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Abstract

Sparse retrieval techniques can detect exact matches, but are inadequate for mathematical texts, where

the same information can be expressed as either text or math. The soft vector space model has been

shown to improve sparse retrieval on semantic text similarity, text classification, and machine translation

evaluation tasks, but it has not yet been properly evaluated on math information retrieval.

In our work, we compare the soft vector space model against standard sparse retrieval baselines and

state-of-the-art math information retrieval systems from Task 1 (Answer Retrieval) of the ARQMath-3

lab. We evaluate the impact of different math representations, different notions of similarity between

key words and math symbols ranging from Levenshtein distances to deep neural language models, and

different ways of combining text and math.

We show that using the soft vector space model consistently improves effectiveness compared to

using standard sparse retrieval techniques. We also show that the Tangent-L math representation

achieves better effectiveness than LaTeX, and that modeling text and math separately using two models

improves effectiveness compared to jointly modeling text and math using a single model. Lastly, we

show that different math representations and different ways of combining text and math benefit from

different notions of similarity between tokens. Our best system achieves NDCG’ of 0.251 on Task 1 of

the ARQMath-3 lab.
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1. Introduction

State-of-the-art math information retrieval systems use sparse retrieval techniques that can

detect exact key word matches with high precision, but fail to retrieve texts that are seman-

tically similar but use different terminology. This shortcoming is all the more apparent with

mathematical texts, where the same information can be expressed in two completely different

systems of writing and thought: the natural language and the language of mathematics.

Recently, the soft vector space model of Sidorov et al. [25] made it possible to retrieve

documents according to both exact and fuzzy key word matches and has outperformed standard

sparse retrieval techniques on semantic text similarity [2], text classification [17], and machine

translation evaluation [26] tasks. The soft vector space has been used for math information

retrieval in the ARQMath-1 and 2 labs [18, 16]. However, it has not been properly compared
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to sparse retrieval baselines. Furthermore, the soft vector space model makes it possible to

use different representations of math, different notions of similarity between key words and

symbols, and different ways to combine text and math. However, neither of these possibilities

has been previously explored.

In our work, we aim to answer the following four research questions:

1. Does the soft vector space model outperform sparse information retrieval baselines on

the math information retrieval task?

2. Which math representation works best with the soft vector space model?

3. Which notion of similarity between key words and symbols works best?

4. Is it better to use a single soft vector space model to represent both text and math or to

use two separate models?

The rest of our paper is structured as follows: In Section 2, we describe our system and our

experimental setup. In Section 3, we report and discuss our experimental results. We conclude

in Section 4 by answering our research questions and summarizing our contributions.

2. Methods

In this section, we describe the datasets we used to train our tokenizers and language models.

We also describe how we used our language models to measure similarity between text and

math tokens, how we used our similarity measures to find answers to math questions, and how

we evaluated our system.

2.1. Datasets

In our experiments, we used the Math StackExchange and ArXMLiv corpora:

Math StackExchange The Math StackExchange collection v1.2 (MSE)
1

provided by the or-

ganizers of the ARQMath-2 lab [11, Section 3] contains 2,466,080 posts from the Math

StackExchange question answering website in HTML5 with math formulae in LaTeX.

ArXMLiv The ArXMLiv 2020 corpus [3] contains 1,571,037 scientific preprints from ArXiv

in the HTML5 format with math formulae in MathML. Documents in the dataset were

converted from LaTeX sources and are divided into the following subsets according to the

severity of errors encountered during conversion: no-problem (10%), warning (60%),

and error (30%).

From the corpora, we produced a number of datasets
2

in different formats that we used to

train our tokenizers and language models:

1

An improved Math Stack Exchange collection v1.3 was made available by the organizers of the ARQMath-3 lab

[12, Section 3], which we did not use due to time constraints.

2

See https://github.com/witiko/scm-at-arqmath3, file 01-prepare-dataset.ipynb.
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Text + LaTeX To train text & math language models, we combined MSE with the no-problem
and warning subsets of ArXMLiv. The dataset contains text and mathematical formulae

in the LaTeX format surrounded by [MATH] and [/MATH] tags. To validate our language

models, we used a small part of the error subset of ArXMLiv and no data from MSE.

Example: We denote the set of branches with [MATH] B_{0},B_{1},\ldots,B{n} [/MATH] where
[MATH] n [/MATH] are the number of branches.

Text To train text language models, we used the same combinations of MSE and ArXMLiv

as in the previous dataset, but now our dataset only contains text with math formulae

removed.

Example: (Graphs of residually finite groups) Assume that and are satisfied. Let be a graph
of groups. If is infinite then assume that is continuous.

LaTeX To train math language models, we used the same combinations of MSE and ArXMLiv

subsets as in the previous datasets, but now our dataset only contains formulae in the

LaTeX format.

Example: \begin{pmatrix}1&n\0&1\end{pmatrix}\begin{pmatrix}1&p\0&1\end{pmatrix}

Tangent-L To train math language models, we used the same combinations of MSE and

ArXMLiv subsets as in the previous datasets, but now our dataset only contains formulae

in the format used by the state-of-the-art Tangent-L search engine from UWaterloo
3

[14].

Example: #(start)# #(v! ◁,/,n,-)# #(v! ◁,/,n)# #(/,v!l,n,n)# #(/,v!l,n)# #(v!l,!0,nn)# #(v!l,!0)# #(end)#

2.2. Tokenization

In our system, we used several tokenizers:

• To tokenize text, we used the BPE tokenizer of the roberta-base language model
4

[9].

• To tokenize math, we used two different tokenizers for the LaTeX and Tangent-L formats:

– To tokenize LaTeX, we trained a BPE tokenizer
5

with a vocabulary of size 50,000 on

our LaTeX dataset.

– To tokenize Tangent-L, we strip leading and trailing hash signs (#) from a formula

representation and then split it into tokens using the #\s+# Perl regex.

• To tokenize text and math in the LaTeX format, we extended the BPE tokenizer of

roberta-base with the [MATH] and [/MATH] special tokens and with the tokens rec-

ognized by our LaTeX tokenizer.

3

See https://github.com/fwtompa/mathtuples, git commit 888b3d5 from October 25, 2021.

4

See https://huggingface.co/roberta-base.
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Figure 1: Learning curves of MathBERTa on our text + LaTeX dataset (in-domain) and the
European Constitution (out-of-domain). The ongoing descent of in-domain validation loss indi-
cates that the performance of the model improved over time, but has not converged and would
benefit from further training. The ongoing descent of out-of-domain validation loss shows that
improvements on scientific texts do not come at the price of other non-scientific domains.

2.3. Language Modeling

In our experiments, we used two different types of language models:

Shallow log-bilinear models We trained shallow word2vec language models
6

[13] on our

text + LaTeX, text, LaTeX, and Tangent-L datasets.

On text documents, a technique known as constrained positional weighting has been shown

to improve the performance of word2vec models on analogical reasoning and causal

language modeling [19]. To evaluate the impact of constrained positional weighting

on math information retrieval, we trained word2vec models both with and without

constrained positional weighting for every dataset. For brevity, we refer to word2vec
with and without constrained positional weighting as positional word2vec and non-
positional word2vec in the rest of the paper.

Deep transformer models To model text, we used pre-trained roberta-base model
7

[9].

Related work shows that accurate domain-specialized representations can be obtained

by continuous training, i.e. adaptation, using masked language modeling (MLM) on

domain-specific unlabeled texts, in medicine [21], biology [8], and other scientific texts

[1]. Previous work [20, 24] performs continuous MLM training on scientific texts, or the

math formulae thereof [5]. However, all the aforementioned works treats math as plain

6

See https://github.com/witiko/scm-at-arqmath3, file 04-train-word2vec.ipynb.
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text and only few [4] promote math-specific representations in the model adaptation.

This motivated us to experiment with adaptation incorporating specific encodings for

non-textual expressions.

To model text and math in the LaTeX format, we replaced the tokenizer of roberta-base
with our text and math tokenizer. Then, we extended the vocabulary of our model with

the [MATH] and [/MATH] special tokens and with the tokens recognized by our LaTeX

tokenizer, and we randomly initialized weights for the new tokens. We fine-tuned our

model on our text + LaTeX dataset for one epoch using the MLM objective of RoBERTa
8

[9] and a learning rate of 10
−5

with a linear decay to zero, see the learning curves in

Figure 1. We called our model MathBERTa and released it to the HF Model Hub.
9

2.4. Token Similarity

To determine the similarity of text and math tokens, we first extracted their global representa-

tions from our language models:

Shallow log-bilinear models We extracted token vectors from the input and output matrices

of our word2vec models and averaged them to produce global token embeddings.

Deep transformer models Unlike word2vec, transformer models do not contain global rep-

resentations of tokens, but produce representations of tokens in the context of a sentence.

To extract global token embeddings from roberta-base and MathBERTa, we decontex-

tualized their contextual token embeddings
10

[26, Section 3.2] on the sentences from our

text + LaTeX dataset.

Then, we produced dictionaries of all tokens in our text + LaTeX, text, LaTeX, and Tangent-L

datasets,
11

removing all tokens that occurred less than twice in a dataset and keeping only

100,000 most frequent tokens from every dataset. For each dictionary, we produced two types

of token similarity matrices
12

that capture the surface-level lexical similarity and the semantic

similarity between tokens, respectively:

Lexical similarity We used the method of Charlet and Damnati [2, Section 2.2] to produce

similarity matrices using the Levenshtein distance between the tokens.

Semantic similarity We used the method of Charlet and Damnati [2, Section 2.1] to produce

similarity matrices using the cosine similarity between the global token embeddings.

For all dictionaries, we produced two matrices using the token embeddings of the posi-

tional and non-positional word2vec models. For the text and text + LaTeX dictionaries,

we also produced an additional matrix using the token embeddings of the roberta-base
and MathBERTa models, respectively.

8

See https://github.com/witiko/scm-at-arqmath3, file 03-finetune-roberta.ipynb.
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See https://huggingface.co/witiko/mathberta.
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To ensure sparsity and symmetry of the matrices, we considered only the 100 most similar

tokens for each token and we used the greedy algorithm of Novotný [15, Section 3] to construct

the matrices. For semantic similarity matrices, we also enforced strict diagonal dominance,

which has been shown to improve performance on the semantic text similarity task [17, Table 2].

Finally, to produce token similarity matrices that capture both lexical and semantic similarity

between tokens, we combined every semantic similarity matrix with a corresponding lexical

similarity matrix as follows:

Combined similarity = 𝛼 · Lexical similarity + (1− 𝛼) · Semantic similarity (1)

In our system, we only used the combined token similarity matrices.

2.5. Soft Vector Space Modeling

In order to find answers to math questions, we used sparse retrieval with the soft vector space

model of Sidorov et al. [25], using Lucene BM25 [6, Table 1] as the vector space and our combined

similarity matrices as the token similarity measure. To address the bimodal nature of math

questions and answers, we used the following two approaches:
13

Joint models To allow users to query math information using natural language and vise versa,

we used single soft vector space models to jointly represent both text and math.

As our baselines, we used 1) Lucene BM25 with the text dictionary and no token similarities

and 2) Lucene BM25 with the text + LaTeX dictionary and no token similarities.

We also used four soft vector space models with the text + LaTeX dictionary and the

token similarity matrices from the positional and non-positional word2vec models, the

roberta-base model, and the MathBERTa model.

Interpolated models To properly represent the different frequency distributions of text and

math tokens, we used separate soft vector space models for text and math. The final score

of an answer is determined by linear interpolation of the scores assigned by the two soft

vector space models:

Interpolated similarity = 𝛽 · Text similarity + (1− 𝛽) · Math similarity (2)

As our baselines, we used Lucene BM25 with the text dictionary and no token similarities

interpolated with 1) Lucene BM25 with the LaTeX dictionary and no token similarities

and with 2) Lucene BM25 with the Tangent-L dictionary and no token similarities.

We also used four pairs of soft vector space models: two pairs with the text and LaTeX

dictionaries and two pairs with the text and Tangent-L dictionaries. In each of the two

pairs, one used the token similarity matrices from the positional word2vec model and

the other used the token similarity matrices from non-positional word2vec model.

13

See https://github.com/witiko/scm-at-arqmath3, file 08-produce-arqmath-runs.ipynb.
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For our representation of questions in the soft vector space model, we used the tokens in the

title and in the body text. To represent an answer in the soft vector space model, we used the

tokens in the title of its parent question and in the body text of the answer. To give greater

weight to tokens in the title, we repeated them 𝛾 times, which proved useful in ARQMath-2 [16,

Section 3.2].

2.6. Evaluation

To evaluate our system, we searched for answers to sets of topics provided by the ARQMath

organizers for Task 1 (Answer Retrieval) [28, 11, 12, Section 4.1]. As our retrieval units, we used

answers from the MSE dataset.

Effectiveness To determine how well the answers retrieved by our system satisfied the in-

formation needs of users, we used the normalized discounted cumulative gain prime

(NDCG’) evaluation measure [23] on the top 1,000 answers retrieved by our system for

each topic. As our ground truth, we used the relevance judgements provided by the

ARQMath organizers [28, 11, 12, Section 4.3].

To select the optimal values for parameters 𝛼, 𝛽, and 𝛾, we used the 148 topics from

ARQMath-1 and 2, Task 1 and performed a grid search over values 𝛼 ∈ {0.0, 0.1, . . . , 1.0},

𝛽 ∈ {0.0, 0.1, . . . , 1.0}, and 𝛾 ∈ {1, 2, 3, 4, 5}. To estimate the effectiveness of our system,

we used the 78 topics from ARQMath-3 Task 1.

Due to time constraints, we hand-picked the parameter values 𝛼 = 0.1, 𝛽 = 0.5, and 𝛾 = 5

for our submissions to the ARQMath-3 lab. We report effectiveness for both hand-picked

and optimal parameter values, and discuss the robustness of our system to parameter

variations.

Efficiency Our system is a prototype written in a high-level programming language with

emphasis on correctness over efficiency. Furthermore, we computed our evaluation on a

non-dedicated computer cluster with heterogeneous hardware, which made it difficult to

meaningfully measure the efficiency of our system. Therefore, we have not measured

and do not report the efficiency of our system.

3. Results

In tables 1 and 2, we list effectiveness results with hand-picked parameter values submitted to

the ARQMath-3 lab for our joint and interpolated soft vector space models. In tables 3 and 4,

we list post-competition effectiveness results with optimized parameter values for our joint and

interpolated models. In all tables 1–4, we also list the parameter values the we used.

In Figure 2, we visualize the effectiveness of our baseline models with optimized parameter

values and how it is affected by our various extensions.

In Table 5, we compare our post-competition effectiveness results with optimized parameter

values to the baselines and the best results from other teams on ARQMath-3 Task 1.



Table 1
Results with hand-picked parameter values submitted to the ARQMath-3 lab for joint soft vector space
models on ARQMath-3 Task 1

Model 𝛼 𝛾 NDCG’

Joint text + LaTeX (MathBERTa) 0.1 5 0.249
Joint text + LaTeX (non-positional word2vec) 0.1 5 0.249
Joint text + LaTeX (positional word2vec) 0.1 5 0.248
Joint text (roberta-base) 0.1 5 0.188

Table 2
Results with hand-picked parameter values submitted to the ARQMath-3 lab for interpolated soft vector
space models on ARQMath-3 Task 1

Model 𝛼1 𝛾1 𝛼2 𝛾2 𝛽 NDCG’

Interpolated text + Tangent-L (positional word2vec) 0.1 5 0.1 5 0.5 0.257

3.1. Robustness to Parameter Variations

In tables 1–4, the differences between hand-picked and optimized parameter values for joint

models are within 0.002 NDCG’ except Joint text (roberta-base), which improves effective-

ness by 0.041 NDCG’ by placing more weight on the lexical similarity of tokens (𝛼: 0.1 → 0.6)

and by placing less weight on question titles (𝛾: 5 → 2). This shows that our joint vector space

models are relatively robust to parameter variations.

By contrast, optimizing parameter values for the Interpolated text + Tangent-L (positional
word2vec) model improves effectiveness by 0.098 NDCG’. Compared to the hand-picked

parameter values, the optimized parameter values place more weight on the lexical similarity

for text tokens (𝛼1: 0.1 → 0.7), use only semantic similarity for math tokens (𝛼2: 0.1 → 0.0),

place less weight on the text in question titles (𝛾1: 5 → 2), and place more weight on math over

text (𝛽: 0.5 → 0.7).

3.2. Effectiveness of Baselines and Their Extensions

Figure 2 shows that the Joint text (no token similarities) baseline receives NDCG’ of 0.235. Using

roberta-base as the source of semantic similarity between text tokens improves effectiveness

by 0.012 NDCG’, reaching NDCG’ of 0.247. By contrast, including also LaTeX math tokens

reduces effectiveness by 0.011 NDCG’, reaching NDCG’ of 0.224, which we attribute to the

difficulty to properly represent the different frequency distributions of text and math tokens in

a single joint model. However, when we also use either positional word2vec or MathBERTa

as the source of semantic similarity between text and math tokens, effectiveness improves by

0.025 NDCG’, reaching NDCG’ of 0.249. Removing the positional weighting from word2vec
further improves effectiveness by 0.002 NDCG’, reaching NDCG’ of 0.251, which is the best

result among our joint models.

Figure 2 also shows that the Interpolated text + LaTeX (no token similarities) baseline receives

NDCG’ of 0.257. Using non-positional word2vec as the source of similarity between text and



Table 3
Post-competition results with optimized parameter values for joint soft vector space models on ARQMath-
3 Task 1

Model 𝛼 𝛾 NDCG’

Joint text + LaTeX (non-positional word2vec) 0.6 5 0.251
Joint text + LaTeX (positional word2vec) 0.7 5 0.249
Joint text + LaTeX (MathBERTa) 0.6 4 0.249
Joint text (roberta-base) 0.6 2 0.247
Joint text (no token similarities) 2 0.235
Joint text + LaTeX (no token similarities) 3 0.224

Table 4
Post-competition results with optimized parameter values for interpolated soft vector space models on
ARQMath-3 Task 1

Model 𝛼1 𝛾1 𝛼2 𝛾2 𝛽 NDCG’

Interpolated text + Tangent-L (positional word2vec) 0.7 2 0.0 5 0.7 0.355
Interpolated text + Tangent-L (non-positional word2vec) 0.6 2 0.0 5 0.7 0.351
Interpolated text + Tangent-L (no token similarities) 2 4 0.6 0.349
Interpolated text + LaTeX (positional word2vec) 0.7 2 1.0 5 0.6 0.288
Interpolated text + LaTeX (non-positional word2vec) 0.6 2 1.0 5 0.6 0.288
Interpolated text + LaTeX (no token similarities) 2 5 0.6 0.257

math tokens improves effectiveness by 0.031 NDCG’, reaching NDCG’ of 0.288. Using positional

word2vec does not further improve effectiveness.

The Interpolated text + Tangent-L (no token similarities) baseline receives NDCG’ of 0.349.

Using non-positional word2vec as the source of similarity between text and math tokens

improves effectiveness by 0.002 NDCG’, reaching NDCG’ of 0.251. Enabling the positional

weighting of word2vec further improves effectiveness by 0.004 NDCG’, reaching NDCG’ of

0.355, the best result among all our models.

3.3. Optimized Parameter Values

Tables 3 and 4 show that all joint models and the interpolated models for text place more weight

on the lexical similarity of tokens (𝛼 and 𝛼1 of either 0.6 or 0.7). Furthermore, all joint and

interpolated models for text place equal weight on question titles (𝛾 and 𝛾1 of 2). By contrast, all

joint models for text and math and the interpolated models for math place comparatively higher

weight on the math in question titles (𝛾 and 𝛾2 between 3 and 5). This indicates that math in

question titles is more informative than text in question titles. Additionally, all interpolated

models for LaTeX math only used the lexical similarity of tokens (𝛼2: 1.0). By contract, all

interpolated models for Tangent-L math only used the semantic similarity of tokens (𝛼2: 0.0).

Lastly, all interpolated models place more weight on text over math (𝛽 of either 0.6 or 0.7).
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Figure 2: The extensions of the baseline soft vector space models and their impact on the effectiveness
with optimized parameter values

3.4. Comparison to Results from Other Teams

Our submission to the ARQMath-3 lab with hand-picked parameter values placed last in ef-

fectiveness among the teams that participated in Task 1. However Table 5 shows that our

Interpolated text + Tangent-L (positional word2vec) model with optimized parameter values

achieves better effectiveness than the best SVM-Rank system from the DPRL team [10] by 0.011

NDCG’.

4. Conclusion

In this paper, we aimed to answer the following research questions:

1. Does the soft vector space model outperform sparse information retrieval baselines on

the math information retrieval task?

2. Which math representation works best with the soft vector space model?

3. Which notion of similarity between key words and symbols works best?

4. Is it better to use a single soft vector space model to represent both text and math or to

use two separate models?

Using our experimental results, we can answer our research questions as follows:



Table 5
Comparison of our post-competition effectiveness results with the baselines and the best results from
other teams on ARQMath-3 Task 1

Model NDCG’

fusion_alpha05 from approach0 [29] 0.508
Ensemble_RRF from MSM [27] 0.504
MiniLM+RoBERTa from MIRMU [27] 0.498
L8_a018 from MathDowsers [7] 0.474
math_10 from TU_DBS [22] 0.436
Interpolated text + Tangent-L (positional word2vec) 0.355
Interpolated text + Tangent-L (non-positional word2vec) 0.351
Interpolated text + Tangent-L (no token similarities) 0.349
Interpolated text + LaTeX (positional word2vec) 0.288
Interpolated text + LaTeX (non-positional word2vec) 0.288
SVM-Rank from DPRL [10] 0.283
TF-IDF (Terrier) baseline [12] 0.272
Interpolated text + LaTeX (no token similarities) 0.257
Joint text + LaTeX (non-positional word2vec) 0.251
Joint text + LaTeX (positional word2vec) 0.249
Joint text + LaTeX (MathBERTa) 0.249
Joint text (roberta-base) 0.247
Joint text (no token similarities) 0.235
TF-IDF (PyTerrier) + TangentS baseline [12] 0.229
Joint Text + LaTeX (no token similarities) 0.224
TF-IDF (PyTerrier) baseline [12] 0.190
Tangent-S baseline [12] 0.159
Linked MSE Posts baseline [12] 0.106

1. Yes, using the soft vector space model to capture the semantic similarity between tokens

consistently improves effectiveness on ARQMath-3 Task 1, both for just text and for text

combined with different math representations.

2. Among LaTeX and Tangent-L, our soft vector space models using Tangent-L achieve the

highest effectiveness on ARQMath-3 Task 1.

3. Among lexical and semantic similarity, all joint models and the interpolated models

for text reach their highest effectiveness on ARQMath-3 Task 1 by combining both

lexical and semantic similarity, but place slightly more weight on lexical similarity. The

interpolated models for math gave mixed results: The model for Tangent-L reaches the

highest efficiency by using only semantic similarity, whereas the model for LaTeX reaches

the highest efficiency by using only lexical similarity.

Among sources of semantic similarity, joint models achieve comparable effectiveness

on ARQMath-3 Task 1 with non-positional word2vec, positional word2vec, and Math-

BERTa, and interpolated models achieved comparable effectiveness with non-positional

word2vec and positional word2vec. This may indicate that the soft vector space model



does not fully exploit the semantic information provided by the sources of semantic simi-

larity and therefore does not benefit from their improvements after a certain threshold.

4. All our interpolated models achieved higher effectiveness on ARQMath-3 Task 1 than

our joint models. This shows that it is generally better to use two separate models to

represent text and math even at the expense of losing the ability to model the similarity

between text and math tokens.

Our answers to research questions 2 and 3 also provide the following new questions:

2. Are there other math representations besides LaTeX and Tangent-L that may work better

with the soft vector space model?

3. How can the soft vector space model be parametrized or improved, so that it can benefit

from improved measures of similarity between tokens?

These questions should provide a fruitful venue for future work.
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