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Abstract
This work summarizes our submission to ARQMath-3. We pre-trained Transformer-Encoder-based

Language Models for the task of mathematical answer retrieval and employed a Transformer-Decoder

Model for the generation of answers given a question from a mathematical domain. In comparison to

our submission to ARQmath-2, we could improve the performance of our models regarding all three

metrics nDGC’, mAP’ and p’@10 by refined pre-training and enlarged fine-tuning data. In addition,

we improved our p’@10 results even further by additionally fine-tuning on annotated test data from

ARQMath-2. In summary, our findings confirm that Transformer-based models benefit from domain

adaptive pre-training in the mathematical domain.
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1. Introduction

With a rising number of scientific publications, retrieval of information from documents con-

taining mathematical notation has recently received more attention. The task of Mathematical

Information Retrieval (MIR) deals with finding relevant documents for a query, where both

document and query may include mathematical notation such as LATEX expressions beside

natural language. As for many text-based tasks, Transformer-based models have demonstrated

great potential for MIR. They could even be applied as a stand-alone model when adapted to the

domain, since models like BERT [1] or ALBERT [2] were originally pre-trained on documents

that did not contain mathematical notation. Recent research has therefore focused on adapting

these models to the domain of mathematics by additional pre-training on the Mathematics

StackExchange (MathSE).

However, several base models such as BERT and ALBERT were further pre-trained and evaluated

using different methods or data sets [3, 4, 5]. Hence, a fair comparison which base model is

best suited for MIR is not possible. In order to evaluate their impact under the same conditions,

we start our submission by pre-training and fine-tuning three Transformer-Encoder models,

namely ALBERT, BERT and RoBERTa, on MIR.
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In the core of this work, we refine our ALBERT-based approach from ARQMath-2. Here, the

model was pre-trained on MathSE serving as in-domain data and fine-tuned using a classifica-

tion task with the objective to predict whether a given post answers the question. The resulting

classification probability assigned by the model was used to rank the answers.

The success of models like BERT is attributed to pre-training on large diverse corpora. To

evaluate the influence of the corpus, we experiment with pre-training using the AMPS corpus

[6] which consists of 23GByte of question and answer pairs. Compared to 2021, we also enlarged

our fine-tuning corpus by 152%. Furthermore, we also rely on the annotated test data of last

year which we are leveraging for more informed training data for MIR. We will also study the

impact of this new training data on our models.

Finally, ARQMath-3 includes the new task of generating answers instead of retrieving them

from the corpus. Our team fine-tuned a GPT-2 model [7] on the AMPS as well as on the provided

MathSE corpora to generate solutions for the questions from the retrieval task.

In summary, our submission to the ARQMath Lab 2022 Task 1 Answer Retrieval and Task 3

Answer Generation focuses on three areas:

• A comparison of three pre-trained Transformer-Encoder models: BERT, ALBERT,

RoBERTa,

• The impact of pre-training and fine-tuning data on MIR,

• The application of Transformer-Decoder Models to Mathematical Answer Generation.

Our evaluation shows that all our submitted models could outperform the best models of

ARQMath-2. Our ALBERT model trained on three different versions of the MathSE data and

the enlarged fine-tuning data demonstrated the best performance. We could improve p’@10

even more by fine-tuning using annotated data from the run of 2021. Training models based on

RoBERTa also shows to result in a promising approach, even though longer computing time is

needed. All our models are made publicly available as part of the Huggingface Model Hub
1
.

The remainder of this submission document is structured as follows: Section 2 will review

related work in the field of MIR and related generation tasks. We will introduce the tasks of the

lab in Section 3 and the models in Section 4. Section 5 describes our model setup and the results

of Task 1, while Section 6 will summarize our efforts for Task 3. The final section concludes this

work.

2. Related Work

Deep learning models based on Encoders or Decoders of the Transformer architecture [8] have

been widely introduced in several Natural Language Processing and Information Retrieval Tasks

in recent years. Encoder-Models like BERT [1], ALBERT [2], and RoBERTa [9] have been applied

to various domains including scientific literature [10], medical documents [11, 12] or source

code [13, 14]. Decoder-Models are typically used to generate text, where the most prominent

examples being GPT-1, GPT-2, and GPT-3 [15, 7, 16].

Transformer-Encoder-based models for mathematical domains have also been studied with

one example being MathBERT [17]. Here, mathematical formulas in form of operator trees
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are used as an input for pre-training. During the ARQMath Lab in 2020 and 2021, five teams

submitted systems based on BERT, RoBERTa, and SentenceBERT [18, 19, 20, 21, 22, 23] where

the models were used without domain adaption for downstream tasks. Only [4] pre-trained their

submissions on mathematical documents. [3] fine-tuned a BERT model for notation prediction

tasks based on scientific documents by enlarging the vocabulary of BERT with additional LATEX

tokens. [5] followed a similar procedure for mathematical documents.

Generative Models have also found their way into the mathematical domain with GPT-𝑓 , a

Transformer-based proof-solver [24]. [6] introduced two new data sets, one for measuring the

performance of generative mathematical language models and one for pre-training. Along

with it, benchmarks based on GPT-2 and GPT-3 were published. All of these only used an

exercise-level data set and not a community-data set like the MathSE data in the task at hand.

3. ARQMath 2022 Lab

The overall goal of ARQMath Lab 2022 (ARQMath-3) [25] is to accelerate the research in

mathematical Information Retrieval. The lab consists of three tasks offering three different

scenarios. Task 1 of the lab involves mathematical answer retrieval for a question asked on

the Mathematics StackExchange
2
, which is a platform for users to post questions related to

mathematical topics to be answered by the community. The goal of this task is the retrieval of

an answer post from 2010 - 2018 to questions that were posted in 2019. The evaluation data of

ARQMath-1 contain 99, while ARQMath-2 and 3 provided 100 query topics each, which are

question posts including title, text and tags. In the 2020 test set, 77 queries were evaluated for

Task 1, while its evaluation in 2021 included 71 queries. ARQMath-3 evaluated 78 queries. The

optimal answers retrieved by the participants are expected to answer the complete question

on their own. The relevance of the question-answer pairs was assessed by reviewers during

the evaluation process. This relevance assessment was performed by pooling after the teams

submitted their results.

For each topic the participating teams submitted a ranked list of 1,000 documents retrieved

by their systems, which were scored by Normalized Discounted Cumulative Gain, but with

unjudged documents removed before assessment (nDCG’). The graded relevance scale used for

scoring ranged from 0 (not relevant) to 3 (highly relevant). Two additional measures, mAP’ and

p@10, were also reported using binarized relevance judgments (0 and 1: not relevant, 2 and 3:

relevant).

Task 2 of the ARQMath is built on top of the same data as Task 1, but with a different goal in

mind: Participants are expected to retrieve relevant formulas given a query formula in the

context of its post. This task is related to the formula browsing task of NTCIR-12 [26].

ARQMath-3’s new Task 3 presents an open-domain question/answering scenario instead of

finding the most relevant answers for a given question. For each of the 100 topics of Task 1

in the 2022 test set the participants are asked to extract or generate a single answer. These

answers contributed to the pool of answers which were judged for Task 1. Any knowledge

source - except for the MathSE data from 2019 to today - was allowed as training data. The

evaluation is carried out by evaluating the average relevance (AR) of the answers and the

2
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Precision at 1 (p@1) for each topic.

Apart from the task definitions and the evaluation data, ARQMath provides data from the

Mathematics StackExchange including question and answer posts from 2010 to 2018. In

total, the collection contains 1M questions and 1.4M answers. Furthermore, users may use

mathematical formulas to clarify their posts. These formulas written in LATEX notation were

extracted and parsed into Symbol Layout Trees and Operator Trees. Apart from this corpus of

posts and formulas that are available for training and evaluating models, the organizers of

ARQMath also released a test set of queries.

4. Transformer-based Models

The Transformer Architecture as introduced by [8] consists of Encoder and Decoder layers.

Encoder models in Natural Language Processing typically apply several of these encoder layers

on top of each other resulting in a model that reads a sequence of tokens and outputs con-

textualized embeddings for each token as well as for the entire input. These embeddings can

then be further processed for classification tasks among others. In contrast, decoder models

are designed to generate the next output token given a sequence of previous tokens (context

tokens). Training both types of models usually includes two phases: A pre-training phase and

a fine-tuning phase. While pre-training consists of training the model on relatively simple

self-supervised tasks on a large amount of data, fine-tuning does not necessarily need large

annotated data.

In the following sections we will describe the pre-training of both model types, differences in

the concrete model instances we applied and our fine-tuning for the respective task.

4.1. Encoder Models

Encoder models are trained to capture the meaning of natural language by self-supervised

pre-training tasks. The most important and widely applied task is the Masked Language

Model. The model is presented with the embeddings 𝐸𝑖 for each token 𝑖 from the input sentence:

𝐶𝑈1𝑈2 · · ·𝑈𝑁 = BERT(𝐸𝐶𝐿𝑆𝐸1𝐸2 · · ·𝐸𝑁 )

, where 𝐸𝐶𝐿𝑆 and 𝐶 are the input and output embeddings of the ⟨𝐶𝐿𝑆⟩ token. A classifier is

then applied to predict the original word given the input:

𝑃 (𝑤𝑗 |𝑆) = softmax(𝑈𝑖 ·𝑊𝑀𝐿𝑀 + 𝑏𝑀𝐿𝑀 )𝑗 ,

where 𝑤𝑗 is the 𝑗-th word from the vocabulary. This determines the probability that the 𝑖-th
input word was 𝑤𝑗 given the input sentence 𝑆. The weight matrix 𝑊𝑀𝐿𝑀 and its bias 𝑏𝑀𝐿𝑀

are only used for this pre-training task and are not reused afterwards.

RoBERTa uses only the MLM task, while BERT and ALBERT also employ a second pre-training

task on the same input data, which is a sequence classification task applied on top of the

contextualized embeddings of the ⟨𝐶𝐿𝑆⟩ token:



𝑃 (𝑙𝑎𝑏𝑒𝑙 = 𝑖|𝑆) = softmax(𝐶 ·𝑊𝑆𝑂𝑃 + 𝑏𝑆𝑂𝑃 )𝑖,

where the matrix 𝑊𝑆𝑂𝑃 and the bias 𝑏𝑆𝑂𝑃 are only used for pre-training and are not re-used

otherwise later. In practice, this task is used to learn coherence between two input sequences

given to the model. In this work, we pre-train using the Sentence Order Prediction (SOP),

where 𝑙𝑎𝑏𝑒𝑙 = 1 denotes that the two input sequences are in correct order, while 𝑙𝑎𝑏𝑒𝑙 = 0
denotes that they were swapped.

Fine-Tuning

In order to predict whether an answer 𝐴 = 𝐴1𝐴2 · · ·𝐴𝑀 is relevant to a question

𝑄 = 𝑄1𝑄2 · · ·𝑄𝑁 a classifier is trained on top of the pre-trained Transformer-Encoder

model. The input string ⟨𝐶𝐿𝑆⟩𝑄1𝑄2 · · ·𝑄𝑁 ⟨𝑆𝐸𝑃 ⟩𝐴1𝐴2 · · ·𝐴𝑀 , with ⟨𝐶𝐿𝑆⟩ being the

classification token and ⟨𝑆𝐸𝑃 ⟩ the separation token, is presented to the model:

𝐶𝑈1𝑈2 · · ·𝑈𝑁 = LM(𝐸𝐶𝐿𝑆𝐸1𝐸2 · · ·𝐸𝑁+𝑀 ),

where 𝐸𝑖 and 𝐸𝐶𝐿𝑆 are the input embeddings for each input token and the ⟨𝐶𝐿𝑆⟩ token,

respectively, calculated as explained in the previous section. After the forward pass through the

model, the output vector of the ⟨𝐶𝐿𝑆⟩ token 𝐶 is given into a classification layer:

𝑃 (𝑙𝑎𝑏𝑒𝑙 = 𝑖|𝑄,𝐴) = softmax(𝐶 ·𝑊𝑀𝐼𝑅 + 𝑏𝑀𝐼𝑅)𝑖,

where the label 1 stands for a matching or correct answer for the query and label 0 otherwise.

During evaluation, the resulting probability of the classification layer for label 1 is the assigned

a similarity score 𝑠 for the answer 𝐴 to a question 𝑄 and is then used to rank all answers in the

corpus: 𝑠(𝑄,𝐴) = 𝑝(𝑙𝑎𝑏𝑒𝑙 = 1|𝑄,𝐴).

4.2. Decoder Models

Decoder models are trained on the casual language modeling objective, i.e., given some input

tokens, generate the most probable next token. In other words, the objective is to maximize the

probability over the corpus consisting of a sequence of 𝑛 tokens 𝐶 = {𝑡0, 𝑡1, ..., 𝑡𝑛}:

𝑃 (𝐶) =
𝑛∏︁

𝑖=0

𝑃 (𝑡𝑖|𝑡𝑖−𝑘, ..., 𝑡𝑖−1),

where the conditional probability 𝑃 (𝑠𝑡|𝑡𝑖−𝑘, ..., 𝑡𝑖−1), ranging over a context window of size

𝑘, is estimated by the Decoder model. The input is embedded and given to the Transformer

Decoder layers resulting in the last layer’s output ℎ
last

, which is used to calculate the probability:

𝑃 (𝑢) = softmax(ℎ
last

·𝑊 𝑇
𝑒 ),

with 𝑊 𝑇
𝑒 being the embedding matrix.

Decoder Models such as GPT or GPT-2 are also fine-tuned in a supervised fashion to predict
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Figure 1: Overview of our approach for Task 1 - Mathematical Answer Retrieval including examples

for training and evaluation data.

labels from an annotated corpus. Since we only use GPT-2 to generate tokens and not to predict

labels, we will omit the details of this fine-tuning here.

Fine-Tuning

To generate answers given a question, we provide the model with the question tokens and

prompt it to complete the text by filling in the answer. During training, the model is prompted

using the following pattern:

PROBLEM: 𝑄1𝑄2 · · ·𝑄𝑁SOLUTION: ,

where 𝑄𝑖 are the question tokens. The model is then optimized to complete the prompt by

generating the answer tokens 𝐴𝑖:

PROBLEM: 𝑄1𝑄2 · · ·𝑄𝑁SOLUTION: 𝐴1𝐴2 · · ·𝐴𝑀 .

During evaluation, the model is presented with the same pattern to generate an answer.

5. Contribution to Task 1

Task 1 deals with retrieving the most relevant answers from the MathSE corpus given 100

questions that were not seen during training. For this task we pre-trained and fine-tuned several

models using the base models BERT, ALBERT, and RoBERTa, applying different corpora for

pre-training and fine-tuning on three different sets of question-answer pairs. An overview of

our approach for Task 1 is depicted in Figure 1. In the following, we will first describe the data

we used, then our experiments including hyper-parameter settings, and finally present our

results.

Pre-Training Data

Prior to pre-training, we applied the official tool provided by ARQMath to read the posts,

wrapped formulas in $ and removed other HTML markup, yielding a list of paragraphs for

each post. BERT and ALBERT models rely on data which is separated into sentences during

pre-processing for the SOP task. We combined three different strategies: (1) split the text



frac\\ {\\ exp ( x _ i ) exp ( x _ i ) }} {\\ s um _ j \\

\\frac { \\exp ( x _ i ) ( x _ i ) }} { \\sum _ j \\exp 

ALBERT-base Tokenizer

ALBERT-base Tokenizer with additional Math Tokens

Figure 2: An example of tokenizing the LATEX expression
exp(𝑥𝑖)∑︀
𝑗 exp(𝑥𝑗)

, important changes are highlighted.

into sentences, (2) split text into chunks of natural language and formulas and (3) split the

mathematical equations on relation symbols (e.g., =, ∈) into parts. The SOP task is designed to

work on sentences level granularity to facilitate the modeling of inter-sentence-coherency.

Hence, (1) is usually used in various NLP tasks. At the same time, our goal was to increase

the model’s understanding of formulas. Therefore, strategy (2) splits a paragraph first into

sentences. These sentences are then further split at a formula (with more than three LATEX

tokens to avoid splitting at e.g., definitions of symbols). In case the remaining text is too

short (less than ten characters), it is concatenated to the formula before, separated by a $ sign.

Strategy (3) only uses formula data without natural language. The three strategies will be

denoted by MathSE (1), MathSE (2), and MathSE (3), respectively.

Apart from the MathSE corpus provided by the ARQMath Lab, we also pre-processed the

Auxiliary Mathematics Problems and Solutions (AMPS) corpus containing questions and

answers relating to mathematical problem-solving [6]. Since the data was already split in

chunks, we used these data sets as the base for the sentence order task of ALBERT and BERT.

The data set contains two parts: the Khan data set consisting of 100,000 exercise questions

and answers from the Khan Academy and the Mathematica data set containing 5 M similar

questions that are generated using Mathematica Scripts. The questions from both data sets

range from topics like simple geometry to multivariate calculus. Both questions and answers

use LATEX to convey mathematical notation. We used this data only for pre-training, but not for

fine-tuning due to its structure.

Tokenizing, creating the pre-training data for each task, i.e., masking tokens and assembling

pairs of sentences, and further pre-processing was performed using Huggingface’s libraries

transformers and datasets [27, 28]. For our models, we used the released sentencepiece
vocabulary, but added 501 additional tokens

3
to the tokenizer to cover LATEX [29]. The list of

tokens was taken from the LATEX parser by Approach0
4
. An example of the impact of the new

tokenizer on the expression
exp(𝑥𝑖)∑︀
𝑗 exp(𝑥𝑗)

can be seen in Figure 2. After we added the LATEX tokens

to the vocabulary, typical tokens like \\sum or \\frac did not get torn apart into multiple tokens,

but remain together. Input sequences whose length after tokenization exceeded the maximum

number of input tokens were truncated to the maximum length of 512 tokens.

3

Our list of additional tokens can be found here: https://github.com/AnReu/ALBERT-for-Math-AR/blob/main/

untrained_models/latex_tokens.txt
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Fine-Tuning Data

In order to fine-tune our models, we paired each question with up to 𝑁 correct answers and

the same number of incorrect answers. Up to 𝑁 correct answers were randomly chosen from

the answers of the question. Each question in the corpus comes along with tags, i.e. categories

indicating the topic of a question such as sequences-and-series or limits. As an incorrect answer

for each question, we picked a random answer from one question sharing at least one tag with

the original question by chance. This way, we chose up to 𝑁 incorrect answers independently

from another.

This procedure yields 1.9M examples for 𝑁 = 1 and 2.8M examples for 𝑁 = 10, of which

90% were used as training data for the fine-tuning task. We presented to the model the entire

text of the questions and answers using the structure introduced in the previous section. In

addition, we pre-trained an ALBERT Model on MathSE (1) and fine-tuned it on 𝑁 = 1. We

then let this model predict 1,000 answers to the 2021 test set. We evaluated the answers against

the publicly available test set from last year and paired each correct answer with a randomly

selected incorrect answer from the model’s results. These question-answer pairs were used as

an additional fine-tuning set which we denote by Annotated.

Evaluation Data

To evaluate the trained models, we paired each question of the ARQMath-1 to 3 test sets with

each of the answer posts from 2010 to 2018. The question-answer pairs are pre-processed in the

same way as the fine-tuning data. Note, that we do not apply pre-filtering or a first-ranking

stage as it would be usually done for this kind of cross-encoder design. Instead, we are ranking

the entire set of answers. This is possible because we are using a GPU with a greater memory

size compared to our submission to ARQMath-2. For the longest queries, ranking the entire set

of answers takes around 3h.

5.1. Experimental Setup

In the previous sections, we have introduced several base models, pre-training, and fine-tuning

data sets which lead to many combinations for MIR. A summary of our devised models can

be found in Table 1. Our submission includes five models which were fine-tuned using the

𝑁 = 10 fine-tuning data set. For these models, we added their official identifiers to the table.

The other models are used as baselines and for comparison of our setup. The models Math_10

and Math_10_Add were first pre-trained on MathSE (1), then on MathSE (2), and finally, on

MathSE (3). We refer to this pre-training as mathematical pre-training. Six other models did

not incorporate these two additional data sets for pre-training but were only pre-trained using

the first strategy MathSE (1). One model was trained only on the Khan part of the AMPS data

set, while two models used a mix of samples from Khan and MathSE. Here, both corpora were

combined into a single data set and shuffled. We experimented with the same approach on the

entire AMPS corpus and MathSE. For fine-tuning, we denoted on which data set each model was

trained. Two models where trained first on the 𝑁 = 10 data. After this training was completed,

a second fine-tuning was conducted using Annotated.

All twelve models were trained using eight A100 GPUs with 40 GB GPU memory each. For



Official Identifier Base Model Pre-Training Data Fine-Tuning Data

BERT MathSE (1) 𝑁 = 1
RoBERTa MathSE (1) 𝑁 = 1

roberta_10 RoBERTa MathSE (1) 𝑁 = 10
ALBERT MathSE (1) 𝑁 = 1

base_10 ALBERT MathSE (1) 𝑁 = 10
ALBERT MathSE (1) 𝑁 = 10 + Annotated

math_10 ALBERT MathSE (1) - (3) 𝑁 = 10
math_10_add ALBERT MathSE (1) - (3) 𝑁 = 10 + Annotated

ALBERT Khan 𝑁 = 1
ALBERT Khan + MathSE mixed 𝑁 = 1

Khan_SE_10 ALBERT Khan + MathSE mixed 𝑁 = 10
ALBERT AMPS + MathSE mixed 𝑁 = 1

Table 1
Model Configurations for Task 1.

pre-training, a batch size of 16 samples per GPU was used. We pre-trained the models for 13

epochs using MathSE (1) and 9 epochs on MathSE (2). MathSE (3) added additional 20 epochs to

the model. Fine-tuning on 𝑁 = 1 and 𝑁 = 10 used a batch size of 32 examples per device, and

200 warm-up steps with a learning rate of 2𝑒−05
. Annotated used the same hyperparameters,

but a batch size of 32 in total. Pre-training and fine-tuning were performed using Huggingface’s

library transformers [27].

5.2. Evaluation

This section summarizes our results using the different setups. We start by presenting our

overall results of the models submitted to the lab and then discuss the details of choosing the

base model, the pre-training, and fine-tuning data.

5.2.1. Overall Results

The results of our runs submitted to Task 1 of the ARQMath Lab 2022 are presented in Tables 2

and 3. Regarding nDCG’ and mAP’, Math_10, our model using mathematical pre-training

performs the best in all three years. The model which was fine-tuned using Annotated received

the highest scores for p’@10, but its performance on the other two metrics degraded. Since

it was fine-tuned on the ARQMath 2021 test set, the scores on this set are naturally much

higher than the models which were not fine-tuned on this data. The other three models of our

submission are on par even though they were trained on different data and with a different

base architecture. Nevertheless, our models for the submission to ARQMath-3 outperform even

the best models from ARQMath-2 in all three metrics. In comparison to other participants of

ARQMath-3, our Math_10_Add received the highest p’@10 scores among all automatic runs.

In the following, we will analyze different aspects of improvements of our submission.



ARQMath 2020 ARQMath 2021

Official Identifier nDCG’ mAP’ p’@10 nDCG’ mAP’ p’@10

math_10_add 0.421 0.264 0.405 (0.566) (0.445) (0.589)

math_10 0.446 0.268 0.392 0.454 0.228 0.321
Submissions 2022 roberta_10 0.438 0.254 0.372 0.446 0.224 0.309

Khan_SE_10 0.437 0.254 0.357 0.437 0.214 0.309

base_10 0.438 0.252 0.369 0.434 0.209 0.299

ARQMath 2021 Participants

TU_DBS (2021) primary 0.380 0.198 0.316 0.377 0.158 0.227

Math Dowser (2021) primary 0.433 0.191 0.249 0.434 0.169 0.211

DPRL (2021) QASim 0.417 0.234 0.369 0.388 0.147 0.193

Table 2
Results of Task 1.

ARQMath 2022

Official Identifier nDCG’ mAP’ p’@10

math_10_add 0.379 0.149 0.278
math_10 0.436 0.158 0.263

Submissions 2022 roberta_10 0.413 0.150 0.226

Khan_SE_10 0.426 0.154 0.236

base_10 0.423 0.154 0.228

Table 3
Results of Task 1.

5.2.2. Base Model

We evaluated models trained on three base architectures: BERT, ALBERT, and RoBERTa. The

results can be found in Table 4. Even though ALBERT and RoBERTa are considered to be

advancements over BERT, their performance on our downstream task is not necessarily higher.

RoBERTa receives the highest scores for nDCG’ and p’@10, while BERT scores highest using the

metric mAP’. Overall, the improvements of the three architectures over each other are rather

minimal. However, the training time should also be considered:

Pre-training ALBERT on (1) MathSE took 24h, while BERT and RoBERTa needed on average

25% more time. To fine-tune each model, ALBERT was the fastest with 8h on the 𝑁 = 1 data

set. The fine-tuning of BERT and RoBERTa on the same data set took 11h. Evaluation takes the

same time on average for each of the three models because the data is processed by the same

number of layers since ALBERT’s layer sharing is only beneficial during training and BERT and

RoBERTa share the same underlying architecture.

5.2.3. Additional Pre-Training Data

Transformer-Encoder models are known to benefit from more pre-training data which is why

we evaluate the ALBERT model on four different data set configurations whose results are
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nDCG’ mAP’ p’@10

BERT 0.4068 0.2411 0.3560

ALBERT 0.4122 0.2335 0.3587

RoBERTa 0.4157 0.2328 0.3676

Table 4
Comparison of results of BERT, ALBERT and RoBERTa as base models.

presented in Table 5. Interestingly, the model trained on a mixed data set consisting of data from

the Khan Academy and the MathSE scores best, receiving slightly better scores on nDCG’ and

mAP’. For p’@10 the model trained only on MathSE outperforms the other models, indicating

that it is able to place relevant documents better within the top 10 documents, while the first

model ranked relevant documents better in the long run.

The model trained only on data from Khan Academy scored worst in this evaluation demon-

strating the shortcomings of out-of-domain data. A reason for this behavior could be that the

questions from Khan are designed to serve as exercises. Therefore, each sentence is relevant for

solving the question and does not contain any irrelevant information that could be included by

question authors on MathSE (e.g. "Dear community, I have a question . . . "). After training on

Khan data only, it could be harder for the model to deal with these irrelevant information in

questions.

ARQMath Lab 2020

Base Model Dataset nDCG’ mAP’ p’@10

ALBERT MathSE (1) 0.4122 0.2335 0.3587
ALBERT Khan 0.3716 0.1852 0.2947

ALBERT Khan+MathSE (1) 0.4164 0.2356 0.3373

ALBERT AMPS+MathSE (1) 0.4052 0.2256 0.3400

Table 5
Comparison of results for pre-training using different data sets.

5.2.4. Fine-Tuning Data

When comparing the amount of fine-tuning data needed for the answer retrieval task, we can

see in Table 6 that more data is clearly beneficial. In both cases, for ALBERT and RoBERTa,

we see an increase on all three metrics when fine-tuning on 𝑁 = 10 instead of 𝑁 = 1 is

applied. With an additional training on Annotated, only p’@10 is increased, while the other

two metrics deteriorate. This indicates that the model can differentiate better between relevant

and non-relevant answers in the top 10, but fails to place other relevant documents in good

positions afterwards.

We also report the scores on nDCG’ for the three categories ’Both’, ’Math’, and ’Text’ indicating

which of these parts are most crucial for answering the question. For example, a question based

in the category ’Text’ would require to understand the written text of the question over the
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Base Model Fine-Tuning Data nDCG’ mAP’ p’@10 Both Math Text

ALBERT 𝑁 = 1 0.4122 0.2335 0.3587 0.4202 0.4033 0.4140

ALBERT 𝑁 = 10 0.4377 0.2519 0.3693 0.4391 0.4437 0.4184
ALBERT 𝑁 = 10+Annotated 0.3988 0.2435 0.3853 0.3837 0.4220 0.3789

RoBERTa 𝑁 = 1 0.4157 0.2328 0.3676 0.4175 0.4200 0.3999

RoBERTa 𝑁 = 10 0.4376 0.2543 0.3720 0.4293 0.4511 0.4246

Table 6
Comparison of results for fine-tuning using different data sets.

mathematical formulas. Models which were trained using 𝑁 = 10 data showed improvements

in all three categories, but the ’Math’ category benefited the most. An explanation for this

observation could be that for 𝑁 = 1 the model saw fewer irrelevant examples that shared the

same notation (same mathematical symbols) as the question, but which were used in a different

and therefore irrelevant way for the question. In the 𝑁 = 10 data set, it was more probable

that an irrelevant question still used the same mathematical symbol. Therefore, using this data

set, the model needed to learn the semantics of the usage of the symbols, rather than their mere

appearance. However, a similar observation should be possible for fine-tuning on Annotated,

but by adding this fine-tuning, the model’s performance on all three categories degrades.

6. Contribution to Task 3

Task 3 was first introduced to the ARQMath Lab in 2022 and has the goal of generating answers

given a question instead of retrieving them from a corpus. The questions are identical to the

ones for Task 1. All include at least one formula.

In the following, we will introduce our approach of generating answers using GPT-2 by fine-

tuning it on two corpora. An overview of the approach is illustrated in Figure 3. We start by

describing the data which we used, then our experimental setup and finally, present our results.

6.1. Data

For fine-tuning GPT-2, we use the same two data sets as for Task 1: the MathSE data set as

provided by the ARQMath Lab and the AMPS data set consisting of questions-answer pairs

How are you? He replied that …   

Problem: Find $x$ such Solution: …

Problem: Greatest lower Solution: …

Base Model

Fine-Tuning

Evaluation

Figure 3: Overview of our approach for Task 3 - Mathematical Answer Generation including examples

for fine-tuning and evaluation data.



Official Identifier Training Setup Beam Size Hints

Length

Penalty
Sampling

amps3_se1_hints

3 ep. AMPS

+ 1 ep. MathSE
5 True 1 False

se3_len_pen_10 3 ep. MathSE 10 False 2 False

amps3_se1_len_pen_20_sample_hint

3 ep. AMPS

+ 1 ep. MathSE
20 True 2 True

shortest * * * * *

Table 7
Model Configurations for Task 3, ep. denotes the number of epochs.

from the Khan Academy and generated questions with step-by-step answers using Mathematica.

In total, we fine-tuned our models on 1,445,487 question-answer pairs from MathSE, where for

each question a single answer was chosen by chance. In addition, the AMPS data set consists

of 627,795 question-answer pairs. For pre-processing, we used the tokenizer provided by the

authors of AMPS, which is based on the original GPT-2 tokenizer, but separated compounds of

digits into single digits. We also experimented with the original GPT-2 tokenizer, but found the

adapted one to perform better.

6.2. Experimental Setup

A summary of our experiments can be found in Table 7. We experimented with fine-tuning

the models on two data sets for a different number of epochs. We tested to train only on the

MathSE data for three epochs, while another model was first fine-tuned on the AMPS data set

for three epochs and afterwards for one epoch on MathSE. In addition, also smaller numbers

of epochs were tested but did not yield better results. For training on AMPS, we sub-sampled

the amount of training data for the Mathematica part to 0.5 and for Khan to 5 following the

procedure of [6].

For decoding, we varied the length penalty between 1 and 2 and applied beam search with

a beam size of 5, 10, and 20. We also experimented with top-k sampling. Apart from these

modifications, we followed the training and evaluation recommendations reported by [6].

Because the length of the generated answers exceeded the allowed maximum length for the

submission to the ARQMath Lab 2022 in several cases, we tried to force the model to generate

shorter, but still relevant answers by adding the word ’HINT’ to the beginning of the solution

during decoding. The data set for the training was not altered. These combinations in total led

to three experiments. The fourth one is a combined run which includes the shortest generated

answer of each of the three runs. This run is denoted by ’shortest’.

For all experiments for Task 3, we adapted the code by [6] for our data set which is based on

Huggingface Transformers [27].



Official Identifier AR p@1

amps3_se1_hints 0.325 0.078

se3_len_pen_10 0.244 0.064

amps3_se1_len_pen_20_sample_hint 0.231 0.051

shortest 0.205 0.026

Table 8
Results of Task 3.

6.3. Results

Table 8 displays our efforts for Task 3 of ARQMath-3. Out best model was trained on the AMPS

data and afterward on MathSE. During decoding, we use the word ’HINT’ to force the model to

generate shorter answers. Surprisingly, this run scored better in both metrics than the one that

was trained in the same way but used a higher length penalty, sampling, and a beam size of 20.

The model which was trained on MathSE only ranks in second place for both metrics. The

lowest scores received the run that consists of the shortest answers of our models for each topic.

This indicates that shorter answers may be insufficient to convey enough relevant information

in the post. Since an automatic evaluation of answer generation is challenging, we will not

analyze the impact of different aspects of our submission but instead report in the following

some results in the context of a qualitative evaluation.

Below, we present two examples of questions from the test set with their generated answers by

our primary submission. In general, the model is able to pick up the topic from the questions

and generate meaningful, syntactically correct answers in most cases. However, whether

the answers are relevant for solving the questions needs further evaluation. For example,

the generated answer for Question 322 is simply a copy of a part of the question which does

not seem to provide any additional information. This behavior of copied information can

also be seen in other answers. Especially, when there was an edit of the author where they

already provided a correct answer, the generated answer would only copy this solution without

commenting. A similar issue can be seen in the generated solution for Question 340. The model

only arranges the question differently in several steps but does not comment on the process.

Whether and why this equation holds, can not directly be inferred from the model’s answer.

More examples of model outputs can be seen in the Appendix.

Post ID 322:
Title: How do I calculate the sum of sum of triangular numbers?

Question: As we know, triangular numbers are a sequence defined by
𝑛(𝑛+1)

2 . And

it’s first few terms are 1, 3, 6, 10, 15.... Now I want to calculate the sum of the sum of

triangular numbers. Let’s define

𝑎𝑛 =
𝑛(𝑛+ 1)

2



𝑏𝑛 =
𝑛∑︁

𝑥=1

𝑎𝑥

𝑐𝑛 =

𝑛∑︁
𝑥=1

𝑏𝑥

And I want an explicit formula for 𝑐𝑛. After some research, I found the explicit formula

for 𝑏𝑛 = 𝑛(𝑛+1)(𝑛+2)
6 . Seeing the patterns from 𝑎𝑛 and 𝑏𝑛, I figured the explicit formula

for 𝑐𝑛 would be
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

24 or
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

12 .

Then I tried to plug in those two potential equations,

If 𝑛 = 1, 𝑐𝑛 = 1,
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

24 = 1,
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

12 = 2. Thus we can know for

sure that the second equation is wrong.

If 𝑛 = 2, 𝑐𝑛 = 1 + 4 = 5,
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

24 = 5 . Seems correct so far.

If 𝑛 = 3, 𝑐𝑛 = 1 + 4 + 10 = 15,
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

24 = 360
24 = 15

Overall, from the terms that I tried, the formula above seems to have worked. However, I

cannot prove, or explain, why that is. Can someone prove (or disprove) my result above?

Generated Solution: HINT:
𝑛(𝑛+1)(𝑛+2)(𝑛+3)

24 = 360
24 = 15

Post ID 340:
Title: I have the following problem: Let |𝑥𝑛+1 − 𝑥𝑛| < 1/3𝑛 . Show that (𝑥𝑛) is a

Cauchy sequence.

Question: We have that (𝑥𝑛) is a sequence of real numbers. And the relation on the

title:

|𝑥𝑛+1 − 𝑥𝑛| <
1

3𝑛
.

We must prove that this is a Cauchy sequence.

I know that an Cauchy sequence follows the definition:

given 𝜖 > 0, exists 𝑛0 > 0 , such that 𝑚,𝑛 > 𝑛𝑜 ⇒ |𝑥𝑚 − 𝑥𝑛| < 𝜖
But I don’t know how to use both informations to prove the exercise.

If someone please may help me, I’d be very thankful.

Generated Solution: |𝑥𝑛+1 − 𝑥𝑛| =
⃒⃒⃒
𝑥𝑛+1−𝑥𝑛

3𝑛+1

⃒⃒⃒
= |𝑥𝑛+1−𝑥𝑛|

3𝑛+1 < 1
3𝑛+1 .

7. Conclusion

In our contribution to this lab, we demonstrated the use of Transformer-Encoders and

Transformer-Decoders for two mathematical question-answering tasks. We pre-trained and

fine-tuned twelve models based on BERT, RoBERTa, and ALBERT for the retrieval of answers

given a mathematical question for the ARQMath Lab 2022. Our results show significant improve-

ments compared to the 2021 edition of this lab, which can be attributed to better pre-training



and the enlarged fine-tuning data. In addition, we analyzed several pre-training data sets and

found that the Khan data set showed slight improvements in two out of three metrics. Finally,

we improved our p’@10 results even further by additionally fine-tuning on annotated test data

from ARQMath-2. For Task 3, a GPT-2 model was fine-tuned on two data sets. The results for

this task are not yet published, but first analyses showed that the model is able to capture the

topic of the question and can generate syntactically correct answers. The limited length of the

generated answers is still an issue, which should be addressed in future research.
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A. Sample Results - Task 3

Generated Solution: HINT: If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1. If

𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then

gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3)
and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1.

If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then

gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3)
and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1.

If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝 − 1) = 1. If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then

gcd(3, 𝑝− 1) = 1. If 𝑝 ≡ 2(mod 3) and 𝑎 ∈ F𝑝, then gcd(3, 𝑝− 1) = 1. If 𝑝 ≡ 2(mod 3) and
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