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Abstract

We present the methods AUEB’s NLP Group used to participate in the annual ImageCLEFmedical

Caption Task. The task comprises of the Concept Detection and the Caption Prediction sub-tasks.

Concept Detection aims to automatically tag medical images with relevant medical concepts, while

Caption Prediction generates draft diagnostic captions of medical images to help medical experts prepare

diagnostic reports. For Concept Detection, we employ CNN image encoders, combined with a feed-

forward neural network classifier or a retrieval module, extending our previous work. For Caption

Prediction, we also extend the retrieval approach of our previous work with a caption selection method;

we also experiment with a state-of-the-art memory-enhanced caption generation method, a simpler

CNN-RNN caption generation model, and a captions ensemble method, which combines predictions

from our different models. We ranked 1st in Concept Detection and 2nd in Caption Prediction.
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1. Introduction

ImageCLEF [1] is an evaluation campaign held annually since 2003 as part of CLEF, revolving

around image analysis and retrieval tasks.
1

ImageCLEFmedical, which was one of the four

main ImageCLEF 2022 tasks, consists of a series of challenges associated with the study and

processing of medical images. The ImageCLEFmedical Caption Task [2] ran for the 6th year in

2022. As in the previous year, it included a Concept Detection sub-task, where the goal was to

perform multi-label classification of medical images by automatically assigning medical terms

(called concepts) to each image. The concepts stem from the Unified Medical Language System

(UMLS) [3].
2

Selecting the appropriate medical terms can be a first step towards automatically

generating image captions and/or assisting medical experts by reducing the time needed for a

diagnosis [4]. Following the previous edition of the task, ImageCLEFmedical also included a

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy
$ phoebuschar@gmail.com (F. Charalampakos); geor.zachariadis@gmail.com (G. Zachariadis); annis@aueb.gr

(J. Pavlopoulos); basil.karatzas@outlook.com (V. Karatzas); christrakas7@gmail.com (C. Trakas); ion@aueb.gr

(I. Androutsopoulos)

� http://www.aueb.gr/users/ion/ (I. Androutsopoulos)

� 0000-0001-9188-7425 (J. Pavlopoulos)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

http://www.clef-initiative.eu/

2

https://www.nlm.nih.gov/research/umls/

mailto:phoebuschar@gmail.com
mailto:geor.zachariadis@gmail.com
mailto:annis@aueb.gr
mailto:basil.karatzas@outlook.com
mailto:christrakas7@gmail.com
mailto:ion@aueb.gr
http://www.aueb.gr/users/ion/
https://orcid.org/0000-0001-9188-7425
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://www.clef-initiative.eu/
https://www.nlm.nih.gov/research/umls/


Caption Prediction sub-task [2]. This sub-task aims to automatically generate draft diagnostic

captions given medical images, which could potentially help medical experts prepare diagnostic

reports and, more generally, help them analyze more efficiently large volumes of medical images

(e.g., X-rays, MRI scans) they confront in their daily workflow [4].

In this paper, we describe the systems that were submitted to the ImageCLEFmedical Caption

2022 sub-tasks by AUEB’s NLP Group, which extend prior work on medical image understanding

[5, 6, 7, 8, 4]. For the Concept Detection sub-task, our submissions were based on two methods.

The first method extends our classification system [5, 6, 7, 8], which uses a Convolutional Neural

Network (CNN) image encoder [9] and a feed-forward neural network (FFNN) classifier on

top. The second method was based on neural retrieval approaches of our previous work, again

employing a CNN image encoder and a weighting scheme suitable for multi-label classification.

For the Caption Prediction sub-task, our submissions were based on four methods. The first

method was based on the neural retrieval approaches of our previous work, as in the Concept

Detection sub-task, with a new mechanism [10] that uses the retrieved captions. The second

method was based on a state-of-the-art caption generation model [11], which employs a novel

memory-driven Transformer that remembers previously generated captions. The third method

was based on the well-known Show and Tell model [12], which adopts a simple CNN-RNN

architecture. The fourth and last method is an ensemble of our previous approaches, which

selects its caption from the ones produced by the other three methods.

Following our previous successful entries in the competition [5, 6, 7, 8], our best performing

systems were ranked 1st among 11 participating teams in Concept Detection, and 2nd among

the 10 participating teams in Caption Prediction, yet also 1st when ranked with the secondary

evaluation metric. The remainder of this article first describes the dataset and our methods

for the two subtasks, followed by our submissions and an experimental analysis. The article

concludes with our findings and suggested future directions.

2. Data

The ImageCLEFmedical Caption 2022 dataset is a subset of the Radiology Objects in Context

(ROCO) [13] dataset, which contains medical images extracted from open access biomedical

journal articles of PubMed Central.
3

The organisers state that this year’s ImageCLEFmedical

Caption dataset is an extended version of the dataset used in ImageCLEFmedical Caption 2020.

There are images of several different modalities in the dataset (e.g., X-rays, CT-Scans), but no

information was provided regarding the modality of each image. The same set of images is used

for both Concept Detection and Caption Prediction.

2.1. Concept Detection

All the images in the dataset are accompanied by relevant UMLS [3] medical concepts and,

more specifically, by their unique UMLS identifiers (CUIs), which are the ground truth for the

Concept Detection sub-task. These ground truth concepts, which are essentially medical terms,

were obtained from the respective image captions using multiple concept extraction methods,
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Figure 1: Three images of the dataset [14, 15, 16](1st row) with their corresponding ground truth tags

(2nd row) and captions (3rd row).

and were then manually curated. An image can be associated with multiple CUIs (see Fig. 1).

Table 1 shows the 5 most frequent ground truth concepts of the whole dataset (official training

& official validation splits), the corresponding UMLS terms, and how many training images

they are assigned to. As in previous years, the dataset is highly imbalanced. For example, the

concept x-ray computed tomography occurs 28,885 times in the whole dataset (Table 1), while

1,149 other concepts appear only three times each (see the right long tail in Fig. 2). Furthermore,

there is a large number of unique concepts (number of available classes), which increased from

1,585 last year [5] to 8,374 this year. The average number of concepts assigned to each image is

4.74, while the minimum number is 1. There are 4,316 images with only one assigned concept,

and only one image with 50 concepts (the maximum number of assigned concepts).

An official training set of 83,275 images and an official validation set of 7,645 images were

provided by the organisers. The official test set comprised 7,601 images and its gold truth

concepts were hidden. For our experiments, we merged the provided (official) training and

validation sets, and used 15% of the merged data as our validation set, and another 20% of the

merged data as our development set; the former was used for hyper-parameter tuning, whereas

the latter was used to evaluate the performance of our models. The remaining 65% served as

our training set.



Figure 2: Number of images (vertical axis) tagged with each concept in the training data. To save space,

the horizontal axis shows the index of each concept (class index), instead of its CUI.

Table 1
The 5 most frequent concepts (CUIs and corresponding UMLS terms) in the official dataset of Image-

CLEFmedical Caption 2022 and how many images they are assigned to.

CUI UMLS term Images
C0040405 X-Ray Computed Tomography 28,885

C1306645 Plain x-ray 26,412

C0024485 Magnetic Resonance Imaging 15,693

C0041618 Ultrasonography 12,236

C0817096 Chest 8,030

2.2. Caption Prediction

The same images that were used for the Concept Detection sub-task (Sec. 2.2, Fig. 1) were

also used for the Caption Prediction sub-task, but now each of these was also accompanied

by a gold caption (the most frequent captions in the dataset are shown in Table 2). This year,

approximately 97% (88,342 out of total 90,920) of the provided captions were unique (associated

with only one image), whereas in last year’s dataset only 65% of the captions were unique.

This fact makes retrieval-based approaches less suitable for caption prediction this year. The

maximum number of words (tokens) in a single caption was 391 (found in 1 image) and the

average number of words per caption was 19.14. The histogram of the caption lengths (Fig. 3)

indicates that the vast majority of captions are shorter than 50 words.

As in previous years, BLEU [17] was the main evaluation measure of the Caption Prediction

sub-task. This year, ROUGE-1 [18] was also employed as a secondary measure. The organisers

announced that the following pre-processing steps would be followed before computing the

evaluation scores:



Table 2
Most common captions in the dataset.

Caption Occurrences
case a electrocardiogram with inferolateral early repolarization pattern with jpoint

elevation and qrs slur after hypothermia treatment red arrow
261

case telemetry tracing ventricular fibrillation precede by a ventricular extrasystole 179

case a a electrocardiogram with an aggressive inferiorlateral er pattern during

hypothermia treatment red arrow b the electrocardiogram be completely normalise

after adminbetration of beoproterenol infusion

115

the degenerative nuclear atypic area ancient modification he 61

chest xray 48

Figure 3: Histogram of the length in tokens of all the official gold captions.

• Captions are converted to lower-case.

• All punctuation is removed and captions are tokenised using a particular tokeniser.
4

• Stopwords are removed using NLTK’s ‘english’ stop-word list.

• Spacy’s lemmatiser is applied.
5

We decided not to follow these pre-processing steps during the training of our models, to avoid

discarding or distorting any potentially important words in the gold and generated captions,

and to try to produce captions close to those medical experts generate.

Similarly to the Concept Detection sub-task (Sec. 2.2), we merged the official training and

validation sets, creating our own data splits. Specifically, we used 6,000 instances for validation

and development, 3,000 for each, and the remaining 84,920 instances were used for training.

Again, we used our validation set to tune the hyper-parameters of our models, and the develop-

4

https://www.nltk.org/_modules/nltk/tokenize/punkt.html#PunktLanguageVars.word_tokenize.

5

https://spacy.io/api/lemmatizer.

https://www.nltk.org/_modules/nltk/tokenize/punkt.html#PunktLanguageVars.word_tokenize
https://spacy.io/api/lemmatizer


Table 3
Most common words found in the captions of the (whole) provided dataset, with and without stopwords.

There are 19,217 words (w/ stopwords) with only 1 occurrence.

Most common words
Word the of show and a in with be arrow right

Occurrences 129,758 84,428 41,364 40,003 35,811 34,437 32,688 24,649 24,555 20,340

Most common words (excluding stop-words)
Word show arrow right ct image left scan tomography chest mass

Occurrences 41,364 24,555 20,340 16,495 14,703 12,752 11,655 10,628 10,052 9,192

ment set for evaluation. In the training set, we applied a maximum threshold to remove the

instances with captions longer than 80 words. This led to the removal of 517 training instances.

3. Methods

In this section, we describe the systems that were used in our submissions to the Concept

Detection and Caption Prediction sub-tasks.

3.1. Concept Detection

We describe two Concept Detection systems, 2xCNN+FFNN, which follows the work of our

past submissions [5, 6, 8] for the same task, and a retrieval-based system, dubbed CNN+wKNN.

3.1.1. Concept Detection System 1: 2xCNN+FFNN

This system is an ensemble of two members that share the same architecture: an image en-

coder (e.g., a CNN), followed by a single dense layer with sigmoid activations (for multi-label

classification).

In 2020, our best performing submission was an ensemble consisting of two instances of a

CNN+FFNN classifier that employed a DenseNet-121 [19] image encoder, pre-trained on Ima-

geNet [20]. We fine-tuned five instances on the task’s data and kept the two that performed best

on validation data. The two instances were combined by using the union and the intersection

of their predicted concepts. The ensemble that used the intersection was ranked 1st. In

2021, we employed ResNet-50 [21] pre-trained on ImageNet [20] as the image encoder, and

we integrated an extra pre-training step using supervised contrastive learning [22]. Then, we

again fine-tuned and combined two instances using the union and the intersection of the

predicted concepts of each instance. We had submitted the union combination as it performed

better on our own test split. This system was ranked 8th in 2021, as it was outperformed by our

retrieval-based winning systems.

This year’s submissions employed an EfficientNetV2-B0 CNN [9], as the image encoder,

pre-trained on ImageNet [20]. We extracted image embeddings (feature vectors) using the last

convolutional layer of the backbone of the image encoder, followed by Generalized-Mean (GeM)



global pooling [23]. Given an input image, the output of the last convolutional layer is a 3D

tensor 𝑋 of 𝑊 ×𝐻 ×𝐾 dimensions, where 𝐾 is the number of feature maps (channels) in the

layer. Let 𝑋𝑘 be the 𝑘-th feature map of dimensions 𝑊 ×𝐻 with 𝑘 ∈ {1, 2, . . . ,𝐾}. The GeM

layer takes 𝑋 as an input and returns a vector 𝑣 as output:

𝑣 = [𝑣1 . . . 𝑣𝑘 . . . 𝑣𝐾 ]𝑇 , 𝑣𝑘 =

⎛⎝ 1

|𝑋𝑘|
∑︁
𝑥∈𝑋𝑘

𝑥𝑝

⎞⎠ 1
𝑝

(1)

where 𝑥 is the value of the corresponding pixel of the 𝑘-th feature map 𝑋𝑘. 𝑣 is the produced

image embedding. The pooling parameter 𝑝 can be trained along with the network or be

manually set. The image embeddings were then passed through a dense layer with |𝐶| outputs

and sigmoid activations, where 𝐶 is the set of all possible concepts, to produce a probability per

label. The models were trained by minimizing the binary cross entropy loss of all concepts. We

used Adam [24] as our optimizer and decreased the learning rate by a factor of 10 when the

loss showed no improvement. We also used early stopping on the validation set, with patience

of 3 epochs. For each instance of the system, a classification threshold for all the concepts

was tuned by optimizing the F1 score on our validation data. Any concepts for which the

respective model outputs exceeded that threshold, were assigned to the corresponding image

during inference. We trained two instances of the same system by fine-tuning on the task’s

data and kept checkpoints from the two best (on validation data) epochs. Finally, in order to

form the ensemble, we combined the two instances using the union and the intersection of

their predicted concept sets. We call these models 2xCNN+FFNN@U and 2xCNN+FFNN@I,

respectively.

3.1.2. Concept Detection System 2: CNN+wKNN

Following our previous work [5, 6, 8, 7], this system employs a neural retrieval approach.

Intuitively, given a test image, the goal of the system is to retrieve similar images from the

training set and select concepts from the retrieved neighbors. We used the image encoder of our

fine-tuned CNN+FFNN system (see Sec. 3.1.1). We discarded the last dense layer of the classifier

and used the last GeM pooling layer to extract embeddings (feature vectors) for all the training

images. Given a test image, we used the same encoder to obtain its embedding (Fig. 4) and

retrieved the (embeddings of the) 𝑘 training images with the highest cosine similarity with the

(embedding of the) test image. We tuned the value of 𝑘 in the range from 5 to 100 with a step of

5 using our validation set, which led to 𝑘 = 10. The voting scheme that we used was introduced

in [25] and can be described as follows. Given a test image (query) 𝑥, for each concept 𝑐𝑖 ∈ 𝐶 ,

we calculate the weighted sum of 𝑘 scores, from each of the 𝑘 neighbors of 𝑥:

𝑓𝑖(𝑥) =

∑︀𝑘
𝑗=1𝑤𝑗 · 𝑦𝑖(𝑁𝑘(𝑥, 𝑗))∑︀𝑘

𝑗=1𝑤𝑗

(2)

where 𝑦𝑖(𝑁𝑘(𝑥, 𝑗)) denotes the presence of the 𝑖-th concept in the multi-hot vector of the 𝑗-th

nearest neighbor of 𝑥, and 𝑤𝑗 is the weight assigned to the 𝑗-th nearest neighbor. The weights

vector <𝑤1, . . . , 𝑤𝑘> can be learned or can be set manually with monotonically decreasing



weights, e.g., the top-ranked neighbor can be given weight 𝑘 and the lowest-ranked neighbor

weight 1. We used the latter simple linear assignment method in our experiments. We assigned

concept 𝑐𝑖 to test image 𝑥 by the rule:

ℎ𝑖(𝑥) =

{︃
1, 𝑓𝑖(𝑥) ≥ 0.5

0, 𝑓𝑖(𝑥) < 0.5
(3)

yielding the predicted label set 𝐻(𝑥) = {𝑐𝑖|ℎ𝑖(𝑥) = 1} = {𝑐𝑖|𝑓𝑖(𝑥) ≥ 0.5}. We call this system

CNN+wKNN.

Figure 4: Illustration of how the retrieval-based CNN+wKNN Concept Detection system (Sec. 3.1.2)

works at inference time. The training image embeddings are computed offline.

3.2. Caption Prediction

In this subsection, we describe four Caption Prediction systems, Retrieval-based Approach,

which follows the work of our past submissions [5, 6, 8], R2Gen & Image Clustering, which

employs a memory-driven Transformer, CNN-RNN, an Encoder-Decoder model based on the

Show&Tell model [26] and a Captions Ensemble system, which utilize the generated captions

of the aforementioned systems.

3.2.1. Caption Prediction System 1: Retrieval-based Approach

Since our previous work had led to top performance with retrieval-based methods in Caption

Prediction [5, 6, 8], we again explored retrieval-based methods, which are based on KNN. We

used an image encoder, pre-trained on ImageNet [20], to obtain the embedding of each training

image. The embedding was extracted from the last average pooling layer of the network. We

experimented with several encoders. Specifically we experimented with DenseNet-121 [19],

DenseNet-201 [19], EfficientNetB0 [27], ResNet50V2 [28], InceptionResNetV2 [29] and CotNet50

[30]. During inference, given a test image, we generate its embedding using the same encoder,

and we retrieve the 𝑘 most similar training images, based on the cosine similarity of their

embeddings with the test image embedding. Following the Consensus Caption (CC) method



of [10], we then retrieve the captions of the 𝑘 most similar training images, creating the set 𝑆.

Among the captions in 𝑆, we select the caption 𝑐* with the highest textual similarity with the

other captions in 𝑆:

𝑐* = argmax
𝑐∈𝑆

∑︁
𝑐′∈𝑆

cos(𝑐, 𝑐′) (4)

where cos denotes the cosine similarity, calculated using the TF-IDF representations of the

captions (the coefficients TF and DF were computed using only the retrieved captions). In effect,

we select the caption closest to the centroid of the 𝑘 retrieved captions as the prediction for the

test image. An illustration of this approach can been seen in Fig. 5.

Figure 5: Illustration of how the retrieval-based Caption Prediction method (Sec. 3.2.1) works at

inference time. The training image embeddings are again computed offline.

3.2.2. Caption Prediction System 2: R2Gen & Image Clustering

This system is based on a memory-driven Transformer and on image clustering. The former,

R2Gen [11], is a captioning system that has been reported to achieve competitive performance

on several medical captioning datasets. Originally, it employed a ResNet-101 [21], to extract

image (patch) embeddings. However, we substituted it with a DenseNet-121 [19], pre-trained on

ImageNet [20], which showed better performance in preliminary experiments. The representa-

tions resulted per image are then passed to a Transformer encoder-decoder [31], whose decoder

is enhanced with a relational memory and a (memory-driven conditional) layer normalization.

As an extra step before training we clustered the embeddings of all the images, as these were

generated by our DenseNet-121. We used 𝑘-Means,
6

with 𝑘 = 8, defined by varying 𝑘 from 5

to 9 and evaluating each clustering with Silhouette [32]. For each cluster, we used the training

images to fit a separate R2Gen instance (Fig. 6). Provided a test image, we retrieve the R2Gen

instance trained on the cluster the test image belongs to, and we use it to generate a caption.

We experimented both, with and without image clustering.

6
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Figure 6: Illustration of the R2Gen Caption Prediction method with image clustering added, at inference

time (Sec. 3.2.2).

3.2.3. Caption Prediction System 3: CNN-RNN

This system is based on the Show&Tell model [12], which consists of a CNN-RNN encoder-

decoder. For the CNN encoder, we experimented with DenseNet-121, DenseNet-201, Efficient-

NetB0, ResNet50V2, InceptionResNetV2, and CotNet50. The RNN decoder is fed with the

encoded image representation, and generates a caption word by word. In specific, the encoded

image representation is concatenated with the hidden states of an encoding GRU [33], which

operates on the unfinished generated caption. The result is fed onto a decoding GRU, whose

last hidden state is followed by a FFNN, in order to yield a probability distribution over the

vocabulary and decide the next word to output.

We pre-processed each training caption by adding a start and end token, at the beginning

and end of the text, respectively. Then we created a vocabulary, keeping only the words that

appeared 3 or more times in the training captions. The out-of-vocabulary words (OOV) were

replaced by an <UNK> token. The maximum length was set to 40 tokens, based on preliminary

experiments.

Table 4
Example of a text sequence input before and after the preprocessing used in the Caption Prediction

System 3: CNN-RNN (see Sec. 3.2.3).

Before digital subtraction angiography of the left pedal vessel

After startsequence digital subtraction angiography of the left <UNK> vessel endsequence

We experimented with both greedy decoding (selecting the vocabulary word with the highest

predicted probability at each decoding step) and beam search decoding (searching for the most

probable sequence of output words, as in machine translation) with different beam sizes (1, 2, 3,

5, 7). In addition, we implemented three different ensembles consisted of Show & Tell models

with different encoders (the same we used in Sec. 3.2.3), which all used greedy decoding.

For the first ensemble, dubbed Maximum Probability (MP), at each decoding step we select

the single word with the highest probability from the 𝑘 probability distributions produced by

the 𝑘 ensemble members. For the second ensemble, Maximum Voting Probability (MVP) [34],

at each decoding step we keep the most probable word from the probability distribution of each



ensemble member as the word selected by that ensemble member, and we output the word

that was selected by most ensemble members. For the third ensemble, Average Probability (AP)

[34], at each decoding step, each word is assigned the average of the probabilities assigned

to that word by the ensemble members. We then output the word with the highest average

probability. An extension of this approach could use weighted probability averaging, with

weights reflecting how well each ensemble member performs on its own on validation data,

so that better ensemble members would influence more the predictions of the ensemble than

worse ones.

In our experiments, beam search performed better (specifically with beam size 3 and 5) than all

three ensembles (which all used greedy decoding; we did not use beam search in the ensembles).

3.2.4. Caption Prediction System 4: Captions Ensemble

In this approach, we utilised the captions generated by each one of the previous systems for a

given image, to create an ensemble model. Specifically, for each test image, we gathered all the

captions assigned to it by the aforementioned systems, and we applied the Consensus Caption

(CC) technique (see Sec. 3.2.1) to select one of the gathered captions. For this system, we used

ClinicalBERT [35] to extract caption embeddings instead of TF-IDF representations.

Figure 7: Illustration of the Captions Ensemble method of Caption Prediction, which utilises the

Consensus Caption technique [10].

4. Submissions and results

In this Section, we provide the results of our experiments for both sub-tasks as well as some

insight and comments upon those.

4.1. Concept Detection

We used our development set to evaluate all our models and submitted those that performed best.

Two of our six submissions were the ensemble systems (2xCNN+FFNN@U & 2xCNN+FFNN@I)

described in Sec. 3.1.1. Additionally, we submitted a CNN+wKNN system (Sec. 3.1.2) as well

as another ensemble system that employed two instances of our CNN+FFNN (Sec. 3.1.1) and

an instance of the CNN+wKNN system. This ensemble used a majority voting rule to make

the concept predictions. That is, for every test image, if a concept is predicted at least by

two of the three systems, it is assigned to the image. The sixth assignment consisted of a

CNN+FFNN that was trained using the Sharpness-Aware Minimization (SAM) algorithm [36]

and the Gradient Centralization (GC) [37] optimization technique in order to achieve better

generalization performance. In principle, SAM tries to find parameter values whose entire

neighborhoods have uniformly low training loss, rather than seeking parameter values that



simply have a low training loss. Meanwhile, GC centralizing the gradient vectors of weight

matrices to have zero mean and acts as a regularizer [37]. We also experimented with a loss

function that aimed to optimise 𝐹1, which was the official evaluation measure of the task.

Similarly to [38], we employed the ‘soft 𝐹1 score’ (sF1), a differentiable version of the 𝐹1

measure that computes true positives, false positives, and false negatives using the output

probability distributions of the model, without applying any threshold to round them to binary

decisions. In practice, 1− sF1 is used for minimization and the total loss that was used is:

𝐿𝐹1 = (1− sF1) · bce (5)

where bce is the standard binary cross-entropy loss used in the multi-label setting (i.e., summed

for all labels).

As mentioned, the primary measure of the competition was 𝐹1, calculated by comparing the

binary multi-hot vectors 𝑦𝑡𝑟𝑢𝑒 (the ground truth) and 𝑦𝑝𝑟𝑒𝑑 (the predicted concepts) of each

test image and then macro-averaging over all test images. In addition to the primary measure,

this year’s task included a secondary 𝐹1 score that was calculated using a subset of manually

validated concepts (only anatomy and image modality ones). To generate the predictions for the

official test set, we merged our training, validation and development data. We used a held-out

set (15% of the merged data) as our final development set for hyper-parameter tuning and

trained the models using the rest of the data.

Table 5
Scores and rankings of experiments on our final development and the official test sets. Systems that

were not submitted do not have test scores and rankings available. cd3’s development score is also not

available, as its predictions were created using the output files of the ensemble’s members.

ID Run ID Approach Primary F1 Secondary F1 RankDevelopment Test
cd1 182358 2xCNN[9]+FFNN@U 47.01 45.11 79.07 1
cd2 182356 2xCNN[9]+FFNN@I 46.32 44.27 84.42 12

cd3 182359 2xCNN[9]+FFNN/wKNN – 44.63 84.30 5

cd4 182340 CNN[9]+FFNN 45.71 44.39 81.20 9

cd5 182354 CNN[9]+FFNN(SAM+GC+𝐿𝐹1) 46.06 45.02 82.14 3

cd6 182333 CNN[9]+wKNN 45.25 43.05 84.40 28

cd7 - CNN[9]+FFNN(BAYES OPT.) 45.79 – – –

cd8 - CNN[39]+FFNN 45.27 – – –

cd9 - CNN[39]+FFNN(SAM+GC+𝐿𝐹1) 45.81 – – –

cd10 - ViT-B[40]+FFNN 42.09 – – –

cd11 - ViT-B[40]+FFNN(SAM+GC+𝐿𝐹1) 44.70 – – –

cd12 - CoAtNet-0[41]+FFNN 43.65 – – –

cd13 - CNN[9]+FFNN(+KNN) 43.62 – – –

Table 5 presents the scores of our submitted systems on our final development and the official

test sets, as well as their official rankings. 2xCNN+FFNN@U had the best results. The table

also includes systems that were not submitted and are parts of further experiments that we

conducted. We experimented with several image encoders ranging from pure CNNs [39] to

Vision Transformers (ViTs) [40] and hybrid versions of the two [41]. Overall, pure convolutional



encoders yielded better results and more particularly, EfficicientNetV2-B0 had the best score, so

we only used this specific image encoder for our ensemble and CNN+wKNN systems.

We also experimented with tuning the decision thresholds of the classifiers (probability

thresholds for assigning each concept or not). Instead of tuning a single decision threshold value

(the same for all concepts), we tried to tune a different threshold value for each concept. Due to

the large size of the concept set (|𝐶| = 8, 374) and the large search space for each threshold,

we employed Bayesian Optimization [42] instead of a full parameter sweep and used the task’s

primary measure as the evaluation function.

Furthermore, we observed that, despite of their high performance in terms of precision, our

systems yielded low recall scores, which can be explained by the fact that the number of the

predicted concepts was very low compared to the total number of possible concepts (i.e., only

a few hundreds vs. thousands). In order to alleviate this problem, we experimented with a

retrieval-augmented classification system. We employed a simple CNN+FFNN model and added

to its predicted concepts the concepts of a simple KNN system. That is, every test image was

passed through CNN+FFNN and the predicted concepts were added (set union) to the concepts

predicted by the KNN system. To generate the latter predictions, we retrieved the top-𝑘 closest

training images (w.r.t. cosine similarity computed on the image embeddings) of the test image

and returned the 2 concepts that were most frequently assigned to the 𝑘 images. We used a 𝑘
of value 10. In spite of producing a higher recall score, the retrieval-augmented classification

system scored much lower precision-wise leading to a worse 𝐹1 score than our other systems

and thus, it was not submitted. In general, we aimed to deal with the class imbalance of the

dataset and experimented with additional loss functions suitable for imbalanced multi-label

tasks, such as the ASL [43] and Focal [44] losses, but these experiments did not yield better

results either.

4.2. Caption Prediction

For Caption Prediction, in addition to the BLEU measure [17] of previous years, this year the

organisers added ROUGE-1 [18] as a secondary measure. For the former, the organizers clarified

that BLEU is calculated for up to 4-grams, using uniform weights (this is called BLEU-4). For

the latter, they used ROUGE-1, which considers the overlap of unigrams between the generated

caption and the gold-truth caption.
7

Therefore, we used these two measures to evaluate our

models and decide which ones we were going to submit.

For the ensemble KNN model (Sec. 3.2.1), we combined our training and validation sets, to

have more images to retrieve from. The 𝑘 hyper-parameter was tuned in the range [1, 100] on

our development set, and the best 𝑘 was 18. All 𝑘 values can been seen in Table 6. It is worth

mentioning that this model did not yield the anticipated results for the secondary ROUGE-1

measure. For our first submission, we used an ensemble of KNNs (Caption Prediction System 1:

Retrieval-based Approach Sec. 3.2.1) with different image encoders (the same ones we used in

Sec. 3.2.3). During inference, for each test image, we collected the captions produced by each

ensemble member (for the test image) and selected a single caption from them using the CC

method (Sec. 3.2.1).

7

https://github.com/google-research/google-research/tree/master/rouge.

https://github.com/google-research/google-research/tree/master/rouge


Table 6
The BLEU and ROUGE-1 scores from all of our experiments on our development set.

ID Approach Development
BLEU ROUGE-1

cp1 DenseNet121 KNN (best k=28) 0.3166 0.1117

cp2 DenseNet201 KNN(best k=22) 0.3019 0.1139

cp3 EfficientNetB0 KNN (best k=16) 0.3165 0.1276

cp4 ResNet50V2 KNN (best k=26) 0.3189 0.1226

cp5 InceptionResNetV2 KNN (best k=31) 0.2964 0.0981

cp6 DenseNet121@CNN-RNN - BS3 0.3029 0.1567

cp7 DenseNet201@CNN-RNN - BS3 0.3054 0.1578

cp8 EfficientNetB0@CNN-RNN - BS3 0.3109 0.1587

cp10 ResNet50V2@CNN-RNN - BS3 0.3002 0.1589

cp11 InceptionResNet50V2@CNN-RNN - BS3 0.2987 0.1382

cp12 DenseNet121@CNN-RNN - BS5 0.3189 0.1467

cp13 DenseNet201@CNN-RNN - BS5 0.3116 0.1598

cp14 EfficientNetB0@CNN-RNN - BS5 0.3280 0.1678

cp15 ResNet50V2@CNN-RNN - BS5 0.3145 0.1532

cp16 InceptionResNet50V2@CNN-RNN - BS5 0.3021 0.1243

cp17 ResNet101@R2Gen (Authors) 0.2885 0.1490

cp18 DenseNet121@R2Gen (Best split) 0.3089 0.1938

cp19 DenseNet121@R2Gen (2nd Best split) 0.3021 0.1939

cp20 DenseNet121@R2Gen (3rd Best Split) 0.3000 0.1998
cp21 DenseNet121@ImageClustering + R2Gen 0.3183 0.1892

cp22 Ensembles KNN (best k=18) (CC) 0.3196 0.1267

cp23 Ensembles Greedy Search (MP) 0.2938 0.1660

cp24 Ensembles Greedy Search (MVP) 0.2848 0.1629

cp25 Ensembles Greedy Search (AP) 0.2854 0.1647

For the R2Gen model without the image clustering step (see Sec. 3.2.2), we performed a K-fold

Cross Validation (CV) on our sets. Then, we kept the best 3 models from the Fold-splits with the

best BLEU scores, on their corresponding Fold-split development sets. Two of our submissions

consisted of model instances that were trained on the training set of the two best fold-splits.

One of our submissions is an ensemble that utilizes the models from the three best fold-splits,

and other submissions (see Table 7 for more detail). It uses the Captions Ensemble method (see

Sec. 3.2.4) to decide the final predictions. These submissions are shown in Table 7.

For models based on the CNN-RNN system (Sec. 3.2.3), we only considered beam search

decoding for the submissions (BS𝑚 for short, where𝑚 is the beam size), as well as and ensembles

with greedy decoding (MP, MVP, AP – see Sec. 3.2.3). An interesting point about CNN-RNN

models is that whenever we observed an increase in the primary BLEU score, a decrease was

detected in the secondary ROUGE-1 score. Consequently, we plan to further investigate the

generated captions step by step to conduct an exploratory error analysis and shed more light

on this phenomenon.



For the Captions Ensemble method (Sec. 3.2.4, Fig. 7), we used ClinicalBERT instead of TF-IDF,

as already noted, which worked better. This may be due to the fact that ClinicalBERT is a

BERT model [45] pre-trained on numerous medical texts. The Captions Ensemble models we

submitted are listed in Table 7.

Lastly, an interesting observation, is that encoders with complex architectures performed

worse than encoders with fewer parameters. Hence, we did not use CotNet50 [30] as the

backbone encoder in our systems and Ensemble models.

Table 7
Our 9 submissions to the ImageCLEFmedical Caption Prediction sub-task, along with their rank on all

submission runs. The development scores of submissions cp26, cp27 and cp28 are not available due to

the fact that their caption predictions were created using other submission files. All these submissions

are based on System 4 (Captions Ensemble method, Sec. 3.2.4)

ID Run ID Approach Development Test RankBLEU ROUGE-1 BLEU ROUGE-1
cp14 181853 EfficientNetB0@CNN-RNN - BS5 0.3280 0.1678 0.3221 0.1664 11
cp26 182129 Ensemble of cp8, cp14, cp22, cp28 (CC) - - 0.3195 0.1817 12

cp27 182100 Ensemble of cp8, cp14, cp18, cp19, cp20, cp22 (CC) - - 0.3166 0.1991 13

cp22 181285 Ensemble KNN (best k=18) (CC) 0.3196 0.1267 0.3126 0.1177 14

cp8 181488 EfficientNetB0@CNN-RNN - BS3 0.3109 0.1587 0.3086 0.1741 21

cp28 182287 Ensemble of cp18, cp19, cp20, cp27 (CC) - - 0.3084 0.2062 22

cp18 182052 DenseNet121@R2Gen (Best split) 0.3089 0.1938 0.2960 0.2013 29

cp19 181357 DenseNet121@R2Gen (2nd Best split) 0.3021 0.1939 0.2895 0.2051 32

cp21 181536 DenseNet121@ImageClustering + R2Gen 0.3183 0.1892 0.2741 0.1760 42

Our team officially ranked 2nd among 10 teams in the Caption Prediction sub-task. Our best

model was EfficientNetB0@CNN-RNN - BS5, which is based on System 3 (Sec. 3.2.3) and

employed EfficientNet-B0 [27] as the image encoder. We also ranked 1st in the secondary metric

(ROUGE-1) according to the official results, by using an ensemble of cp18, cp19, cp20 and cp27

with the Consensus Caption method (Sec. 3.2.4). The table with all official measures is provided

in the Appendix A

5. Conclusions and future work

We described the submissions of AUEB’s NLP Group to the 2022 ImageCLEFmedical Caption sub-

tasks, Concept Detection and Caption Prediction. In Concept Detection, we ranked 1st amongst

11 teams. Our top system was an ensemble of two CNN+FFNN multi-label classifiers, which

employed an EfficientNetV2-B0 [9] image encoder. Our submissions also included classifiers

trained with different optimization techniques [36, 37] and objectives, as well as a neural

retrieval approach that was again competitive, as in previous years. In Caption Prediction, we

ranked 2nd amongst 10 teams, by using Show and Tell [12], with EfficientNet-B0 [27] for image

encoding and a GRU [33] for text decoding. Our analysis included experiments with R2Gen

[11], combined with image clustering, and with a neural retrieval approach that was based on

prior work [5, 6, 8]. In future work, we aim to investigate more neural retrieval methods and to

explore multi-modal approaches that incorporate information from both images and text [46].
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A. Caption Prediction results on all official measures

Table 8
The submissions to the ImageCLEFmedical Caption Prediction Task, along with their results on all

official measures.

ID Run ID Approach Test RankBLEU ROUGE-1 METEOR CIDEr SPICE BERTScore
cp14 181853 EfficientNetB0@CNN-RNN - BS5 0.3221 0.1664 0.0737 0.1902 0.0312 0.5988 11
cp26 182129 Ensemble of cp8, cp14, cp22, cp28 (CC) 0.3195 0.1817 0.0777 0.2235 0.0344 0.6089 12

cp27 182100 Ensemble of cp8, cp14, cp18, cp19, cp20, cp22 (CC) 0.3166 0.1991 0.0834 0.2658 0.0427 0.6163 13

cp22 181285 Ensemble KNN (best k=18) (CC) 0.3126 0.1177 0.0621 0.0923 0.0199 0.5732 14

cp8 181488 EfficientNetB0@CNN-RNN - BS3 0.3086 0.1741 0.0729 0.2123 0.0308 0.6035 21

cp28 182287 Ensemble of cp18, cp19, cp20, cp27 (CC) 0.3084 0.2062 0.0846 0.2815 0.0467 0.6187 22

cp18 182052 DenseNet121@R2Gen (Best split) 0.2960 0.2013 0.0822 0.2709 0.0470 0.6130 29

cp19 181357 DenseNet121@R2Gen (2nd Best split) 0.2895 0.2051 0.0823 0.2802 0.0487 0.6156 32

cp21 181536 DenseNet121@ImageClustering + R2Gen 0.2741 0.1760 0.0700 0.2064 0.0352 0.5957 42
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