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Abstract

This paper presents the participation of the University of Aveiro Biomedical Informatics and Technologies
group (BIT) in the tenth edition of the BioASQ challenge for document retrieval (task B phase A and
Synergy) and ‘yes or no’ answering (task B phase B). For the Synergy task, we adopted a relevance
feedback approach that leveraged the traditional BM25 retrieval model combined with query expansion
based on the positive documents. Regarding task B phase A, we adopted a two-stage retrieval pipeline
that consists of the traditional BM25 retrieval with pseudo-relevance feedback followed by a neural
retrieval model. For the neural models, we experimented with the publicly available Transformer-UPWM
already trained on last year’s BioASQ data and with a local implementation of the PARADE-CNN model.
Lastly, for the ‘yes or no’ questions, we trained a binary classifier over the pretrained PubMedBERT
model, and also studied the impact of data augmentation and dataset balancing techniques. In terms
of results, our Synergy and task B phase B systems underperformed, scoring below the average. Our
best results came from the task B phase A systems that achieved above-average results, being in the top
three in terms of teams. Furthermore, after the challenge, we also conducted additional experiments
to evaluate the impact of the Transformer-UPWM when trained on 10b data. This trial produced an
improvement of 1 to 5 MAP percentage points in all official evaluation batches. Code to reproduce our
submissions are available on https://github.com/bioinformatics-ua/BioASQ-10.git.
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1. Introduction

The rapid growth of biomedical literature, through open or peer reviewed publications, creates
a situation of information overload that affects researchers, doctors or any other health care
practitioner. According to Klerings et al. [1], the main problem is not the abundance of infor-
mation, but rather the lack of more capable information retrieval systems that can effectively
search this continually growing literature.

The BioASQ challenge [2] is an annual competition that promotes the development of such
intelligent retrieval systems that can aid with the current problem of information overload.
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Currently, the challenge is in its tenth edition and is divided into tasks A and B plus the recent
Synergy task. More concretely, task A is concerned with biomedical semantic indexing, while
task B and Synergy focus on information retrieval and question answering. Furthermore, task
B is additionally subdivided into phase A and phase B, where the first is concerned with finding
the relevant documents/snippets that answer a given biomedical question (IR) and the later
is concerned with answer extraction and generation (QA). The aim of tasks A and B is the
development of state-of-the-art systems that can find evidence or answer an open biomedical
question, while the primary objective of the Synergy task is in using IR and QA systems for
collectively finding answers to open questions about Covid-19.

This paper describes the participation of the Biomedical Informatics and Technologies (BIT)
group of the Aveiro University in BioASQ task B and BioASQ Synergy. For task B, our approaches
rely on the fixed contextualized embeddings produced by the PubMedBERT model. More
precisely, for phase A we adopted the PARADE-CNN [3] and Transformer-UPWM [4] models.
The first of these two models was trained on this year’s training data, while for the latter we
re-used the model trained on last year’s data. This produced an interesting duality of new
training data against one year old training data that we later explored in a post-challenge
experience (Section 4). For phase B we trained a binary classifier to answer ‘yes or no’ type
questions, while experimenting with data augmentation through a paraphrasing technique and
dataset balancing. Regarding the Synergy task, we followed a simple, yet successful, relevance
feedback approach [5], where we used positively annotated documents to expand the current
search query that was fed to the traditional BM25 retrieval model.

The remainder of the paper is organized as follows. In Section 2 we present the datasets and
corpora used, followed by a detailed description of each method. The corresponding submissions
and results are presented and discussed in Section 3. Then, in Section 4 we analyze the impact
of training the Transformer-UPWM in BioASQ 9b data against 10b data. We finish the paper
with a conclusion in Section 5.

2. Materials and Methods

This section starts by presenting corpora used in each task (B and Synergy). Then it presents, for
each task that we participated, the dataset preparation, the method and the official submissions.

2.1. Corpora

As previously mentioned, the Synergy task aims to develop systems capable of answering Covid-
19 related questions, while task B focuses on the development of more broad systems that can
answer any biomedical type of question. Therefore, the Synergy questions were envisioned to
be answered using the CORD-19 [6] dataset, while task B uses articles from PubMed/MEDLINE
dataset as collection to answer the given biomedical questions.

2.1.1. CORD-19

CORD-19 dataset is a joint effort by several research groups in response to the Covid-19
pandemic [6]. It aggregates several academic papers related to the topic of Covid-19 and



general coronavirus research from peer reviewed sources such as PubMed, the World Health
Organization, and open source archives such as bioRxiv, medRxiv and arXiv, in a structured
manner that facilitate the creation of text mining and information retrieval systems, which can
help the scientific community better understand this virus. Nowadays, the CORD-19 dataset is
updated on a weekly basis, which means that each round of the Synergy task used a different
snapshot of the CORD-19 dataset.

Each entry of this dataset represents a publication, described by multiple fields. For our task,
we only focus on the title, abstract, PubMed ID, PubMedCentral ID and arXiv ID.

2.1.2. MEDLINE/PubMed

MEDLINE [7] is a database that aggregates abstracts and metadata from biomedical literature
from several sources, while PubMed [8] is a free searching engine over the MEDLINE data. The
PubMed index is updated on daily basis and a baseline snapshot is produced at the end of each
year. In this year’s challenge task B used the 2022 PubMed baseline as the source of documents.

Similar to CORD-19, each datapoint describes a publication composed of multiple fields. The
subset of these fields useful to us are the article title, the abstract and the PubMed ID.

2.2. Synergy

The Synergy task had four discrete moments of evaluation, also called rounds, where the
organizers provided a set of unanswered questions related to Covid-19, and teams had three
days to submit their systems’ answers. Table 1 shows a summary of the number of questions
made available in each round and the total number of feedback documents from the previous
round. These are documents that either were consider to be positive or negative. Finally, in this
task we only submitted results regarding the document retrieval task.

Table 1

Statistics of the testset provided by the organizers of the Synergy task. It presents the number of
questions that were made available in each round and in parenthesis the number of new queries
relatively to the previous set of questions. It also shows the total number of feedback documents that
were available to each question

Round 1 | Round 2 | Round 3 | Round 4
Nr of Questions 72 (+72) 70 (-2) 70 (+0) 64 (-6)
Nr of Feedback Documents - 17820 20601 24268

2.2.1. Dataset Preparation

Upon inspecting the CORD-19 dataset, we concluded that it contains some datapoints that need
further treatment. Some of the issues present are unstructured abstracts, abstracts in foreign
languages and even papers without an abstract. Considering these problems, we created a
module to preprocess and structure the input dataset.

The first step of this process is to remove all articles that don’t contain a title, abstract or
at least one of the three identifiers (PubMed ID, PubMed Central ID, arXiv ID). Afterwards,



considering that very short abstracts contained irrelevant information, we filter out all the
articles whose abstracts contain less than six words. We also observed that multiple articles
were written in other languages (such as Chinese). Unfortunately our models are not designed to
deal with multi-languages, even less with a different character set. To filter these, we leveraged
FastText [9] using the model 1id. 176.bin.

Having done basic filtering, the module advances to a more fine filtering. Each of the
remaining abstracts are split into a list of sentences. To perform this task we used the NLP
module of the Spacy Python library [10]. In the case that some non-English characters passed
through the initial removal of foreign languages (for example abstracts where the main language
was in fact English, but that did contain characters from another language), they are deleted.

We also noticed that multiple articles contained URLSs scattered in the abstract. Once again,
our model is not designed to deal with this, so we filter them out using a regular expression. At
the end, all of these steps contributed to a total reduction of roughly 58% of the total number of
documents in the collection. Note that this number slightly changed from round to round since
the CORD-19 was updated continually.

As an additional step, besides indexing the documents as a whole, we also indexed directly
the individual sentences of the documents to have a more fine grain control of the search.
However, when looking at the training data, it is observable that most of the relevant snippets
are composed of a sequence of sentences. Therefore, we implemented a sentence merging
mechanism in order to concatenate some of the sentences. More specifically, adjacent sentences
are merged until the sum of the sizes does not exceed 80 characters. This also drastically
increases the efficiency of the neural rerankers.

In terms of the training data, these correspond to last year’s questions to the BioASQ 9b
Synergy v1 and v2 challenge and their respective feedback data. Regarding data preparation,
some duplicate questions were identified and merged, and their answers were combined. Af-
terwards, we also identified that for some questions there were documents with inconsistent
labeling. In other words, for a question, the same document could be labeled as both relevant
and irrelevant. In those cases we considered these documents to be irrelevant (as opposed to
unknown or relevant).

Furthermore, considering that articles can be revoked from CORD-19 on each update, it was
necessary to guarantee that each of the relevant documents for a specific question was still
present in the recent version of CORD-19. If this was not the case, those document references
were removed from the feedback data. Finally, questions that did not have any associated
relevant documents were also removed. The final clean training set contained 175 questions,
each with 28.8 positive documents and 149.5 negative documents on average.

2.2.2. Method

Our main method adopted for the Synergy task relies on a relevance feedback approach, since
in [5] it was shown to be a simple but quite effective technique. Therefore, our method directly
follows the ideas presented in [5], however, with a different implementation. More concretely,
we adopted the Pyserini [11] (Python wrapper of Anserini [12]) information retrieval toolkit,
instead of the Elastic Search (ES) engine, due to its increasing popularity within the information
retrieval community and, from our experience, better out-of-the box standard retrieval models.



Similarly to [5], we used the BM25 probabilistic ranking model with query expansion to find
documents that answer biomedical questions. Here, the query expansion acts as the relevance
feedback mechanism, where the intuition is to introduce the most important terms from the
set of positive documents into the original query. Internally, the Anserini uses the rm3 [13]
relevance model to perform the query expansion. First, this model tries to estimate, from
a set of positive feedback data, R, the importance of each document term. Then all of the
terms are normalized and sorted, where the top M are selected to compose the new query.
Additionally, in order to maintain the original query information, the new query weights are
linearly interpolated with the original query weights, which ensures that the original query
terms are present in the new query. After this step, a new BM25 search is performed, where the
previously computed query weights are kept. For a more complete description framed within
the probabilistic framework, refer to Section 3.1.4 in [13]. Finally, it is important to mention that
the rm3 relevance model can be used for relevance or for pseudo-relevance feedback, where
in the first case the set R is provided by the data, as explicit feedback, while in the later case
‘R corresponds to the top-N retrieved by the BM25 ranking model over the original query.
Recalling Table 1, some of the test queries did not have feedback data and in those cases we
performed pseudo-relevance feedback.

Regarding the positive feedback data, R, the obvious choice is to use the documents that are
classified as relevant for each query. But as suggested in [5], we also used the snippet sentences
as the positive feedback data, since, when comparing to a whole document, these are more
focused on the answer. In order to find the best set of parameters for R, M, k1 and b we used
Optuna [14] to search a good combination over the training data.

Besides this method we also tried to train the PARADE-CNN [3] ranking model (refer to
Section 2.3.2 for more details) to rerank the top-100 documents retrieved by the BM25. However,
we did not achieved satisfactory results and hence we did not submit any run with this system.
Nevertheless, for sake of completeness we present on Table 2 our preliminary benchmark, in
terms of MAP@10, between the BM25 and the PARADE-CNN calculated on the same validation
subset. We believe that the scarcity of the data and the difficulty of the questions are the main
reason for the under-performance of the PARADE-CNN reranking model.

Table 2
Comparison of the PARADE-CNN model trained on the Synergy training dataset against the finetuned
BM25 (pyserini)

Method Map@10
BM25 (pyserini) 0.1924
PARADE-CNN [3] 0.1494

2.3. Task 10b Phase A

Task 10B Phase A had five moments of evaluation, also called batches, with an additional
non-official batch at the end of the challenge. In each batch, the organizers provided a set
of biomedical questions for which the teams had 24 hours to find the top-10 most relevant
documents (document retrieval task) and/or to also retrieve the top-10 most relevant snippets



extracted from relevant documents (snippet retrieval task). Each batch contained 90 new
questions, except the sixth batch which only contained 37.

2.3.1. Dataset Preparation

The training dataset for Task 10B consists of all of the previous year’s questions and their
respective relevant information that was annotated by experts. However, since in each year
BioASQ uses different PubMed baselines as document collections this raises an issue of time
inconsistency. For example, questions that belonged to Task 3B had the PubMed 2015 as a
baseline, which means that only documents that where indexed in the 2015 baseline were
consider for retrieval. So, using those questions in the 2022 baseline may produce several
inconsistencies. For example, the article identifier may have changed, the article may have been
removed, the article content may have changed and new articles that answer that question
could have been added. We believe that all of these inconsistencies must be addressed in order
to produce a clean set of training data. To solve this issue, our solution was to ensure that
each question would only use their corresponding baseline. To accomplish that, we firstly
downloaded all the baselines since 2013 and, after that, we iterated through these baselines and
generated a data structure which contained the most recent version of the abstract and title of
each article and kept record of all the baselines in which that article appeared on. Then, when
searching, we filter out the documents that did not appear in that respective question baseline.
This approach ensures that each training question only sees the documents that were available
at the time they were written. Figure 1 shows, for each year’s question set, a distribution of the
removed articles from the top-150 BM25 retrieval. As observable, the older questions (1B, 2B)
have a larger amount of documents that needed to be removed, since these are documents that
were not available at the time that the gold-standard were produced, hence its relevance value
is unknown.

Regarding the preprocessing of the documents, it uses the sentence splitting (using the same
approach as in Synergy) and merging strategy that was also applied to the Cord-19 dataset,
however for this particular case, the foreign charset and URL cleaning was not necessary.

2.3.2. Method

For this task we decided to use a two-stage retrieval system, where we adopted the traditional
BM25 with rm3 (in pseudo-relevance feedback mode) as the first stage ranker and then the
PARADE-CNN [3] model as a top-100 reranking model. Additionally, we also tried the BioASQ
9B Transformer-UPWM [4] model to rerank the same top-100 documents as a way of comparison.

Transformer-based architectures have emerged to the top, as the most adopted models for
almost every NLP task, inclusively information retrieval. However, when considering the
subtask of document retrieval it still remains a challenge to use these type of models, due to the
limited number of tokens that they can process, which are bound by the quadratic complexity
order of the self-attention mechanism. To alleviate this problem, it is practical to divide the input
document into a set of sentences and then use a transformer model to compute a query-sentence
relevance score, that are later aggregated to compute the final query-document relevance score.

Similarly to this paradigm, Li et al. propose a set of PARADE models that use a BERT based
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Figure 1: Distribution of the removed articles from the top-150 BM25 retrieval for each year’s testset.
More precisely, for each year’s edition testset we retrieve the top-150 most relevant articles using the
BM25 from the 2022 PubMed baseline. Then from those 150, we removed the documents that did not
exist at that time.

model to encode query-sentence relevance in a highly dimensional space (reflected in the CLS
token). Then the authors tested several aggregation strategies, like a MultiLayer Perceptron
(MLP), 2-Layer Transformer, and CNN to produce the final document score from the set of query-
sentences CLSs. We decided to adopt the PARADE-CNN model, presented in Figure 2, based
on the reported results and on the fact that the CNN kernel (d x 2 size, where d corresponds
to the CLS dimension, corresponding to a 1D CNN) can easily encode the relative positions of
sentences. The downside of this was that the PARADE-CNN was the only model that did not
have an open-source implementation at that time. Therefore, we made a local implementation of
the model in Tensorflow. Furthermore, in contrast to the original model, we used PubMedBERT
as the transformer query-sentence encoder and during train we did not update its weights. We
believed that this could harm the overall performance, but we were also interested in seeing if
the out-of-the-box projections were good enough for this task. Additionally, we did not possess
the hardware to do such training.

Taking into consideration that we made a local implementation of the PARADE-CNN, we
also decided to adopt the Transformer-UPWM [4] model that was already trained in the BioSAQ
9b data. This way we could benchmark against the PARADE-CNN and have an idea if the
PARADE-CNN implementation was working as expected, since we believe that the results
would be similar.

The Transformer-UPWM (Figure 3) is, as the name suggests, a transformer-based model that
follows the same ideology of dividing a document into sentences, processing each individual
query-sentence pair using a transformer and then aggregating them. However, differently to the
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Figure 2: A general overview of the PARADE-CNN architecture.

PARADE-CNN, this model does not encode the query-sentences pair to a highly dimensional
space, but instead tries to predict a query-relevance score, bounded between 0 and 1. This model
is inspired by the way humans search for information [15, 16]. More precisely, a person usually
scans a document for regions of interest, usually denoted by relevant keywords, then reads it and
finally produces a mental score of relevance. Therefore, to compute the query-sentence score
the model considers the query-sentence relevance score produced by a classifier layer over the
PubMedBERT model and the query-sentence relevance score produced by the “a priori” layer. In
other words, the “a priori” layer tries to find the regions of interest by query-sentence embedding
matching and relative query term importance. For more details about the architecture, consider
our previous work [4].
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Figure 3: A general overview of the Transformer-UPWM architecture.

To train the PARADE-CNN model we used the standard AdamW optimizer with the pairwise
cross-entropy loss. Regarding the negative sampling, we consider as pool of negatives every
document that does not belong to the set of positive documents and as hard negative every
negative document that belongs to the top-100 BM25 ranking order. We tried some negative
sampling strategies, but found that training only with hard negatives seems to be the most
stable approach. Note that the Transformer-UPWM was already pre-trained on BioASQ 9b
data so it was not trained at this phase. The reasons for not training the Transformer-UPWM
model were two fold. The first was that we wanted to focus our efforts on making sure that the



PARADE-CNN model was working correctly, while the other reason was that we also wanted
to see how a one year old model, trained on a one year old dataset handled the new questions
provided by the organizers.

2.4. Task 10b Phase B

Similarly to Phase A, Phase B also had six moments of evaluation, where the sixth was a non-
official batch. Here, the teams also had 24 hours to answer questions of four types, namely ‘yes
or no’, ‘list’, ‘factoid’ and ‘summary’. Due to time constrains we only participated in the ‘yes or
no’ subtask.

2.4.1. Dataset Preparation

Regarding the training data, we used a combination of the testsets from the previous editions
of BioASQ task B. The data consists of a list of questions and the corresponding collections of
snippets, obtained from multiple documents, capable of answering each question. From that
collection of questions we first extracted the ones of type "yesno". Associated with each ‘yes
or no’ question, a boolean label is also given to represent the correct answer (Yes/No) of that
question. To process this dataset, we pair every question (and classification label) with each
snippet. These are then processed, expanded and filtered in several steps as explained next.

In an attempt to increase the size of the dataset, we explored the use of paraphrasing tools.
Initially, we performed tests with T5 Sentence Paraphrasing Model [17]. However, after a
preliminary analysis we opted for the use of QuillBot [18], which offered better results. Also
based on a deep learning architecture, this tool was capable of analyzing text segments and
generating legitimate alternative wordings while preserving the original internal meaning. This
method was applied to increase the number of questions, and corresponding answering snippets.
In order to fairly distribute the generated snippets and questions, their pairings are shuffled.
This means that for a question (may it be a paraphrased or original one), the list of snippets
corresponds to the mixture of original and paraphrased versions.

Previous works in this task describe the use of down sampling strategies based on the
unbalance between "yes" and "no" questions, with the original dataset being heavily skewed
towards "yes" questions [19]. This down sampling however, presents a problem in itself, namely
the fact that not only is the dataset skewed towards "yes" question, but also that "yes" questions
have a higher average of "corroborative snippets”, meaning that the number of input pairs
Question + Snippet will be unbalanced. As a preventive measure we decided to be more
aggressive in the down sampling of "yes" questions making it so that the unbalanced ratio
between "yes" and "no" questions offsets the difference in number of average "corroborative
snippets".

The balanced data obtained was then split into training and validation sets. Different ratios
where experimented, from very small validations sets, that mimicked the size of the test sets
provided by BioASQ, and at the same time provided a larger training set to the model, to more
conventional split ratios (80%/20%) that gave us a better understanding of whether the model
was generalizing.



2.4.2. Method

Our approach to this particular task was to perform a more traditional classification method,
centered on the PubMedBERT deep-learning model (Figure 4). The datapoint input composition
of our model corresponds to the pairing between one question and one corresponding snippet.
This datapoint is fed to the PubMedBERT model (using the two phrase input option), and its
CLS output is retrieved. This CLS is then processed by a configurable amount of dense layers.
The last dense layer of the model has only one output that serves as the pair score to be used
for classification. If this value is less than 0.5 then we consider the answer to be "no", and
"yes" otherwise. Earlier experiments indicated that enabling the training of the internal BERT
layers closest to the output could be beneficial. As such, we also considered this option as an
hyperparameter. For the training setup of the model we used a binary cross entropy (BCE) loss
function paired with the AdamW optimization strategy.
Predictions
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Figure 4: A general overview of the Task 10b phase B Yes/No architecture.

2.4.3. Model Prediction and Optimization

Given our initial approach of using Question + Snippet pairings as the model input, it was nec-
essary for us to create mechanisms that allowed to obtain the classification of a single question
regarding all their snippet pairings. To this end two different approaches were implemented:
Majority voting and Max confidence. The majority voting strategy reaches a consensus based
on the most frequent label (yes or no) for that question. On the other hand the Max Confidence
strategy follows a less democratic approach, where only the (question, snippet) pair with highest
confidence in its classification (value most close to 1 for yes or 0 for no) is used as the final
classification for the correspondent question.

The performance of the model is dependent on a number of variables, from the splitting
approach, to the use of paraphrasing, to the model architecture and its hyperparameters. As such
we tested various combinations for these variables, while tracking their validation performance.
To that end we made use of one of many machine learning tracker tools (Weights and Biases
[20]) in order to log and more easily compare them.



3. Results and Discussion

In this section, for each BioASQ task, we present a description of the systems that we submitted,
their corresponding results followed by a discussion.

3.1. Synergy

Regarding the submissions, due to time constrains we only enrolled in the third and fourth
rounds of the Synergy challenge. Furthermore, after the third round submission we noticed that
our generated outputs erroneously contained the known positive documents, which were fed
as feedback data to our method. This strongly affected our results, as these documents do not
count for the ranking metrics. Table 3 shows a summary with the systems description for each
of the rounds, where the main difference was the source of the positive feedback data, R, used.
System 0 directly used the whole documents as the feedback data, while System 2 uses snippets.
System 1 and 3 are ensemble runs produced by the rank reciprocal fusion (RRF) [21] method,
from slightly variations of hyperparameters on individual runs from the System 0 and System 2,
respectively. Finally, System 4 is an RRF run that combines System 1 and System 3, which are
runs produced with different sources of the positive feedback data (documents and snippets).

Table 3
Summary containing the description of the submitted systems to the BioASQ 10 Synergy challenge
System Round 3 Round 4
System 0 | R = Documents ‘R = Documents
System 1 | RRF -> System 0 RRF -> System 0
System 2 R = Snippets R = Snippets
System 3 | RRF -> System 2 RRF -> System 2
System 4 - RRF -> System 1 and System 3

The official results for each system are presented in Table 4, with the scores achieved by
the first place team presented at the bottom. As previously mentioned, the results of round
3 are under representatives. Nevertheless, it is interesting to see that the systems that used
the snippets as source of feedback data achieved better results when compared to using the
documents as source of feedback data. This result is indicative that when using the snippets
as feedback data, the retrieval system did not score the corresponding positive documents as
higher, suggesting that the query expansion is less biased towards the positive documents.
Regarding the fourth round results, our best submission scored close to the best participation
teams, being only 0.0251 MAP percentage points away of the top score. Another interesting
result was the fact that here the systems that used the documents as source of feedback data
achieved slightly higher results than those using the snippets. This results contradicts the
results achieved by [5] who achieved the best results when using snippets as feedback data. We
believe the main reason behind this is due to the difference in the relevance feedback method
used. More precisely, we used the rm3 relevance model to produce a new weighted query, while
[5] uses ES that implements a more simplistic query expansion mechanism. Additionally, it was
also clear that using RRF resulted in minimal improvements when similar runs are combined



and a much larger improvement when we combined runs that used different source of positive
feedback data (System 4).

Table 4

Batch performance (Rank, Mean Average Precision) of submitted models for the Synergy challenge. Note,
that we had an issue with the third round submission, where the known positive feedback documents
were not removed from the final ranking order

System Round 3 Round 4
# | MAP@10 | # | MAP@10

System 0 17 0.0745 11 0.1244

System 1 16 0.0764 9 0.1288

System 2 1 0.1122 18 0.1152

System 3 10 0.1158 16 0.1192

System 4 - - 7 0.1446
Top Competitor | 1 0.2622 1 0.1697

3.2. Task 10B Phase A

For the phase A challenge we enrolled in all batches, although in the first batch we could only
submit runs using the Transformer-UPWM model trained on last year’s data and not with
the PARADE-CNN model. Table 5 shows a summary containing the characteristics of each
submitted system.

Table 5

Summary containing the description of the submitted systems to the BioASQ 10 B phase A challenge
System Batch 1 Batch 2 Batch 3,4,5 and 6
System 0 | RRF -> T-UPWM RRF -> T-UPWM RRF -> T-UPWM
System 1 | RRF -> T-UPWM RRF -> T-UPWM RRF -> T-UPWM

System 2 | RRF -> T-UPWM | RRF -> T-UPWM + PARADE-CNN | RRF -> T-UPWM + PARADE-CNN
System 3 | RRF -> T-UPWM | RRF -> T-UPWM + PARADE-CNN | RRF -> T-UPWM + PARADE-CNN
System 4 - PARADE-CNN RRF -> T-UPWM

As observable in Table 5, we only submitted one individual run that used the PARADE-CNN
(System 4 on batch 2). That decision was based on pre-challenge experiments that compared
the PARADE-CNN performance trained on exactly the same data under comparable conditions
against the Transformer-UPWM. The results, presented on Table 6, show that the PARADE-CNN
was slightly under-performing when compared to the Transformer-UPWM. Therefore, we made
one single submission using the PARADE-CNN model to confirm if these results hold in the
final testset. We believe that the main reason for this difference in results is related to the fact
that we did not train the encoder transformer layers and hence the pre-trained PubMedBERT
model may be less sensitive to finding matching signals between the query and document. This
becomes more evident when we consider that the Transformer-UPWM utilizes the same frozen
transformer encoder, but has an additional layer (a priori layer) that focuses on finding matching
evidence, hence reinforcing our belief.



Table 6
Comparison of the PARADE-CNN model against the Transfomer-UPWM model. Both models were
trained in the exact same data and under similar conditions

Method Map@10
Transformer-UPWM 0.4623
PARADE-CNN [3] 0.3787

Regarding the results, Table 7 details the achieved performance for each system submitted,
compared to the top competitor at the bottom of the table. Overall, we consider our results to be
above average, with some runs in the top 3 in terms of teams. Our best submissions were those
that used the Transformer-UPWM model, which was trained with last year’s data, which is a
surprising result since we expected this would achieve a lower performance due to a slightly
larger amount of training data. Given this unexpected results, we conducted an additional
experiment following the challenge, where we trained the Transformer-UPWM model using this
year’s training data (see Section 4). Our weakest submission was based on the PARADE-CNN
model, confirming our initial suspicions. However, despite the lower individual performance, it
achieved the best results in batch 2 and 3 when combined with the Transformer-UPWM, which
also suggests that the two models are focusing on different types of matching signals.

Table 7
Batch performance (Rank, Mean Average Precision) of submitted models for the Phase A Document
retrieval challenge

Model Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6
# | MAP | # | MAP | # | MAP | # | MAP | # | MAP | # | MAP
System 0 10 | 0.4098 | 14 | 0.3186 6 0.4352 | 15 | 0.3404 8 0.3734 | 17 | 0.0862
System 1 8 0.4130 | 12 | 0.3223 8 0.4290 | 14 | 0.3502 | 10 | 0.3706 | 18 | 0.0854
System 2 11 | 0.4059 | 11 | 0.3339 9 0.4290 | 12 | 0.3552 | 11 | 0.3704 | 19 | 0.0854
System 3 12 | 0.4042 | 13 | 0.3199 | 13 | 0.4174 | 10 | 0.3613 | 9 0.3718 | 21 | 0.0806
System 4 - - 19 | 0.2813 | 10 | 0.4279 | 13 | 0.3519 6 0.3760 | 14 | 0.0928
Top . 1 0.4805 1 0.3977 1 0.5063 1 0.4058 1 0.4154 1 0.1704
Competitor

3.3. Task 10B Phase B Yes/No

During the challenge, we submitted five different models, four of those following the architecture
described in Section 2.4.2, each with slightly different hyperparameters (see Table 8 for an
overview on the differences). The last model is an ensemble model, that aggregates the results
of several variations of our model using a majority voting strategy (the output label is given
based on the most common predicted label across the ensembled models).

Although we submitted systems for all six batches, in this manuscript we only focus on the
last four. This is due to the first two batches our model not including paraphrasing, which we
determined to be beneficial according to the experiment shown in Table 9.

The paraphrasing strategy adopted was effective, resulting in an increase of 3 percentage
points in F1 score when comparing the best performing model without paraphrasing data



Table 8
Hyperparameter configurations of the submitted models for the Yes/No challenge

Learning | Batch | Nr Nr trainable | Nr dense | Size dense
Model . Dropout
Rate Size epochs | BERT layers | layers layers
System 1 0.001 64 15 0 1 [768] 0.2
System 2 0.0001 64 10 5 1 [768] 0.4
System 3 |  0.0005 64 15 0 1 [192] 0.4
System 4 0.0001 64 10 7 1 [768] 0.4
Table 9

Experiment on the use of paraphrasing data augmentation on the Yes/No challenge

Validation F1
Model w/ Majority Voting
No Paraphrasing 0.8476
Paraphrasing 0.8814

augmentation against the best performing model that used paraphrasing, with a majority voting
approach. Considering this, we opted to use paraphrasing in the subsequent batches. The
performance reached in these is shown on Table 10.

Table 10
Batch performance (Rank, Macro F1) of submitted models for the Yes/No challenge
Batch 3 Batch 4 Batch 5 Batch 6
Model
# | M.F1 # | MF1 | # | MF1 | # | M.F1
System 0 26 | 0.6528 | 21 | 0.7723 | 23 | 0.7846 | 21 | 0.4857
System 1 25 | 0.7024 | 29 | 0.6581 | 28 | 0.7497 | 22 | 0.4857
System 2 24 | 0.7029 | 20 | 0.8634 | 21 | 0.8212 | 2 | 1.0000
System 3 28 | 0.6362 | 23 | 0.7474 | 22 | 0.8212 | 28 | 0.3333
System 4 27 | 0.6528 | 22 | 0.7723 | 24 | 0.7846 | 3 | 1.0000
Top Competitor | 1 1.0000 | 1 1.0000 | 1 0.93 1 1.0000

Overall, the results obtained from our submitted systems are placed within or slightly bellow
the average on all batches. The exception to this pattern is the sixth batch, where two of our
systems placed within the first three spots. These last results were surprisingly high, since we
did not perform any modifications to the system between the batches. Being this last round a
non official batch, we believe that this unexpected results can be attributed to a different data
distribution when compared to the official batches.

4. Post-Challenge results

As previously mentioned, we present on Table 11 a comparison of the Transformer-UPWM
model that was trained on the BioASQ 9B data, against a Transformer-UPWM that was trained
on this year’s data. For both models we trained 6 instances that were used to report the best,
average and ensemble scores in terms of MAP@10 measured on the BioASQ 10b batch 5 testset.



Furthermore, both models used the same training hyperparameters, which were finetuned for
the BioASQ 9b dataset and as such may present some bias towards that data.

Table 11

Direct comparison of last year’s Transformer-UPWM model (BioASQ 9b), with the same model trained
with this year’s training data (BioASQ 10b). We computed the MAP@10 scores, over the BioASQ 10B
Batch 5 testset, of 6 models trained with the 9b and 10b datasets, and report the best individual score,
the average and standard deviation and an ensemble performance with RRF

Data ‘ Best individual ‘ Average ‘ Ensemble (RRF)
BioASQ 10b 0.3823 0.3792 (0.004) 0.3834
BioASQ 9b 0.3776 0.3670 (0.008) 0.3706

As previously suspected, training the model with the BioASQ 10b gave a slight boost in terms
of the results. Even more interestingly, this experience enable us to conclude that the addition
of roughly more 500 biomedical questions (difference between BioASQ 9b and BioASQ 10b)
only gave us a boost of 1 percentage point in terms of MAP@10. This makes us question if the
BioASQ phase A has entered the phase of marginal gains, where exponential more annotated
data would be needed to consistently improving the state-of-the-art.

After this experiment, for the sake of completeness, we also present, in Table 12, the re-
sults of the Transformer-UPWM model trained on the BioASQ 10b data, which we defined
as system 0, against the same model trained on the BioASQ 9b data, defined as system 1, for
all of the evaluation batches. As observable, system 0 consistently outperforms system 1,

Table 12

Performance results (Rank, MAP@10) on the five official batches of RRF runs produced from 6 T-UPWM
models trained on BioASQ 10b and 9b data. Note that the run “RRF-> T-UPWM (BioASQ 9b)” corresponds
to the System-2 from Table 7

System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
# | MAP | # | MAP | # | MAP | # | MAP | # | MAP

0) RRF -> T-UPWM (BioASQ 10b) | 5 | 0.4381 | 12 | 0.3291 | 5 | 0.4795 | 12 | 0.3605 | 6 | 0.3834

1) RRF -> T-UPWM (BioASQ9b) | 8 | 0.4130 | 12 | 0.3223 | 8 | 0.4290 | 14 | 0.3502 | 10 | 0.3706

reinforcing the benefit of training with the additional 500 questions. Overall, we can consider
the improvements to be marginal except on batch 3, where system 0 outscored system 1 by 5
MAP points. Furthermore, we also reported the corresponding BioASQ system ranking position
if we had made submissions with system 0.

5. Conclusion and Future Work

In this paper we detailed our participation on tasks B phase A, B phase B and Synergy of the
tenth edition of the BioASQ challenge. For each task, we described a different method that was
the core of our submissions. Regarding Synergy we tested a relevance feedback based approach,
that despite its simplicity achieved results that were close to the overall average. In task B
phase A, we explored the PARADE-CNN and Transformer-UPWM models, where the later
had been previously trained with last year’s data. Here, we achieved quite interesting results,



namely, the fact that an one year old model remained competitive, raising the question how it
would performed if it was trained with this year’s training data. After additional post-challenge
experiments, we found that the additional training data contributed for an 1 point increase in
terms of MAP@10. Finally on task B phase B, we made use of the PubMedBERT model for
the classification task. Given the relatively small size of the dataset when compared to the
complexity of the model used, we explored and made use of data augmentation techniques
based on paraphrasing. While the inclusion of this data augmentation did indeed show an
increase of 3 points when compared with the basic setup, it was not enough to bring the model
past the average performance of the submissions by other teams.

In terms of future work, we aim to jointly address phase A (document retrieval and snippet
retrieval) and phase B (yes or no), leveraging a multi-objective training paradigm. Furthermore,
for the task b phase B "yes no" question answering, we would like to also explore the integration
of sentiment-word scores into our classification score function, given the results reported on
[22].
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