
LJGG @ CLEF JOKER Task 3: An improved solution
joining with dataset from task 1
Leopoldo Jesús Gutiérrez Galeano1

1University of Cadiz, 28 Paseo de Carlos III, Cádiz, 11003, Spain

Abstract
In this paper, we describe the results of our participation to the CLEF JOKER 2022 Task 3, "Translate
entire phrases containing wordplay". The purpose of this task is the translation of English phrases, which
contain wordplay, to French phrases. Our contribution starts explaining the implementation of a basic
solution, training just one model, using the given data for task 3. Since we wanted to improve results,
we developed a 3-step architecture, which basically is the training of three models: two of them calculate
additional information to concatenate to the English phrase, as input for the third neural network. After
the generation of results, we decided to translate the whole dataset using DeepL translator, in order to
finally compare results between this system and our improved implementation.

Keywords
Wordplay, Pun, Computational Humour, Machine Translation, Neural Networks

1. Introduction

This article contains the strategy for the development of an automatic pun and humour transla-
tion system, proposed in the CLEF Workshop JOKER 2022 [1]. They propose three pilot tasks,
using the datasets they have prepared for each one, and an unshared task, which accepts any
type of submission that uses the provided data. The first pilot task is “classify and explain
instances of wordplay”, the second one is “translate single words containing wordplay” and the
third task is “translate entire phrases containing wordplay”.

We have chosen task 3, which basically requires the translation of English phrases, that
contain wordplay, to French phrases. Due to a classic neural network trained to generate
translations does not usually take care of these kind of senses, we expect better translations
using several models instead of just one.

In order to perform this task, we carried out different approaches. Initially, we implemented a
basic solution, just using the provided data prepared for task 3. We selected the model mT5–base
and we fine–tuned a pre–trained model using the wrapper library SimpleT5. The problem we
have seen was training a simple model, in a simple way, without marking any peculiarities, that
is, passing just an English phrase as input.

Therefore, after that, we decided to perform a more complex strategy, building an architecture
based on three models, through which we could point out characteristic parts for the given

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy
$ leopoldo.gutierrez@uca.es (L. J. Gutiérrez Galeano)
� https://www.linkedin.com/in/leopoldogutierrez (L. J. Gutiérrez Galeano)
� 0000-0001-8322-8470 (L. J. Gutiérrez Galeano)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:leopoldo.gutierrez@uca.es
https://www.linkedin.com/in/leopoldogutierrez
https://orcid.org/0000-0001-8322-8470
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: The first five rows of the provided dataset for task 3

phrases. So, for the development of this experiment, we decided to enlarge the dataset with the
data prepared for the task 1. In this way, at first steps, it is possible to obtain special words from
a given English phrase, so that, building an input based on the mentioned words and the initial
phrase, we could generate a French translation, given the constructed input.

Finally, we decided to use the online translator DeepL, in order to compare results and then
check how good were both systems.

2. Experiments

2.1. Dataset

The provided train data for task 3 contains a set of translated wordplay instances, which have
the following fields:

• id: The wordplay instance unique identifier.
• en: The wordplay text in English.
• fr: The wordplay text in French.

There are five wordplay instances in the Figure 1.

2.2. Models

We have selected the T5 model for our experiments, which is known as Text-to-Text Transfer
Transformer (T5). It is prepared for a diverse set of tasks and we have to keep in mind that all
the tasks are in a "text–to–text" format, so we have to pass text as input and output is text too.
This text-to-text model is prepared to perform different tasks, including translation, question
answering, and classification [2].

We will use the library SimpleT5 for all the experiments since it is a wrapper which makes
easier the use of T5 and mT5 models. This library is built on top of PyTorch–lightning, with
transformers. It is just needed to use Pandas to deal with inputs and outputs, and it is possible to
do any task, such as, summarisation, translation, question–answering, or any other sequence–
to–sequence tasks. This library takes care of import, instantiation, downloading pre–trained
models and training [3].



Figure 2: Loss chart for the easy solution

2.3. Hardware and Software Resources

The resources employed for all the experiments are the library SimpleT5, Pandas and sacreBLEU.
For the development, we have used Jupyter Notebook. Since t5–large and mt5–base are heavy
models, it was needed the use of a high specs machine for the training phase. We used a machine
with a GPU NVIDIA Quadro P6000 and 24GB of GPU memory, 30GB of RAM and 8 vCPUs.
Anyway, we tried t5–base, t5–small and mt5–small but we decided to select the biggest models
for the best machine we could use.

2.4. Previous Experiment

The main objective for the previous experiments is the implementation of a basic solution, based
on the training of just one model, which returns French translations, given English phrases.
After that, the next goal to reach is the use of this experiment as a reference model, in order to
get to know if the model implemented in the main experiment is better.

The main tasks performed to see this experiment through are the following:

• Data cleaning: it is possible to find empty values which leads the model to predict wrong
values after training. Therefore, the first task to do is the elimination of all missing values.

• Preparation of dataset: the selected model expects a dataframe with two columns:
“source_text” and “target_text”. We pass the English phrase as “source_text” because this
is the input value, and the French phrase as “target_text”, since this is what we want to
predict.

• Training: for this step we tried the model mT5–base, which initially could be promising
since it could return good results. We trained this model with source_max_token_len =
512, target_max_token_len = 128, batch_size = 8 and max_epochs = 5. After training, the
best epoch is the fourth and the model accuracy is 0%. This result means that there was
not any literal coincidence between translated phrases and expected phrases. The Figure
2 displays the epoch trend.



Figure 3: Improved Architecture

2.5. Main Experiment

The main objective of this experiment is the implementation of an architecture, composed
by a group of interconnected models, which improve the results of a basic model, like the
implemented in the previous experiment. Another goal is testing and comparing different
models for relevant parts of the implemented architecture, and finally selecting the best to
include in the architecture.

The previous experiment was a fine–tuning of a model with the English phrase as input and
the French translation as output. That was a simple task and results could be better if we try to
improve the system. In this experiment, we have selected an approach based on an architecture
of models, which improve the results. In order to deal with this challenge, we found more data
which could be added to the initial dataset provided for task 3. Since task 3 and task 1 datasets
have a common field, it was possible to enlarge our dataset with two more fields: one of them is
first meaning, which is the first meaning of the pun or wordplay, and the second one is both
meanings, which basically is the disambiguation.

The T5 model accepts more than a simple phrase, so we decided to add more information to
the model input, in order to get better results. For our improved solution, we use an approach
which two or more data are joined used a separator, <sep> [4]. Moreover, there is another
approach which uses the symbol | as separator [5]. Therefore, if we pass the English phrase,
the first meaning and both meanings, joined together with a separator, we realised that the
results were better. In the Figure 3, you can see the architecture with the step 1 model, which
predicts first meaning given the English phrase, the step 2 model, which predicts both meanings
given the English phrase, and the step 3 model, which returns the French phrase, given the
concatenation of the English phrase, a separator, first meaning, another separator and both
meanings.



Figure 4: The first five rows of task 3 data with two fields added from task 1 data

After studying the provided data for all the tasks, we found some kind of relation between
the datasets prepared for task 3 and task 1. The main purpose of improving the experiment
could be fulfilled if we join both datasets, just if we attach additional information to the model
input, in order to obtain better predictions.

The main tasks performed for this experiment are the following:

• Data cleaning: we start with the same data cleaning task performed for the previous
experiments. Besides that, since we are going to join data provided for task 1, we need to
clean the same kind of missing values for that dataset.

• Joining task 3 and task 1 data: the dataset prepared for task 1 contains a bunch of fields,
which three of them are useful for our experiment. The “WORDPLAY” field, in task 1 data,
contains the English phrase, that is, the “en” field in task 3 data. This fact makes possible
joining more fields to the initial dataset. We will add the fields “TARGET_WORD” and
“DISSAMBIGUATION”, which will be renamed to “first_meaning” and “both_meanings”,
respectively. A sample of data, after enlarging the initial dataset with two fields more
from task 1 data can be seen in Figure 4.

• Looking for separators: since the main goal of this experiment is improving results, and
we will reach this purpose by passing the new fields, “first_meaning” and “both_meanings”,
to the model input, we need a way to pass a different input to the model. Due to the
model expects a string as input, we need to build a new string with the English phrase
and both fields. In order to solve this issue, we have to find a proper separator to avoid
ambiguities. For instance, in the Figure 4, you can see that the “both_meanings” field
contains the slash character, therefore we cannot use it as separator. We studied all the
fields we are using and the hash character is used, as well as, the dollar, the “at” symbol
or the ampersand. Finally, we found that the vertical bar was not used in the dataset, so
we have selected that character. In the Figure 5, you can find an outline of how the new
concatenated input is formed.

• Preparing dataset for the three step strategy: our improved 3–step architecture is
composed by three models, which need to be trained. In order to do that, and now that
we have cleaned the data, we have to prepare the three datasets needed for this task.
Since the first step model will predict the first meaning, given an English phrase, we will
create a dataset with two columns: “en” renamed as “source_text” and “first_meaning”



Figure 5: The new concatenated input for the improved architecture

Figure 6: Loss chart for the improved solution - Step 1

renamed as “target_text”. Similarly, the second step model will predict both meanings,
given an English phrase, so we will create a dataset with two columns: “en” renamed as
“source_text” and “both_meanings” renamed as “target_text”. Finally, since the third step
model will predict the French phrase, given a concatenation of the English phrase, first
meaning and both meanings, we will create a dataset with two columns: the concatenated
field named as “source_text” and “fr” renamed as “target_text”.

• Training the step 1 model: for this step, we used the model t5–large, with the following
parameters: source_max_token_len = 50, target_max_token_len = 50, batch_size = 16 and
max_epochs = 10. After training, the best epoch is the seventh and the model accuracy is
79,36%. The Figure 6 contains a chart, which shows train and validation loss with respect
to each epoch.

• Training the step 2 model: we used the same model and parameters used for the step
1 model. In this case, the best epoch is the third and the model accuracy is 19,04%. We
have to keep in mind that the accuracy was calculated by comparing if strings are the
same, that is, we did not study the real accuracy by studying if each result was actually
equivalent or valid. The Figure 7 contains a chart, which shows train and validation loss
with respect to each epoch.

• Training the step 3 model with mt5–base: we tried a different model, mT5–base,
which initially could be promising since it could return better results. We trained this
model with source_max_token_len = 512, target_max_token_len = 128, batch_size = 8
and max_epochs = 5. After training, the best epoch is the fourth and the model accuracy



Figure 7: Loss chart for the improved solution - Step 2

Figure 8: Loss chart for the improved solution - Step 3 with mT5

is 0%. This result means that there was not any literal coincidence between translated
phrases and expected phrases. The Figure 8 contains a chart, which shows train and
validation loss with respect to each epoch.

• Training the step 3 model with t5–large: in this case, we used the same model and
parameters used for steps 1 and 2 models. In this case, after training, the best epoch is the
second and the model accuracy is 0,17%. We have to keep in mind the same difficulties
to get a realistic accuracy than we had for the previous models, due to the comparison
of literal strings. The problem is that we are expecting a concrete translation and the
model returns a translation, which could be valid, but we count it as invalid. The Figure 9
contains a chart, which shows train and validation loss with respect to each epoch.

2.6. Analysis of results

We analysed results using the BLEU score. For the previous experiment, we obtained 4.88 using
the mT5 model. This means that translations generated are almost useless. For the improved
solution, in step 3, we obtained 3.14 for the mT5 model, which means that translations are



Figure 9: Loss chart for the improved solution - Step 3 with T5

almost useless too. However, for the T5 model we got 19.99, which means that it’s hard to get
the gist. We have to say that the obtained score is almost 20, so the feedback could be between
that one and the next one, for scores between 20 and 29, which says that the gist is clear but has
significant errors [6]. Moreover, phrases are in French. Anyway, the third step is better with
t5–large, since we got better BLEU score and better accuracy. Therefore, we have selected the
improved architecture, with t5–large for step 3, as the best implementation.

The results obtained were send to the organization and were ranked as the third best submis-
sion, out of seven. All the teams sent a total 2378 translations. We have seen that this is the third
best submission with more valid translations, 2264, in contrast to 206 not translated phrases and
349 with non sense. This submission generated more untranslated and non sense phrases than
the others. However, 46 phrases have syntax problems and 78 have lexical problems, and just
one submission was worse for both indicators. 1595 translations preserve the lexical field of the
source wordplay, 1327 preserve the sens of the source wordplay and 827 uses comprehensible
terms, which are the fourth best indicators. 261 corresponds to translations that are wordplay,
240 are wordplays that are understandable for general audience, 4 have style shift, e.g. in case
whether a vulgarism is present either in a source wordplay or in a translation but not in both
and 838 hilariousness shift, or translations that were judged much or much less funny than
the source wordplay, which are in the third position. And we sent 9 over–translations, or
translations that have useless multiple wordplay instances when the source text has just one,
which is the worst value [7].

3. Manual translations with DeepL

DeepL is an online translator, which could be used for free with limitations or with a subscription
if we want to use more features. Their translations are direct modifications of the Transformer
and the neural networks of DeepL also contain different parts of this architecture, such as
attention mechanisms [8].

We submitted DeepL as manual translations since we had to copy and paste English phrases
and French translations in batches of 70 or 80 phrases, due to the limitation of characters for



the free version.
The main objective was getting good results and comparing them with the automatic transla-

tions returned by the model implemented in the main experiments.
This results were sent to the organization and were ranked as the best submission. 2378

translations were sent and 2324 were valid, so this submission is the second in valid translations.
39 phrases were not translated, 59 have non sense, 17 have syntax problems, 25 have with
lexical problems and 3 over–translations, and all these indicators obtained the third best values.
The following indicators were the best: 2184 translations preserve lexical field of the source
wordplay, 1938 preserve the sense of the source wordplay, 1188 use comprehensible terms, 373
are translations that are wordplay and 342 have identifiable wordplays. Finally, these submission
indicators were ranked as the second best: 9 have style shift and 930 hilariousness shift [7].

To sum up, DeepL results were better than the improved solution submission for all indicators.
Moreover, it was better than the second classified for all indicators, except for two: over–
translations and style shift [7].

4. Conclusions and Perspectives for future work

Results obtained using DeepL thrown the best results. They have a translation service which
has been improved over the years. In spite of that, the results generated by the developed
experiments are showing that the best results were obtained using an improved architecture of
models. Although the automatic results were ranked in third position, this solution could be
refined in the future.

The main perspective for future work is trying to improve the results, changing the im-
plemented architecture in the main experiment. For step 3, the input was English phrase,
separator, first meaning, separator and both meanings. Another idea could be checking results
if we swap the information in the concatenation step. For instance, it could be possible to get
better translations if we pass first meaning, separator, both meanings, separator and English
phrase. Another additional way could be by adding more data from task 1 dataset, converting to
lowercase all characters or maybe separating step 3 in two models, one for puns and the other
one for wordplays.

Additionally, another model could improve results. For instance, mt5–large, or maybe any
other. Trying different parameters for the model or using T5 directly with PyTorch, instead of
SimpleT5, could be another way to get better translations.

References

[1] L. Ermakova, T. Miller, O. Puchalski, F. Regattin, É. Mathurin, S. Araújo, A.-G. Bosser,
C. Borg, M. Bokiniec, G. L. Corre, B. Jeanjean, R. Hannachi, Ġ. Mallia, G. Matas, M. Saki,
CLEF Workshop JOKER: Automatic Wordplay and Humour Translation, in: M. Hagen,
S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nørvåg, V. Setty (Eds.), Advances in
Information Retrieval, volume 13186, Springer International Publishing, 2022, pp. 355–363.
doi:10.1007/978-3-030-99739-7_45.

http://dx.doi.org/10.1007/978-3-030-99739-7_45


[2] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu,
Exploring the limits of transfer learning with a unified text-to-text transformer, 2019. URL:
https://arxiv.org/abs/1910.10683. doi:10.48550/ARXIV.1910.10683.

[3] R. Shivanand, SIMPLET5 - train T5 models in just 3
lines of code, 2021. URL: https://medium.com/geekculture/
simplet5-train-t5-models-in-just-3-lines-of-code-by-shivanand-roy-2021-354df5ae46ba.

[4] D. Mullick, A. Fyshe, B. Ghanem, Discriminative models can still outperform generative
models in aspect based sentiment analysis, 2022. URL: https://arxiv.org/abs/2206.02892.
doi:10.48550/ARXIV.2206.02892.

[5] W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, Towards generative aspect-based sentiment
analysis, in: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Process-
ing (Volume 2: Short Papers), Association for Computational Linguistics, Online, 2021,
pp. 504–510. URL: https://aclanthology.org/2021.acl-short.64. doi:10.18653/v1/2021.
acl-short.64.

[6] Google, Evaluating models, 2022. URL: https://cloud.google.com/translate/automl/docs/
evaluate.

[7] L. Ermakova, T. Miller, F. Regattin, A.-G. Bosser, É. Mathurin, G. L. Corre, S. Araújo, J. Boccou,
A. Digue, A. Damoy, P. Campen, B. Jeanjean, Overview of JOKER@CLEF 2022: Automatic
Wordplay and Humour Translation workshop, in: A. Barrón-Cedeño, G. Da San Martino,
M. Degli Esposti, F. Sebastiani, C. Macdonald, G. Pasi, A. Hanbury, M. Potthast, G. Faggioli,
N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction.
Proceedings of the Thirteenth International Conference of the CLEF Association (CLEF
2022), 2022, p. 25.

[8] DeepL, How does DeepL work?, 2022. URL: https://www.deepl.com/sv/blog/
how-does-deepl-work.

https://arxiv.org/abs/1910.10683
http://dx.doi.org/10.48550/ARXIV.1910.10683
https://medium.com/geekculture/simplet5-train-t5-models-in-just-3-lines-of-code-by-shivanand-roy-2021-354df5ae46ba
https://medium.com/geekculture/simplet5-train-t5-models-in-just-3-lines-of-code-by-shivanand-roy-2021-354df5ae46ba
https://arxiv.org/abs/2206.02892
http://dx.doi.org/10.48550/ARXIV.2206.02892
https://aclanthology.org/2021.acl-short.64
http://dx.doi.org/10.18653/v1/2021.acl-short.64
http://dx.doi.org/10.18653/v1/2021.acl-short.64
https://cloud.google.com/translate/automl/docs/evaluate
https://cloud.google.com/translate/automl/docs/evaluate
https://www.deepl.com/sv/blog/how-does-deepl-work
https://www.deepl.com/sv/blog/how-does-deepl-work

	1 Introduction
	2 Experiments
	2.1 Dataset
	2.2 Models
	2.3 Hardware and Software Resources
	2.4 Previous Experiment
	2.5 Main Experiment
	2.6 Analysis of results

	3 Manual translations with DeepL
	4 Conclusions and Perspectives for future work

