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Abstract

The purpose of this paper is to find a solution for printed text classification in Ukrainian, as
well as to choose the means for its implementation. The paper considers the problem of
identification of short texts by their scientific topic. A model, built for classification, is
described. The current state of NLP and transfer learning is studied too. In practice, the
effectiveness of the implemented methods is proven, which allows to obtain good results of
text classification. These methods and approaches include concepts such as transfer learning,
NLP, BERT. The model is built using Python programming language and some of its machine
learning libraries. A multilanguage BERT model by Google is additionally trained on
Ukrainian texts from school subjects. After that, the questions from the external independent
evaluation are submitted to the input, and the model classifies them.
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1. Introduction

Searching for scientific papers and articles related to a particular field of knowledge can be difficult
for students, scientists, researchers, etc. Thematic classification of works facilitates the search process.
Having a list of subjects in the research field, it is needed to find out which subject area a particular
study is more related to. However, manually categorizing a large collection of resources is a time-
consuming process. Usually, the strategy is to search based on keywords, certain terms in the title of
the article and even in the whole text. However, processing the entire text of the article takes a long
time. In this case, neural network (NN) text classification can be applied. With deep learning evolving,
NN architectures such as recurrent NN (RNN), long short-term memory (LSTM) and convolutional NN
(CNN) demonstrated good performance in natural language processing (NLP) tasks such as text
classification, machine translation and more. However, the effectiveness of deep learning models in
NLP depends on large sets of labeled text data. Most labeled datasets are not sufficient for deep NN
training, because these networks have many parameters, and training such networks on small datasets
leads to overtraining. Another reason that held NLP progress back was the lack of transfer learning. It
was not used in NLP until 2018, when Google introduced a transformer model. Since then, transfer
learning in NLP has helped to solve complex text processing problems.

2. Transfer learning in NLP

Classic machine learning technique is depicted in the Figure 1. As can be seen, each separate task
demands training of a separate NN with its own model and data. If a new problem arises for NN to
solve, it could be difficult to build an effective system for this purpose. Transfer learning is depicted in
the Figure 2. It is a technique, where a deep learning model, taught on a large dataset, is used to perform
similar tasks on another dataset [1]. This model of deep learning is known as a pre-trained model [2].
Most tasks in NLP, such as text classification, machine translation, etc., are sequence modeling tasks.
Classic machine learning models and NN cannot fixate the consecutive information, present in the text.
Therefore, RNN have been used, as these architectures can model the sequential information.
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Figure 1: Classic machine learning
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However, these periodic NN have their drawbacks. One of the main problems is that RNN cannot
be parallelized (as opposed to a linear NN [3]) because it accepts one input at a time. In the case of a
text sequence, RNN or LSTM accept one token at a time as input. Therefore, training such model on a
large dataset will take a long time. As mentioned above, in 2018, the transformer was introduced by
Google, which gave a significant impulse to NLP systems [4]. Soon, a wide range of models, based on
transformers, were offered for various NLP tasks. There are many advantages to using transformer-
based models, but the most important are the following: [2]

1. These models do not process input sequence token-by-token. They take the entire sequence at

once, which is a significant improvement over RNN-based models, as the model can now be

accelerated by graphics processing unit (GPU).

2. Labeled data is not required for the preparation of these models. It is needed to provide a huge

amount of unlabeled text data to prepare a model based on the transformer. This trained model can

be used for other NLP tasks. They can include text classification; named-entity recognition (NER),

for example, people, geographical, company names; text generation; etc.

Bidirectional encoder representations from transformers (BERT) and the second version of
generative pre-trained transformer (GPT-2) are the most popular NLP models based on transformers.
For example, it is possible to use the previously trained BERT model to classify Ukrainian text.

-6 W@

Figure 2: Transfer learning

3. Model fine-tuning

BERT is alarge NN architecture with big number of parameters that can range from 100 to 300 min.
Therefore, training the BERT model from scratch on a small dataset will lead to overtraining.

It is better to use a pre-trained BERT model as a starting point. These pre-trained models are usually
trained on big datasets. There are several options for BERT. All of them are listed on the official page
[4]. A universal multilingual BERT for 104 languages was chosen. It uses a dictionary of whole words
as well as the most common syllables. A part of the dictionary for multilingual version of BERT can be
seen in the Figure 3. This dictionary shows which words NN uses as input. These are whole words, for
example, kinbka. But most Ukrainian words are broken down into syllables. So, the word npwiiwos will
be split into npwit and ##wos..
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tiez
##iseen
Kinbka
##ulyh
apa
##72|
##cita
mundu
(DSBsE
##KUMN
230N
fomfor
hvis
ngir
##rth
Euskal
##o
Figure 3: Some words from BERT dictionary

The training of the model can be continued on another, relatively smaller new dataset. This process
is known as fine-tuning of the model [5]. Fine-tuning strategies depend on various factors, but the most
important are the size of the new dataset and its similarity to the original dataset. Given that the nature
of a typical NN for NLP is more universal in the early layers and becomes more closely related to a
specific dataset on subsequent layers, four main scenarios can be identified:

1. The new dataset is smaller and similar in content to the original dataset. If the amount of data

is small, then it makes no sense to fine-tune the NN due to overfitting. Since the data is similar to

the original, it can be assumed that the distinguishing features in NN will be relevant for this dataset
as well. Therefore, the optimal solution is to train the linear classifier as a distinctive feature of NN.

2. The new dataset is relatively large and similar in content to the original dataset. Since there is

more data, the overfitting does not take place, if the entire NN is being fine-tuned.

3. The new dataset is smaller and significantly different in content from the original dataset. Since

the amount of data is small, only a linear classifier will be sufficient. Since the data is significantly

different, it is better to train the classifier not from the top of NN, which contains more specific data.

Instead, it is better to train the classifier by activating it on earlier layers of NN.

4. The new dataset is relatively large and differs significantly in content from the original dataset.

Since the dataset is very large, it is possible to train the entire NN from scratch. Nevertheless, in

practice, it is often still more advantageous to use it to initialize weights from a pre-trained model.

In this case, there is enough data to fine-tune the entire NN.

4. BERT architecture

First, BERT is based on the transformer architecture as stated above.

Second, BERT is pre-trained on a large set of unlabeled text, including the entire Wikipedia (that is
2.5 bln words) and the BooksCorpus (800 minwords). This process took 4 days for 16 tensor processing
units (TPU). The pre-training step is half the success of BERT. The reason is when a model trains on a
large text body, it begins to gain a deeper understanding of how the given language “works”.

Third, BERT is a deep bidirectional model. Bidirectionality means that BERT learns information
from both left and right side of the token context at the training stage. A similar method of bidirectional
processing is also used by embeddings from language model (ELMo) system developed by Paul Allen
Institute of Artificial Intelligence. However, BERT demonstrates a more complex relationship between
the layers of language representation, so it is considered deeply bidirectional and ELMo is superficially
bidirectional. For comparison, the visualization of NN architectures of different types is displayed in
the Figure 4. They include an example of one-way processing method — OpenAl GPT.

5. ktrain library

ktrain library [6] for Python programming language can be used for BERT fine-tuning. This is a
wrapper for Keras framework that helps to build, train, and deploy NN models with minimum amount
of code. ktrain provides means for: [7]

e learning speed regulation, which will help to find the initial level of learning for the model;
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e visual graphs of learning speed to increase productivity;

e pre-trained models for text data (e.g., text classification, NER), images (e.g., image
classification), graphs (e.g., link prediction);

¢ methods that allow downloading and pre-processing text and images in various formats;

o verification of data that have been misclassified to improve the model;

e an application programming interface (API) for saving and deploying models and pre-
processing data.

Figure 4: BERT, OpenAl GPT and ELMo respectively

6. Problem statement

As an example of a practical solution to the problem of Ukrainian text classification, BERT model
can be considered and taught to classify scientific topics of given texts. These texts will cover the
following 7 school subjects:

e history of Ukraine,
physics,
geography,
biology,
mathematics (algebra and geometry),

Ukrainian (language and literature),

e  chemistry.

The task is to create a system that determines automatically to which subject the question relates.
The dataset used for this case consists of electronic textbooks on the specified subjects. To test the
model, the questions from the tests, that were offered to school graduates at the external independent
evaluation (also known as “3HO”) of 2021, were considered. A sample can be seen in the Figure 5. It
should also be noted that only 11th (final) grade textbooks are included in the dataset, while the external
evaluation questions cover several years of study and relate to a wider range of knowledge. Google
Colab was used for development.

6.1. Download and process input data

ktrain library is needed to get started:

Ipip install ktrain

import ktrain

from ktrain import text

Publicly available [9] textbooks for remote studying are considered as input data. The textbooks
were converted to TXT format and divided into smaller files. ktrain automatically detects natural
language and character encoding, processes the data, and sets up the model:

(x_train, y train), (x_test, y test), preproc = text.texts_from_folder(
'/content/drive/MyDrive/dataset/"',
maxlen=75,
max_features=10000,
preprocess_mode='bert',
train_test_names=[ 'train', ‘'test'],
val pct=0.1,
classes=[ 'history', 'physics', 'math', 'geography', 'biology', 'Ukrainian’,
"chemistry'])
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1 Haraaky [loxrasny

Figure 5: A page from the external independent evaluation test on Ukrainian language and literature

The first argument is the path to the dataset folder. The maxlen argument specifies the maximum
number of words (512 for BERT, but it is better to use less to reduce memory usage and increase speed)
in each file, with extra words being cut off. maxlen=75 because the input text files are small.

The text must be pre-processed for usage with BERT. This is achieved by setting the
preprocess_mode Vvalue to 'bert'. The BERT model and vocabulary will be loaded automatically, if
necessary. val_pct=0.1 means automatically selecting 10% of the data for validation.

Finally, the texts_from_folder function expects the following directory structure:

<folder>

train
<subject_1>
<subject_ 2>
<subject_3>

test
<subject_1>
<subject_2>
<subject_3>

So, the dataset folder with corresponding content for 7 classes 'history', 'physics', 'math',
'geography', 'biology', 'Ukrainian', 'chemistry’ iscreated. The result may look like this:

detected encoding: UTF-8-SIG
downloading pretrained BERT model (multi cased L-12 H-768 A-12.zip)...
extracting pretrained BERT model...
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done.

cleanup downloaded zip...
done.

preprocessing train...
language: uk
done.

Is Multi-Label? False
preprocessing test...
language: uk

done.

6.2. Use BERT learner object for content in Ukrainian

Creating a model and wrapping it with the learner:

model = text.text classifier('bert', (x_train, y train), preproc=preproc)
learner = ktrain.get learner(model,

train_data=(x_train, y_train),

val data=(x_test, y test),

batch_size=32)

The first argument of the get_learner function uses a pre-trained BERT model with a randomly
initialized end dense layer. The second and third arguments are training and verification data,
respectively. The last argument of get_learner is the packet size. A small batch_size=32 is used
based on Google's recommendations.

6.3. Model training

To train the model, the optimal level of training is found, that corresponds to the problem being
solved. ktrain offers an effective method called 1r_find, which trains a model with different learning
metrics and creates a graph of model loss as the learning level increases.

Loss graph is displayed in the Figure 6.

learner.lr_find()
learner.1lr_plot()

The graph of the loss function shows that the classifier provides minimum losses when the training
level is 10~...10™. Model training:

learner.fit_onecycle(2e-5, 1)

fit_onecycle function from ktrain library is used. This function utilizes the onecycle learning
speed policy, which linearly increases the learning speed during the first half of learning and then
reduces the learning speed for the second half [8].

Result:
begin training using onecycle policy with max 1lr of 2e-05...
542/542 [==============================] - 710s 1s/step - 1loss: 0.5202 -
accuracy: 0.8294 - val loss: 0.2498 - val accuracy: 0.9182
Validation:
learner.validate(val _data=(x_test, y_test))
Result:
precision recall fl-score support

0 0.91 0.89 0.90 370

1 0.87 0.93 0.90 313

2 0.90 0.87 0.89 348

3 0.85 0.77 0.81 201

4 0.93 0.95 0.94 792
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5 0.98 0.97 0.97 541

6 0.89 0.91 0.90 222
accuracy 0.92 2787
macro avg 0.90 0.90 0.90 2787
weighted avg 0.92 0.92 0.92 2787

16

14

12 4

w 10 1

E

0.8
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Figure 6: Loss graph

As can be seen from the results of validation, training reaches 85-98% accuracy (precision) in one
epoch. Classification errors:

learner.view_top_losses(n=10, preproc=preproc)
Creating a predictor:

p = ktrain.get_predictor(learner.model, preproc)
It is better to save the model for later use:
p.save('./drive/MyDrive/predictor")

After downloading it and trying to offer models of questions from the external independent
evaluation of 2021:

fin_bert_model = ktrain.load_predictor('./drive/MyDrive/predictor")

p.predict("Binbrensm ¢oH Mabcbypr-JloTpiHreH - aBCTPiWCbKUIA apXiKHA3b, MOMKOBHUK
apmii YHP, noet. MNip AKMM nceBAOHiIMOM BiH BiAOMMI AK MONKOBHUK YKPAIHCbKWUX CiYOBMX
cTpinbui (YCC)?")

history

p.predict("Ycw Bosy i3 wWMpokol nNOCYAMHM TNepenunn y BUCOKY BY3bKY MOPOXHI0
NOCYAUHY. AKMMM CTaHYTb CWJia TUCKY W TUCK BOAM HA AHO BY3bKOI nMocyAuHM nicna uporo
nopiBHAHO 13 CMNAOKW TUCKY M TUCKOM Ui€l BOAM Ha AHO WMPOKOI MOCYAMHM? YBaxanTe, WO
NOCYAMHU MakwTb LUMAiHAPUYHY dopmy™)

physics

p.predict("YcTaHoBiTb BignoBigHicTb Mix rpadikom (1 — 3) ¢yHkuii, BM3HaAYeHOI Ha
npomixky [— 4; 4], Ta ii BnactuBicTto (A — O)")
math

p.predict("YkaxiTb MaTepuk, Ha AKOMYy exuTb YkpaiHa™)
geography

p.predict("Nig Yyac ekcnepuMeHTy Aekinbka siEub MOpPCbKMX ixakiB nomicTunm B MOpCbKy
BoAy, Ae Ix 3annipHunu. Y uo Boay fo6aBuav Midenuii Tputiem (3H) Tumipgmnosuit HykneoTuna
(puc. 1), SKWMA NOrAvHaNM KNiTWHM embpioHiB")

biology

p.predict("3o06bpaxeHe B ypuBKYy - Xpuctoc Bockpece! - I po3BisfBCcA MOpokK. Ynanu
KangaHW 3 HeBONbHUUbKMX pyK. - Cniwite! Banpaku y Biakputomy mopi! Mobansy Hema Hi
ranep, Hi ¢enwk! cyronocHe 3 noaiamu TBOPY")

Ukrainian
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p.predict("Anmas i rpadit — npocTti pedvoBuHM")
chemistry

fin_bert_model.predict(OgHakoBi kynbku, nipgBiweHi Ha HMTKax, 3apagxeHi Tak, fAK
Le MoKasaHo Ha puUCyHKax. Y AKoMy 3 BuMagkiB mnpaBuibHO 300paxeHO MONOXEHHA LMUX
KyNbOK, 3yMOBJieHe IXHbow B3aemopiew?")

physics

fin_bert_model.predict(“fka BnagHa iHCTUTyuia 3BepHynacAa i3 UMTOBAHOW Bif03BOH
[0 HaceneHHA YKpaiuu?")

history

fin_bert_model.predict("YcTaHoBiTb BignoBigHicTb Mmix Bupazom (1 - 3) i
TBEpPAXEHHAM Mpo #oro 3HayveHHA (A — [1), AKe € NpaBW/ibHUM, AKWO a = -2")

math

fin_bert _model.predict("3 6yab-skoi Toyku CBiTOBOro oKeaHy MoOXHa pAicTaTuca B
byab-AKYy iHWy, He nepeTHyBuu cyxoain. lUe poBoauTb, wo CBiToBuMi okeaH —")
geography

fin_bert _model.predict("Yknw4eHHs MideHol cnonyku B MoJieKynuM KAiTUH embpioHa
BinbyBaeTbca nip 4yac")
biology

fin_bert_model.predict("OgHakoBuii 3BYyK MO3Ha4awTb OYKBM, NigkpecseHi B OKpemMux
cnoBax peveHHA")
Ukrainian

fin_bert_model.predict("YkaxiTb ¢opmyny Byrnekucnoro rasy")
chemistry

Taking a closer look at how the model makes conclusions for certain inputs:

fin_bert_model.explain("MiyeHa cnonyka B KANiTuHax embpioHiB noTpanndAe B
monekynm™)

Result:

y=biology (probability ©.989, score 5.285) top features
Contribution Feature

+5.804 Highlighted in text (sum)

MiyeHa crmosiyka B KNiTuMHax embpioHiB noTpannse B MOJIeKyau

This visualization is generated using a technique called local interpretable model-agnostic
explanations (LIME) [10]. It helps to understand the relative importance of different words for the final
prediction using a linear interpreted model. “Green” words contribute to the correct classification
(biology), “red” words reduce the probability of correct prediction. Shade of color indicates the strength
or size of the coefficients in the final linear model.

7. Other approaches

There are a number of solutions representing classification of English texts. Many of them provide
algorithms to build text classifiers. But it’s hard to find works describing algorithms to construct a
classifier of Ukrainian text. The main problem, however, is not an algorithm itself, but the lack of
resources for experiments to train the classifier. A researcher can:

e use Brownian Corps of the Ukrainian Language (BCUL),

e use specific dictionaries,

e  create own dataset.

Deep learning tends to use large and robust datasets in order to perform well. One of the attempts to
perform Ukrainian text classification is described in the paper [11], where its authors consider random
forest classifier, support vector machines (SVM), naive Bayes classifier and logistic regression
algorithms as well as BCUL dataset. The best result is shown by SVM model. Its average accuracy is
80%. Another approach to the problem proposes a solution, which can detect sentiments from Ukrainian
text (namely hotel reviews) and classify them for positive and negative ones [12]. Besides, it analyzes
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reviews about given hotel and summarizes its most important positive and negative properties. The
dataset, which contains user reviews in Ukrainian was parsed from Booking.com and TripAdvisor.
Following techniques were considered: fastText (created by Facebook Artificial Intelligence Research
lab), Seg2Seq, CNN, RNN and recurrent convolution neural network (RCNN). RCNN model gives the
best accuracy on available dataset: 85% for text classification and 86% for sentence classification.

8. Conclusions

BERT and ktrain were used to solve the problem of classifying documents in Ukrainian. A complex
model like BERT can be applied to any problem in any language (out of 104 most popular ones in the
world, including Ukrainian, for which there is a pre-trained BERT) using ktrain.

Testing accuracy of 85-98% was achieved in one learning epoch. Although the effectiveness of
BERT was proven, it is relatively slow both in terms of learning and predictions for new data. Therefore,
if the training lasts more than one epoch, it may be better to omit the val_data argument from
get_learner and check the accuracy only after training.

This can be done in ktrain using the learner.validate method, as shown in code samples above.
BERT can be quite demanding on memory. If errors, indicating that the GPU memory limits have been
exceeded, are encountered, it is possible to reduce the value of either maxlen, or batch_size
parameters. If the model performs well after training, it should be saved for future classifications. When
using BERT, Keras’s built-in 1load_model function does not work, although model. save_weights and
model.load_weights can still be used to save weights and load them. But to load the model, the
learner.load_model function from ktrain should be used.

Finally, the proposed BERT solution for Ukrainian text classification was compared to other
approaches to this problem. As can be seen, the described model performs well, and its accuracy is high
enough.
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