an unaltered substance and mainly 
transferred by the movement of moisture in unchanged form in the soil and the assumptions set forth 
above take place. The fall of the pollutant on the agro-landscape surface of occurred instantly at an 
initial point in time and therefore the mathematical model as in [12] is valid: 
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, ,0)0,(  xxu  (2) 

 

(3) 

in bounded area ) ,(  ]0[ 2RTtQ   with boundary   and piece-smooth 

surface Г. In (1)–(3) we denoted: ),( txu  — the concentration of the pollutant in the point 

1 2( , )х x x   at the moment t; λ — the half-decomposition factor, λ = const > 0; ),( 21 xx  — the 

function describing the surface  in the area Q  (the surface of the rampart-terrace), 

0221 );(),( uLxx   — the contamination that has fallen to the surface ; )(xD  — the effective 

diffusion coefficient (it’s an integral, limited, continuously differentiated function in the spatial region 

Q ); V — the speed of directed diffusion movement, V = const > 0; ))(cos()(  kk , k — the 

coefficient of surface absorption, k = const > 0; )(  — the slope of the surface Г; 0q  — the flow of 

water coming from atmospheric precipitation with a contamination 0c ; )0( t  — Dirac δ-function.  

Since the precipitation in this area during the study period did not contain Cs-137 contamination, 
the boundary conditions (3) took the form: 
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We approximated the function ),( 21 xx  as 
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Dirac δ-function by the hat function [21] (as it converges to the δ-function in the *-weak sense) in the 
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We considered the set of twice continuously differentiated by x in  and continuously differentiated 
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We used the spaces: H* in which the functions ),( txv  of the conjugate problem are defined; the 

negative space 
*H  with the norm  

*

2

*

)(

0

),(
sup

H

QL

v
H v

fv
f



 . 

Then the right part of equation (1) is a function from the space 
*H  since 

2 2(0, ) ( ) ( )H Т L H Q   

. Also, we have that the operator Z is not positively defined in the space )(2 QL . But as shown in [12], 

the following inequalities are true: for any u H  0ˆ ,ˆ
)(2

 constcucu
HQL

, 
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ucZu *  and 

2

2

( )( , ) ,   0L Q H
Zu u с u c const   . These inequalities guarantee the existence of a unique generalized 

solution of problem (1)–(3) as function u H , which is proved in [12]. These facts are important for 
the construction and correct implementation of the numerical method for solving problems (1)–(3). 

3. Method with neural network for the approximation of contamination 
values  

Consider the cross section of the shaft-terrace and select the surface layer with a depth of H. Let us 
construct an approximate solution û  with two components of the form: 
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In (5) we have two sets of transfer functions defined in  . The first set { )(~),...,(~),(~
~21 xwxwxw n )} 

is used to satisfy the boundary conditions and these functions can be radial-basis functions. The second 

set { )(),...,(),( 21 xwxwxw n } – to satisfy the differential equation (1) and these functions can be 

polynomials. For the first set we can take functions in the form [16] 
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In (6) we have denoted: kn  – unit vectors normal to the boundary   at points ),( 21 kkk xxx  , [.] 

– scalar product of vectors, kx  – the collocation points on the boundary   and the centers of the 

radial-basis functions, nk ~,...,1 .  According to [16] we can take transfer functions of this kind, since 

these functions are near zero at its center along the boundary   and has a derivative normal to the 

boundary that is equal to one. Let's write the boundary conditions (3) (or practical condition (4)) in 
abbreviated form:  
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since the boundary condition is approximately satisfied at points kx  on the boundary   we take into 

account [16] that ))((
~

)(~
11 tZZt kk   

, where 


1

~
Z – right pseudoinverse matrices. More details, 

we have matrices for points kx  and for transfer functions )(~),...,(~),(~
~21 xwxwxw n  and 

)(),...,(),( 21 xwxwxw n , that is: 

























 



xxnxx

xxnxx

xwxw

xwxw

Z

))(~(...))(~(

.....

))(~(...))(~(
~

~111

~111

1

11

,  

(7) 

























 



xxnxx

xxnxx

xwxw

xwxw

Z

))((...))((

.....

))((...))((

111

111

1

11

, 

(8) 

that is 
),(11

21

))(~(),(
~

ii xxxj xwjiZ


 , 
),(11

21

))((),(
ii xxxj xwjiZ


 , i =1, 2,…, N.  

This fact makes it possible to write (5) as 

   



   1
1

11

~
)(~)(

~
)(~)(),(ˆ ZxwtZZxwxwxtu T

n

k
k

TT , ],0[ Tt  ,  ),( 21 xxx , 
(9) 

in which, given (4), the last component is 0.  
Then for approximate solution û  in form (9) [14] takes place:  
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k =1, 2,…, n. 
From here: 
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So, we come to the system of equations (11) on the set of collocation and learning points 
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To approximate unknown functions )(tq  using neural networks (we proposed Deep Galerkin 

Method [20]), we minimize in L2 the loss functional of the form: 
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In study [12] we showed that for problem (1)–(3) exist a unique generalized solution as function 

Hu . The convergence of the approximate solution û , provided that we already have the time 
component, can be obtained from [14].  

The approximate solution û  is such that RRtxu 3:);,(ˆ   with 
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All n functions in );(ˆ  t  belongs to )(RС
. Then, given [22] 3̂  is dense in C( ],0[ T ). Moreover, 

using the results in [22] we have that: all activation functions )()( RCSF i

 are non-constant, 

continuous and bounded, then 3̂  is uniformly dense in 
С ( ],0[ T ) and dense 2,1С ( ],0[ T ); all 

activation functions )()( RCSF i

 are non-constant, continuous, bounded and all its derivatives are 

bounded, then 3̂  is uniformly dense in 
С ( ],0[ T ) and dense in ),0(2 TL  and in 1

2W (0,T). 

Then from the neural network approximation theorem for the class of quasilinear parabolic partial 
differential equations in study [15] and from the above facts it follows that for a class of neural networks 

with a single hidden layer and n hidden neurons that minimize the loss functional ),ˆ(   there is a 

sequence of neural networks );(ˆ  tH
 such that 0),ˆ(   , ,H  and 

, ,ˆ);(ˆ  HtH  in ),0(2 TL  in the approximation sense.  

4. Results and Discussion 

To study the dynamics of pollution of the surface layers of the landscape rampart-terrace T3 with 
slope α = 7–8o (experimental points 13–16) was selected (Figure 1). Measurement of Cs-137 content in 
the surface layers of the soil for rampart-terrace T3 was performed at the Institute of Agriculture UAAS 
(Ukraine). The use of plowless tillage in this area did not cause soil mixing, which allowed to neglect 
the process of migration of Cs-137 down the soil profile. Given the aspects of the constructed complex 
of rampart-terrace for the analysis of the presence and dynamics of water erosion of the terrace shaft 
T3, we have the necessary data on the spatial distribution of pollution in the selected area. We used the 
results of experimental measurements of Cs-137 concentration performed in 1986–1998 for the system 
of rampart-terraces for selected points in a layer 0–20 cm deep on the strip of agricultural use of the 
terrace. The fact of binding of Сs-137 particles with the upper soil particles and the fact that the adsorbed 
Сs-137 is transferred with the solid phase particles of the soil from drainage sites to soil deposition 
during water erosion process allowed comparing the Сs-137 concentration for the stored matrices of 
spatial values in several moments. These comparisons was the main basis for detecting the process of 
water erosion in the soil layers. The study considered the cross section (two-dimensional profile) of the 
rampart-terrace T3, although the proposed technique allows to consider arbitrary rampartі-terraces of 
the hydraulic system.  

To obtain values of Cs-137 concentration, test calculations were performed. The initial 

approximations are:  05,0 ;05,0)0( iw ,  05,0 ;01,0)0( Q ,  5,0 ;1,0)0( ic . For the condition of the 

stop we took: 10100,1  . The value of effective diffusion coefficient is 8107,4 D ; the value of 

the speed of directed diffusion movement 6100,1 V . We had the following set of experimental 

points to generate mini-batches: at the initial moment (t = 0) – 28 points; on ],0[ T  – 308 points.  

The parameters (learning rate) 
)(

1

h

i , )(

2

h

i , 
)(

3

h

i , Hi ,1 , does not decrease with increasing n. Given 

the limited size of the set of experimental points, the set of collocation points at the boundary of the 
region and only 12 points of time in the consideration we had for test calculations: n~  < n 21, H 7. 

The transfer functions )(),...,(),( 21 xwxwxw n defined as: jj mm

j xxxw 21

21)(  , 14,0, 21 jj mm  

n = 21. The transfer functions )(~),...,(~),(~
~21 xwxwxw n , n~  = 17, α = 7o, for strip on T3 we have in the 

form:  
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Recurrent formulas of Greville algorithm were used to obtain pseudoinverse matrices in points kx  

and for transfer functions )(~),...,(~),(~
~21 xwxwxw n . For layers 0–5, 5–10, 10–20 cm for the terrace T3 

with slope 7° numerical calculations were performed for the cross-sectional points of the shaft-terrace, 
which correspond to the experimental measurement points. But due to the limited number of 
experimental points, there was a strong limitation in our realization. The results of test calculations 
showed a decrease in the values of pollution for the points of the layer 0–5 cm, a gradual increase in 
the values of pollution for the points of the lower layers in the first years and a decrease in the following 
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years. This corresponded to the results of experimental measurements and we can conclude about the 
low level of water erosion in the middle and lower parts of the terrace T3. As a confirmation of this 
fact, Figure 3 presents graphs of changes in the values of Cs-137 contamination for the middle part of 
the terrace 3 (point 15) at a depth of 1 cm and 6 cm for the entire study period, and Table 1 shows the 
corresponding experimental values. 

 
Figure 3: Сs-137 pollution in 1986-1996, terrace T3, depth – 1 cm (UN), 6 cm (UV), Curie/km2 

Table 1 
Сs-137 pollution at the middle part of terrace T3, depth – 1-5 cm, Curie/km2 (experimental data) 

Year Layer, cm Contamination 

1986 0 0,60 
1986 5-10 0,00 
1989 0-5 0,27 
1989 5-10 0,11 
1990 5-10 0,04 

5. Conclusion 

As a result of research, the method for approximation of decisions in the problem of dynamic control 
of distribution of pollution in a two-dimensional bounded area with a piece-smooth surface is offered. 
The constructed method is a method that combines the use of Galerkin method and the construction of 
neural networks. We offered for the introduced differential model for this problem the numerical 
method as an extension of Galerkin method for space component and Deep Galerkin Method for time 
component. This approach allowed, based on the existing experience of using the Galerkin method, to 
narrow the space for the construction of neural networks and to obtain a new effective method with the 
properties of dynamism, convergence, adaptability. The convergence of the approximate solution 
obtained by the proposed method to the exact solution of our problem is shown. A test example of the 
implementation of the developed approach for agrolandscape with a system of hydraulic shafts-terraces, 
which received surface contamination of Cs-137 at a fixed initial time, is given.  
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