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Abstract
Diagnostic Captioning is described as the automatic text generation from a collection of X-RAY images

and it can assist inexperienced doctors and radiologists to reduce clinical errors or help experienced

professionals to increase their productivity. Therefore, tools that would help doctors and radiologists

produce higher quality reports in less time could be of high interest for medical imaging departments, as

well as significantly impact deep learning research within the biomedical domain. With our participation

in ImageCLEFmedical 2022 Caption evaluation campaign, we have attempted to address both concept

detection and caption prediction tasks by developing baselines based on Deep Neural Networks; including

image encoders, classifiers and text generators. Our group, NeuralDynamicsLab at KTH Royal Institute of

Technology, within the school of Electrical Engineering and Computer Science, ranked 4th

in the former

and 5th

in the latter task.
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1. Introduction

One of the most exciting technological aspects nowadays is Machine Learning’s impressive

potential in transforming the world we live in, primarily due to its exciting resurgence through

Deep Learning (DL). The increasing size of biomedical data has allowed researchers demonstrate

the evolving capabilities of Deep Learning in biomedical applications, through the development

of advanced computing and imaging systems in biomedical engineering, machine learning-based

biomedical data mining algorithms [1] and baselines for Diagnostic Captioning that has recently

attracted researchers’ attention, towards the goal of reducing the time required by a doctor or

radiologist to produce medical texts and the amount of clinical errors, but also increasing the

throughput of medical imaging departments [2].

In this work, we attempted to develop Diagnostic Captioning baselines, based on novel Deep

Learning approaches, to investigate to what extent deep networks are capable of automatically
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generating a diagnostic text from a set of medical images and how much their interpretation of

medical images can assist doctors and radiologists produce better quality diagnoses; also at an

increased throughput [2]. Towards this objective, the first step is concept detection that boils

down to predicting relevant tags for X-RAY images, while the end goal is caption generation. In

ImageCLEFmedical 2022 evaluation campaign, we experimented with addressing both concept

detection and caption prediction tasks in order to get a quantitative measure of our proposed

architectures’ performance [3].

2. Dataset

In this section, we describe the data provided in ImageCLEFmedical 2022 evaluation campaign.

Precisely, we provide details about the ImageCLEFmedical 2022 concept detection and caption

prediction datasets that include images from different radiological image modalities but without

including imaging modality information.

The dataset provided for both subtasks of ImageCLEFmedical 2022 evaluation campaign [4]

consists of 90920 images that constitute a subset of the extended Radiology Objects in COntext

(ROCO) dataset [5], without imaging modality information. As in previous editions, the dataset

originates from biomedical articles of the PMC OpenAccess subset. After merging the initially

provided train and validation data, we shuffle them after manually setting the seeds to eliminate

randomness in consecutive runs while tuning our hyperparameters and then keep 80% as our

training set, 10% as our validation set used for hyperparameter tuning and the remaining 10%
as our development set used for model selection. Since the dataset is large we perform neither

cross-validation nor data-augmentation. We experimented with adding noise to the images, in

the form of random rotations and translations, which however did not provide any additional

benefit in our baselines’ quantitative evaluation.

Regarding the concept detection subtask, there are 8374 tags of concepts that are assigned

to the X-RAY images, while each image in any of the training, validation or development set

is assigned 5 tags on average. Regarding the caption prediction subtask, the total number of

captions in the training set is 72736, the total number of unique captions is 70879 and the

average caption length is 108 words, including 28 unique words. In the validation set the total

number of captions is 9092, the total number of unique captions is 8984, the average caption

length is 107 words, including 26 unique words. In the development set the total number of

captions is 9092, the total number of unique captions is 8977 and the average caption length is

108 words, including 28 unique words. These counts verify that the aforementioned sets are

balanced in terms of their statistics.

"The concepts were generated using a reduced subset of the Unified Medical Language System

(UMLS) 2020 AB release, which includes the sections (restriction levels) 0, 1, 2, and 9". [4] The

UMLS is a set of files and software that collects multiple health and biomedical vocabularies and

standards to enable interoperability between computer systems. To improve the feasibility of

recognizing concepts from the images, concepts were filtered based on their semantic type and

concepts with very low frequency were removed. In each caption, tokens containing numbers

and all punctuation were removed, captions were converted to lower-case and lemmatization

was applied using spaCy toolkit [3].



3. Methods and results

In this section, we describe the core components of the methods utilized to encode the X-RAYs

with dense embeddings in our work and explain in detail the baseline networks that we proposed

in ImageCLEFmedical 2022 evaluation campaign, in order of performance, for both subtasks

that are based on the aforementioned core components that rely on pre-trained architectures,

extremely popular in computer vision.

Precisely, we provide details about the ImageCLEFmedical 2022 concept detection and caption

prediction datasets and on how we designed backbone networks as generic image encoders that

rely on Convolutional Neural Networks (CNN) architectures that are popular for vision tasks

on generic images, such as classification and semantic segmentation, while they are shared

within all baselines, in both ImageCLEFmedical Caption tasks. Furthermore, we describe the

components of each model and give details on the selected hyper-parameters. For all our models,

we have set in advance all the random seeds equal to 0, the CUDNNs backends as deterministic

and disabled the CUDNNs backends benchmark to ensure consistency of the aforementioned

splits in consecutive runs for hyper-parameter selection. This procedure has been applied for

both subtasks of the evaluation campaign.

3.1. Backbone Networks: image encoders

One of the principal components in the proposed architectures that is shared for both subtasks

includes the image encoders. They constitute existing state-of-the-art architectures, pretrained

on ImageNet classification dataset [6], which are obtained from torchvision models library to

perform inference, while any additional components such as a multi-label classification head or a

caption generation architecture are appended to the output of the image encoder; in this content

these models are referred to as “backbone networks”. The goal of these networks is to encode

the images into dense numerical representations. Since Deep Learning became popular and

what is called the Deep Learning Community was given birth, different initialization strategies

for the weights and the biases were proposed. We used Glorot initialization shown below [7] to

initialize the weights of the classification heads and experimented with non-pretrained image

encoders that we initialized using the same strategy and fully-finetuned them, their performance

however was inferior in concept prediction.

Glorot: 𝑊𝑖,𝑗 ∼ 𝒰
(︂
−
√︂
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)︂
Some Convolutional Neural Network (CNN) encoders that have been attempted to use include

variants of AlexNet [8], ResNet [9], DenseNet [10], VGG [11] and EfficientNet [12], which are

obtained from torchvision models library as mentioned above. We also experimented with

another architectural choice that is Vision Transformers (ViT) [13], the performance obtained

was poor however compared to CNN encoders. That outcome is in line with the observation

in [14] that Vision Transformers and "Hybrid-ViT architectures are inferior to the CNN-based

ones". The above summarize the first step in the design of image encoders that is model selection

based on their performance on a development set.



Moreover, model selection shall be followed by a model collaboration design principle, based

on ensemble learning. In this case, we have used the aforementioned models as members of the
ensemble or weak learners in a pool of encoders trained with different parameter values (e.g.

learning rates, decision thresholds for the positive class, number of epochs), as well as based on

different architectures, to seek for diversity and exploit the "Wisdom of the crowd" [15] for the

fine-tuned models. In this context, we take into consideration the “votes” of all the different

CNNs by averaging their outputs to make decisions on the generated tags or make guesses on

the assigned captions.

3.2. Concept prediction subtask

As mentioned in section 3.1 “backbone networks” refer to image encoders, which are state-of-

the-art architectures, pretrained on ImageNet classification dataset [6], shared for both subtasks.

In the case of concept prediction, an additional classification head that is either a Perceptron

or a Multi-layered Perceptron was added on top of these “backbone networks" and its weights

were initialized using Glorot initialization strategy [7].

3.2.1. Pre-trained DenseNet161 with fine-tuned classification head, learning rate 10−3,
Adam optimizer and gradient clipping

The first two models correspond to a DenseNet161 convolutional network that is pretrained

on ImageNet classification dataset and its head is a Perceptron, which is further fine-tuned on

the ImageCLEFmedical 2022 data using sigmoid activation function in the output units that

equal the number of concepts -thus 8374 nodes, a constant learning rate equal to 10−3
and

the negative 𝐹1 score as a minimization criterion. For each image, we assign it the concepts

that have predicted probabilities above 50%, while the tags obtain their numerical IDs in their

order of appearance before shuffling them. Furthermore, we clip the gradients computed during

training to be in [−1, 1], to increase numerical stability.

When performing stochastic or minibatch Gradient Descent, and the loss changes quickly at

one direction and slowly at another, Gradient Descent will progress slowly along the shallow

dimension and jitter along the steep one. To overcome this issue, we used Adam optimizer [16],

so that progress along steep directions is damped and meanwhile progress along flat directions

is accelerated. Adam uses exponentially decaying average to discard history but also momentum

as an estimate of the first-order gradient. It has bias corrections for first-order and second-order

moments and converges rapidly after finding a local convex bowl. If 𝑡 represents the current

time step, Adam updates are equal to:

w(𝑡+1) = w(𝑡) − 𝜖
v(𝑡)

𝛿 +
√
r(𝑡)

, 𝛿, 𝜖 ∈ R+

v(𝑡+1) = 𝜌1v
(𝑡) + (1− 𝜌1)g

(𝑡), 𝜌1 ∈ R+

r(𝑡+1) = 𝜌2r
(𝑡) + (1− 𝜌2)

(︁
g(𝑡)

)︁2
, 𝜌2 ∈ R+

Our best performing model (with submission ID 181750) is an instance of the aforementioned

architecture trained in all the provided data, thus after merging again the training, validation



and development sets that are described in section 2 and achieves 𝐹1 = 0.43601. The next

model corresponds to the same network architecture but is trained only in training set (with

submission ID 181715) and achieves a score 𝐹1 = 0.43567. For the latter case, where we have

measured performance in all sets, we present plots with the evolution of 𝐹1 score and accuracy

during training in Figure 1(a).

3.2.2. Pre-trained DenseNet161 with fine-tuned classification head, learning rate
5× 10−4, AdamW optimizer and gradient clipping

The next model corresponds to another DenseNet161 convolutional network that is pretrained

on ImageNet classification dataset and its head is a Perceptron, which is further fine-tuned on

the ImageCLEFmedical 2022 data using sigmoid activation function in the output units that

equal the number of concepts -thus 8374 nodes, a constant learning rate equal to 5× 10−4
and

the negative 𝐹1 score as a minimization criterion. For each image, we assign it the concepts

that have predicted probabilities above 50%, while the tags obtain their numerical IDs in their

order of appearance before shuffling them. Furthermore, we clip the gradients computed during

training to be in [−1, 1], to ensure numerical stability.

In this occasion we have used an improved version of Adam optimizer, called AdamW [17],

where weight decay is performed only after controlling the parameter-wise step size and thus

yields models that generalize much better. Compared to Adam optimizer that we discussed

in section 3.2.1, as well as other adaptive gradient algorithms, where the potential benefit of

weight decay regularization is limited because "the weights do not decay multiplicatively but

by an additive constant factor" [17], AdamW optimizer may overcome this issue, while training

much faster than stochastic or minibatch Gradient Descent.

Our model is an instance of the aforementioned network architecture, it is trained only in

training set (with submission ID 181753) and achieves a score 𝐹1 = 0.43558, although we would

expect training with AdamW to perform better. Since the gain of re-training the model after

merging all the splits is almost negligible, as we already noticed in section 3.2.1, the remaining

models are not re-trained in the entire dataset. Once again, we present plots with the evolution

of 𝐹1 score and accuracy in Figure 1(b).

3.2.3. Pre-trained DenseNet161 with fine-tuned classification head, learning rate
5× 10−4 and Adam optimizer

The subsequent model is yet another DenseNet161 convolutional network that is pretrained on

ImageNet classification dataset and its head is a Perceptron, which is further fine-tuned on the

ImageCLEFmedical 2022 data using sigmoid activation function in the output units that equal

the number of concepts -thus 8374 nodes, a constant learning rate equal to 5× 10−4
and the

negative 𝐹1 score as a minimization criterion. For each image, we assign it the concepts that

have predicted probabilities above 50%, while the tags obtain their numerical IDs in their order

of appearance before shuffling them and train the network using Adam optimizer; as we have

excessively described in section 3.2.1.

Our model is an instance of the aforementioned network architecture (with submission ID

182152) and achieves a score 𝐹1 = 0.43539, however, in this baseline we omit clipping the



gradients, in contrast with the models described above in sections 3.2.1 and 3.2.2. Furthermore,

as for both previous best-performing models we present plots with the evolution of 𝐹1 score

and accuracy below in Figure 1(c).

(a) (b) (c)

Figure 1: 𝐹1 and accuracy scores plots per epoch for the models described (a) in section 3.2.1, (b) in

section 3.2.2, as well as (c) in section 3.2.3. We observe that the classifications heads, which we finetune

on ImageCLEFmedical 2022 data, appear to be sufficiently regularized (thus there is no overfitting) and

to have used their maximum capacity.

3.2.4. Ensemble of pre-trained DenseNet CNNs with fine-tuned classification heads

The proceeding model and the best performing mixture of individual networks corresponds to

the 10 best performing DenseNet CNNs, including instances of DenseNet161 and DenseNet121

architectures, and indicates our quest for diversity and to consequently exploit the "Wisdom of

the crowd" [15] notion.

In this context, we take into account the “votes” of all the different CNNs to make decisions

on the assigned tags. The voting scheme consists of averaging the probabilities computed by the

different weak learners before assigning to each image the concepts that have average predicted

probabilities above 50%, while the tags as usual obtain their numerical IDs in their order of

appearance before shuffling them. We also experimented with using alternative voting policies,

such as computing the union or intersection of the assigned tags by each weak learner, where

assignments are defined by the predicted probabilities being above 50%, in the pool of finetuned

networks, but they performed poorly.

Table 1 summarizes the architecture of all individual networks in the pool of encoders. This

includes the type of Backbone Network, the optimizer, the value of learning rate and whether

it is decaying per epoch, the batch size and the submission ID of the individual network, for

the aforementioned weak learners in sections 3.2.1, 3.2.2, 3.2.3 that performed better than the

ensemble altogether and thus were submitted individually. Note that the classification head

is always a Perceptron which is further fine-tuned in the ImageCLEFmedical 2022 data using

sigmoid activation function in the output units that equal the number of concepts. Moreover,

when linear decay is applied, the learning rate is updated by: 𝜂𝑡+1 = 𝜂0× 1−𝑡
𝑇 where 𝑡 represents

the current time step, 𝑇 the total number of epochs and 𝜂0 is the learning rate at the beginning

of training procedure. The performance of this mixture of experts (with submission ID 182338)

equals 𝐹1 = 0.43496.



Table 1
Summary of weak learners’ architecture and training regime in model 182338

Backbone Net. Optimizer Learning Rate Linear Decay Batch size Epochs Subm. ID

DenseNet121 AdamW 5× 10−4
False 60 20 -

DenseNet121 AdamW 10−3
False 60 20 -

DenseNet121 AdamW 10−4
False 60 20 -

DenseNet161 Adam 10−3
False 120 20 181750, 181715

DenseNet161 AdamW 10−3
True 120 20 -

DenseNet161 Adam 5× 10−4
False 120 20 -

DenseNet161 Adam 5× 10−4
False 120 20 181753

DenseNet161 AdamW 5× 10−4
False 120 20 182152

DenseNet161 AdamW 10−4
False 120 50 -

DenseNet161 AdamW 10−4
False 120 20 -

3.2.5. Ensemble of pre-trained DenseNet CNNs with fine-tuned classification heads

Although Dense Convolutional Networks (DenseNet CNNs) appear to outperform other network

architectures, which is in line with their extensive use in biomedical applications that include X-

RAYs processing [18], we also experimented with a plethora of CNNs backbone networks as we

have mentioned in section 3.1. Consequently, the ensuing three models constitute ensembles that

include different architectures within their members, with varying hyperparameter values to

encourage diversity of training regimes. During the voting process we average the probabilities

computed by the softmax layer of all different week learners before assigning to each image the

tags that have average predicted probabilities above 50%.

Table 2
Summary of weak learners’ architecture and training regime in model 181546

Backbone Net. Optimizer Learning Rate Linear Decay Batch size Epochs Subm. ID

AlexNet AdamW 10−4
False 60 20 -

AlexNet AdamW 5× 10−5
False 60 20 -

DenseNet121 AdamW 5× 10−4
False 60 20 -

DenseNet121 AdamW 10−3
False 60 20 -

DenseNet121 AdamW 10−4
False 60 20 -

DenseNet161 Adam 10−3
False 120 20 181750, 181715

DenseNet161 AdamW 10−3
True 120 20 -

DenseNet161 Adam 5× 10−4
False 120 20 -

DenseNet161 Adam 5× 10−4
False 120 20 181753

DenseNet161 AdamW 5× 10−4
False 120 20 182152

ResNet50 AdamW 10−4
False 60 20 -

ResNet101 AdamW 10−4
False 60 20 -

VGG-13 AdamW 10−4
False 60 20 -

VGG-16 AdamW 10−4
False 60 20 -



Table 3
Summary of weak learners’ architecture and training regime in model 182155

Backbone Net. Optimizer Learning Rate Linear Decay Batch size Epochs Subm. ID

AlexNet AdamW 10−4
False 60 20 -

AlexNet AdamW 5× 10−5
False 60 20 -

DenseNet121 AdamW 5× 10−4
False 60 20 -

DenseNet121 AdamW 10−3
False 60 20 -

DenseNet161 Adam 10−3
False 120 20 181750, 181715

DenseNet161 AdamW 10−3
True 120 20 -

ResNet50 AdamW 10−4
False 60 20 -

ResNet50 AdamW 5× 10−5
False 60 20 -

ResNet101 AdamW 10−4
False 60 20 -

ResNet101 AdamW 5× 10−4
False 60 20 -

VGG-13 AdamW 10−4
False 60 20 -

VGG-13 AdamW 5× 10−5
False 60 20 -

VGG-16 AdamW 10−4
False 60 20 -

VGG-16 AdamW 5× 10−5
False 60 20 -

Table 4
Summary of weak learners’ architecture and training regime in model 182154

Backbone Net. Optimizer Learning Rate Linear Decay Batch size Epochs Subm. ID

AlexNet AdamW 10−4
False 60 20 -

AlexNet AdamW 5× 10−5
False 60 20 -

DenseNet121 AdamW 5× 10−4
False 60 20 -

DenseNet121 AdamW 10−3
False 60 20 -

DenseNet121 AdamW 10−4
False 60 20 -

DenseNet161 Adam 10−3
False 120 20 181750, 181715

DenseNet161 AdamW 10−3
True 120 20 -

DenseNet161 Adam 5× 10−4
False 120 20 -

ResNet50 AdamW 10−4
False 60 20 -

ResNet101 AdamW 10−4
False 60 20 -

VGG-13 AdamW 10−4
False 60 20 -

VGG-16 AdamW 10−4
False 60 20 -

Our three following mixtures of experts (with submission IDs 181546, 182155, 182154) and

achieve a score 𝐹1,1 = 0.43404, 𝐹1,2 = 0.43130, 𝐹1,3 = 0.42957 respectively. Tables 2, 3, 4

summarize the architecture of all individual networks in each pool of encoders. Their format is

identical to that used in section 3.2.4 and consequently they also refer to the hyper-parameter

values for each of the weak learners.

Note that the classification head is always a Perceptron which is further fine-tuned in the

ImageCLEFmedical 2022 data using sigmoid activation function in the output units that equal

the number of concepts. Moreover, when linear decay is applied, the learning rate is updated

by: 𝜂𝑡+1 = 𝜂0 × 1−𝑡
𝑇 where 𝑡 represents the current time step, 𝑇 the total number of epochs

and 𝜂0 is the initial learning rate.



3.2.6. Fully fine-tuned DenseNet161 with cyclical learning rate and AdamW optimizer

The succeeding model corresponds to a DenseNet161 convolutional network that is now fully-

finetuned on the ImageCLEFmedical 2022 data using sigmoid activation function in the output

units that equal the number of concepts -thus 8374 nodes, scheduled learning rate [19] and the

negative 𝐹1 score as a minimization criterion. For each image, we assign it the concepts that

have predicted probabilities above 50%, while the tags obtain their numerical IDs in their order

of appearance before shuffling them.

One important aspect of minibatch or stochastic gradient descent relates to the choice of the

learning rate 𝜂 that controls the size of the update, which will occur to the gradients in every

iteration. Constant learning rates have been traditionally used to train Deep Neural Networks

based on back-propagation algorithm, although do not guarantee optimal convergence rate

according to the Stochastic Approximation Theory [20], precisely the network parameters hover

around a minimum at an average distance proportional to the learning rate and to a variance

that is dependent on the objective function and the exemplar set [21]. To this end, cyclical

learning rates have been proposed as a new method for setting the learning rate by cyclically

varying its value between reasonable boundary values, which increases classification accuracy

when training CNNs with generic images [22].

(a) (b) (c)

Figure 2: (a) Schematic illustration of the error landscape with a high learning rate, (b) example plot of

a cyclical learning rate with 𝜂min = 0.01, 𝜂max = 0.30, 𝑛𝑠 = 2 and (c) 𝐹1 and accuracy scores plots per

epoch for the model described in section 3.2.6.

A high value of 𝜂 will make the network make large steps above the minimum of the error

function but never converge to it, as illustrated in Figure 2(a). A small value of 𝜂 will delay

convergence, preventing the network to find a minimum of the error function if the number of

epochs is limited. A cyclical learning rate linearly ranges between two values 𝜂min and 𝜂max.

One maximization of the learning rate followed by a minimization is called a cycle. In Figure

2(b) hereunder we present an example of cyclical learning rate, where 𝜂min = 0.01, 𝜂max = 0.30,

𝑛𝑠 = 2 and we denote as 2𝑛𝑠 the time required for a cycle of our learning rate to complete. In

our model we set 𝜂min = 10−5
, 𝜂max = 0.1, 𝑛𝑠 = 4 for the first 80 epochs and then set it to a

constant value 𝜂 = 10−3
for 30 additional epochs.

This network (with submission ID 182156) achieves a score 𝐹1 = 0.31687, which is a rather

lower score compared to the pre-trained models on ImageNet classification dataset [6], achieving

more than 10% higher 𝐹1 results on the test set. Moreover, we present plots with the evolution



of 𝐹1 score and accuracy per training epoch of the model in Figure 2(c) that is quite unstable

while varying the learning rate.

3.2.7. Nearest Neighbours Baseline

The ensuing model is a generalization of the 1-NN baseline proposed in [23]. We further either

remind or inform the reader that for every image in the test set, the 1-NN baseline assigns the

tags of the visually most similar image from the training set as the output and consequently for

every image, �̂�, in the test set, the 1-NN baseline will output the set of concepts, say 𝑦*, of the

most similar image, say 𝑥*, from the training set as output [2]. Therefore, if we denote by e(.)
the output of the employed image encoder among those mentioned in section 3.1, 1-NN predicts

(�̂�, 𝑦) = (�̂�, 𝑦*) that satisfies (𝑥*, 𝑦*) = argmin𝑥* cos (e(�̂�), e(𝑥*)). Our generalized Nearest

Neighbours baseline takes into account 𝑘 ∈ Z+
neighbours instead and not necessarily only

the one with closest representation. Our model (with submission ID 182331) uses 𝑘 = 1 with a

VGG-16 encoder pre-trained on ImageNet classification dataset and achieves only 𝐹1 = 0.25061
that indicates the importance of fine-tuning.

3.3. Performance summary

Table 5 below summarizes several characteristics of the proposed baselines for concept detection,

in order of performance with respect to 𝐹1 scores, together with their respective submission

IDs. We observe that DenseNet161 image encoders with finetuned classification heads are the

top performing configurations and outperform other CNN architectures, which is in accordance

with their extensive use X-RAYs processing [18], while fully finetuning the backbone networks

and using retrieval based heuristics that capture representations’ similarities, such as the 1-NN

baseline [23], achieve lower scores.

Table 5
Summary of our configurations’ characteristics and statistics

Backbone Network Section described Type of model F1 scores Submission ID

DenseNet161 Section 3.2.1 Deep Network Head 0.43601 181750

DenseNet161 Section 3.2.1 Deep Network Head 0.43601 181750

DenseNet161 Section 3.2.2 Deep Network Head 0.43558 181753

DenseNet161 Section 3.2.3 Deep Network Head 0.43539 182152

DenseNet variants Section 3.2.4 Ensemble of Networks 0.43496 182338

Various networks Section 3.2.5 Ensemble of Networks 0.43404 181546

Various networks Section 3.2.5 Ensemble of Networks 0.43130 182155

Various networks Section 3.2.5 Ensemble of Networks 0.42957 182154

DenseNet161 Section 3.2.6 Deep Network (full) 0.31687 182156

VGG-16 Section 3.2.7 Nearest Neighbour 0.25061 182331

3.4. Caption generation subtask

In ImageCLEFmedical 2022 evaluation campaign, "the first step to automatic image captioning

and scene understanding boils down to identifying the presence and location of relevant concepts



within a large corpus of medical images that is followed by caption generation in captioning.

Based on medical images content, the concept prediction task provides the building blocks for

scene understanding by identifying the individual components, referred to as image tags, from

which captions are composed. The assigned concepts can be further applied for context-based

image and information retrieval purposes" [3].

"On the basis of the vocabulary 𝒱 identified during concept prediction task, as well as the

visual information of their interaction in the image, caption generation task refers to composing

coherent captions for each entire image. For the medical captioning task, rather than the mere

coverage of visual concepts, detecting the interplay of visible elements can be crucial for strong

performance" [3]. In the following, we describe our proposed models for Diagnostic Captioning,

in which the generalized Nearest Neighbours baseline that we introduced in section 3.2.7 has a

crucial role despite it performing poorly as is.

3.4.1. (1 + 𝑘)-NN image retriever with Pegasus summarizer

Our best performing models extend the Nearest Neighbours baseline for caption generation.

Precisely, 1-NN [23] constitutes one of the model components, where for every image in the test

set, it will produce the diagnostic text of the visually most similar image from the training set as

the output and consequently it will assign the corresponding caption, say 𝑦*, of the most similar

image, say 𝑥*, from the training set as output [2]. Thus, if we denote by e(.) the output of the

employed image encoder among those mentioned in section 3.1, 1-NN predicts (�̂�, 𝑦) = (�̂�, 𝑦*)
that satisfies (𝑥*, 𝑦*) = argmin𝑥* cos (e(�̂�), e(𝑥*)). This prediction constitutes the first part

of the models’ generated caption.

In the generalized baseline however, apart from the neighbour with the closest representation,

we retrieve the top-(𝑘 + 1) nearest neighbours, concatenate their outputs, excluding that of

the most similar image and feed them as input to an abstractive summarizer; Pegasus [24] that

is based on the transformer architecture [25], one idea that revolutionized Natural Language

Processing and is trained with a Masked Language Modelling objective, which became popular

within the research community though BERT [26].

For our models we employed a pre-trained AlexNet CNN on ImageNet classification dataset as

our image encoder and merged our training, validation and development sets that are described

in section 2, in order to benefit from an extensive set of train data to compute similarities

with the test images. For each of them we keep the caption of the visually most similar image,

concatenate the captions of the 𝑘 proceeding ones and give them as input to Pegasus summarizer,

which we allow to produce a summary of maximum length 𝑛 tokens to eliminate repetitions. We

exclude phrases as "All images are copyrighted." and "Images courtesy of AFP, EPA, Getty" that

were probably included in Pegasus’ training set from our generated summaries. The predicted

captions constitute the concatenation of 1-NN baseline and Pegasus summarizer outputs. Table

6 below presents all configurations’ hyper-parameter values, namely 𝑘 and 𝑛, their submission

IDs and BLEU scores in decreasing order [27].



Table 6
Summary of our configurations’ hyper-parameters and statistics

Backbone Network Captions 𝑘 Tokens 𝑛 BLEU scores Submission ID

AlexNet 𝑘 = 9 𝑛 = 15 0.29166 182337

AlexNet 𝑘 = 4 𝑛 = 15 0.28343 182286

AlexNet 𝑘 = 3 𝑛 = 15 0.27855 182284

AlexNet 𝑘 = 2 𝑛 = 15 0.27007 182285

AlexNet 𝑘 = 4 𝑛 = 5 0.25521 182271

AlexNet 𝑘 = 3 𝑛 = 5 0.25334 182272

3.4.2. 𝑘-NN image retriever with Retrieval Augmented Generation

It has been impressive to researchers how nowadays general-purpose sequence-to-sequence

models are getting really powerful, they manage to capture the world knowledge in parameters,

they achieve strong results on loads of tasks and are applicable for almost everything. However,

they often hallucinate, may usually struggle to access, and apply knowledge and are difficult to

update. On the other hand, modern Information Retrieval (IR) is great as well, as externally

reviewed knowledge can be useful for a huge variety of NLP tasks. Modern IR provides a precise

and accurate knowledge access mechanism, it is trivial to update, whereas by “modern” IR we

refer to dense retrieval that starts to outperform traditional IR. On the negative side though, it

still needs retrieval supervision or heuristics such as BM25, as well as some –task specific– way

to integrate into downstream tasks.

The goal of Retrieval Augmented Generation (RAG) [28], which was used as model component,

pretrained on Wikipedia with a FAISS index [29] built on 42% of PubMed 2022 including recent

publications related to the fields of neuroscience and computational biology; is to combine the

strengths of sequence-to-sequence models and explicit knowledge retrieval. Obviously, RAG

is also blended with the 1-NN baseline; namely its outputs are concatenated with the caption

of the visually most similar image from the training set to produce caption predictions. This

model uses either a pre-trained AlexNet or VGG-16 CNN on ImageNet classification dataset as

backbone network and, despite it containing a non-parametric memory, additional to storing

information in the parameters of a sequence-to-sequence generative model that is a Bidirectional

Auto-Regressive Transformers (BART) generator [30], after merging our training, validation

and development sets that are described in section 2 to take advantage of more input-output

pairs (𝑥, 𝑡), achieves a lower BLEU score than its predecessors described in 3.4.1 according to

Table 7 below. These results could possibly improve if we store extracts from patients’ previous

diagnoses instead of biomedical articles.

Table 7
Summary of our configurations’ image encoders and statistics

Backbone Network BLEU scores Submission ID

AlexNet 0.25127 181712

VGG-16 0.23958 181860



In the RAG approach [28], dual memory components are pre-trained and pre-loaded with

extensive knowledge to encapsulate information via the representations without further training;

the generator 𝑝𝜃 acts as a parametric memory, with the retriever 𝑝𝜂 embodying a non-parametric

memory in the query encoder q(.), while also including a Dense Passage Retriever (DPR) [31].

To train the retriever 𝑝𝜂 and generator 𝑝𝜃 end-to-end, we can treat the retrieved document as a

latent variable 𝑧, while the embedding of the closest document representation is represented as

d(𝑧)). The Maximum Inner Product Search (MIPS) algorithm [32] is used to compute the top 𝑘
retrieved documents with respect to 𝑝𝜂(𝑧|𝑥). Finally, the generated caption 𝑦 is produced by

marginalizing over the predictions.

𝑝𝜂(𝑧|𝑥) = exp
(︀
d(𝑧)𝑇q(𝑥)

)︀
The generator 𝑝𝜃 is a sequence-to-sequence model, a BART [30] instance precisely, which

conditions on the latent documents 𝑧 together with each input 𝑥 to generate each output. As

an overall component, it produces 𝑝𝜃 (𝑦𝑖|𝑥, 𝑧,𝑦1:𝑖−1) to create a Language Model (LM) over

the tokens vocabulary 𝒱 given as input the latent documents 𝑧 and queries 𝑥, which are the

outputs of 1-NN baseline. During training, we treat questions-answers as input-output pairs

i.e. (𝑥, 𝑡) and train RAG-token by directly minimizing the negative marginal log-likelihood of

generating output sequences 𝑦 on input sequences 𝑥. If 𝒟 = {𝑥𝑗 , 𝑡𝑗}𝑗 is the complete dataset,

our training objective is:

𝑙cross(𝑥, 𝑡; 𝜃, 𝜂) = − log 𝑝(𝑦|𝑥; 𝜃, 𝜂)∑︁
𝑗

𝑙cross(𝑥𝑗 , 𝑡𝑗 ; 𝜃, 𝜂) =
∑︁
𝑗

− log 𝑝(𝑦𝑗 |𝑥𝑗 ; 𝜃, 𝜂)

3.4.3. 1-NN image retrieval baseline

Last but not least, we attempted using the 1-NN baseline [2] as is to generate the diagnostic

text within the captions, which however achieved a lower score than all the aforementioned

approaches. Although at first, one could interpret this as RAG models, in which the generator

acts as a parametric memory, whereas the retriever 𝑝𝜂 embodies a non-parametric memory in

the query encoder q examined in section 3.4.2, perform better than solely the 1-NN baseline;

when the latter is combined with abstractive summarization techniques for the diagnostic texts

of 𝑘 additional visually similar images from the training set, where 𝑘 ∈ Z+
, it may perform

better as it is indicated in section 3.4.1 and Table 6. Our models use a pre-trained AlexNet or

VGG-16 CNN on ImageNet classification dataset as image encoder, our training, validation and

development sets that are described in section 2 merged together and achieve a BLEU score

according to Table 8.

Table 8
Summary of our configurations’ image encoders and statistics

Backbone Network BLEU scores Submission ID

AlexNet 0.24064 181711

VGG-16 0.22757 181859



4. Directions for future work

In this work, we developed CNN-based image encoders trained end-to-end for tags assignment

or combined with heuristics such as the 1-NN baseline for either concept prediction or caption

generation, which although is really simple performs rather well if combined with abstractive

summarization algorithms, as highlighted in section 3.4.1 as well as the study in [2], where this

baseline itself performs well for the Indiana University chest X-ray Collection [33] (IU chest

X-ray dataset). Future work could focus on the use of task-specific models for summarization,

such as Bio-BERT [34], further fine-tuning on the number of neighbours 𝑘 and the summary

maximum length 𝑛 in section 3.4.1 and consideration of potential associations between the two

subtasks during 1-NN baseline extension.

Furthermore, although higher quantitative accuracy is most often better, there are categorical

differences of the DC methods as well, which relate to their qualitative evaluation and indicate

their practical usefulness. It is an open question how we may obtain practical information about

the quality of the generated captions.

5. Ethical considerations

Development of Diagnostic Captioning systems based on novel DL architectures could have

both positive and negative societal impacts. My proposed work, for example, may be used for

analyzing medical image data in undeveloped regions or countries under development. This

is related to the 3rd
goal of United Nations Sustainability Goals (UNSG) about ensuring good

health and well-being and the 10th
goal about reduced inequalities. On the other hand, privacy

issues might arise from the use of medical data and "concerns over the sensitive information

security and privacy" [35] that may also be related to the General Data Protection Regulation

(GDPR) and EU legislation.
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