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Abstract
This paper presents the continuous sweep quantifier, a smoothed adaptation of the median sweep
quantifier. Previous research has shown that the median sweep quantifier is a good quantifier. However,
it is not well understood why it performs well because it is hard to derive its theoretical properties. The
continuous sweep quantifier is a modification of the median sweep quantifier that enables computing
theoretical results. The continuous sweep quantifier 1) uses kernel estimates instead of the empirical
distribution, 2) constructs decision boundaries instead of applying discrete decision rules, and 3) uses the
mean instead of the median. We show that a simplified adaptation of the continuous sweep quantifier
performs similarly to the median sweep quantifier in terms of bias and variance on the LeQua 2022
dataset. The continuous sweep quantifier can therefore be used to provide insights into the median
sweep quantifier by computing theoretical expressions for bias and variance.
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sweep, LeQua 2022

1. Introduction

Quantification Learning, also known as learning to quantify or quantification, is a machine
learning task with the aim to compute the class prevalences from an unlabeled test set [1].
Quantification used to be seen as a side product of classification: a good classifier should also
produce good prevalence estimates. However, Forman has objected against this statement and
showed that simply classifying and counting the estimated labels from a classifier may lead to a
severe bias [2]. Therefore, more advanced techniques are needed.

Over the past decades, specific techniques for quantification learning called quantifiers have
been developed. Binary quantifiers can be categorized into three groups [1]: the group based
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on Classify, Count and Correct, the group based on direct learners, and the group based on
distribution matching [3, 4].

Currently, there is no consensus in the academic literature about which group of techniques
performs best. According to Vapnik’s principle [5], a problem should be solved directly without
solving a more general problem as an intermediate step. Quantification is a more generalized
task than classification. Therefore, Vapnik’s principle implies that quantifiers should be created
without the intermediate step of constructing a classifier [5, 6]. Schumacher compared quantifi-
cation techniques empirically using an extensive simulation study [7]. They conclude that some
techniques based on Classify, Count and Correct, that is, quantifiers that construct a classifier
as an intermediate step, performed best. Especially the median sweep method from Forman
performs well among all popular quantifiers [3]. These two approaches are rather different. An
open question is when and why median sweep is such a good quantifier [7].

In this paper, we take the first step in understanding why median sweep is a good quantifier.
We propose to perform a theoretical analysis. More specifically, we aim to derive the mean
squared error of the median sweep method as a quantifier for the prevalence of the positive class
(𝛼) in a binary classification setting. Fortunately, theoretical results of several threshold-based
quantifiers have already been derived [8, 9, 10, 11, 12]. We aim to extend these results to median
sweep, which is, in fact, an ensemble of threshold-based quantifiers. The key challenge in the
theoretical analysis is the discrete nature of median sweep.

Therefore, this paper introduces the new continuous sweep quantifier. Continuous sweep is a
quantifier that is empirically similar to median sweep. It is constructed to have similar empirical
performance as median sweep and to allow for easier analytical derivations. Since continuous
sweep and median sweep are closely related, we anticipate that thoroughly understanding
the theoretical properties of continuous sweep will also provide insight into the properties of
median sweep. In this paper, we construct the continuous sweep quantifier, study its empirical
performance, and specify a research agenda for the theoretical analysis of this new quantifier.
The remainder of the paper is organized as follows. In Section 2, we will introduce the

mathematical notation and reiterate the mathematical expressions for the common quantifiers
from the groupClassify, Count and Correct, includingmedian sweep. Moreover, wewill introduce
the continuous sweep quantifier and we will show how it is related to the median sweep
quantifier. In Section 3, we will evaluate and compare the performance of median sweep and
continuous sweep using data of the LeQua2022 Task [6]. In Section 4, we will discuss our new
continuous sweep quantifier and provide suggestions for feature research.

2. Methods

In this section, we introduce the continuous sweep quantifier and explain the differences
between the continuous sweep quantifier and the median sweep quantifier. First, we introduce
the notation and reiterate the definition of the median sweep. Second, we present three
theoretical difficulties in analyzing the median sweep quantifier and introduce the continuous
sweep quantifier.



2.1. Notation and median sweep

Consider a population of observations where each observation consists of a feature vector
𝑥 ∈ 𝒳 = ℝ𝑝 and class label 𝑦 ∈ 𝒴 = {+, −}. The feature vector 𝑥 consists of 𝑝 (numeric)
covariate values. Denote a training set of size 𝑛train by 𝐷train where the feature vectors are
independent and identically distributed (i.i.d.) with density 𝑓train. Moreover, we denote a
validation set of size 𝑛val by 𝐷val with corresponding density 𝑓val. Last, denote the test set of
size 𝑛test by 𝐷test with density 𝑓test.

Importantly, the class label 𝑦 is only observed in𝐷train and𝐷val. The class label 𝑦 is unobserved
in𝐷test. The aim of quantification in a binary setting is to estimate the proportion of observations
with a positive label in 𝐷test using the available data and machine learning techniques.

We denote the probability density functions of the feature vector for observations in the posi-
tive and negative class by 𝑓 (+)(𝑥) and 𝑓 (−)(𝑥), respectively. The probability density functions
of the feature vector for the training, validation and test set are each a mixture of 𝑓 (+)(𝑥) and
𝑓 (−)(𝑥), but with different mixture parameters 𝛼train, 𝛼val and 𝛼test, respectively. So, we assume
𝑓train(𝑥) = 𝛼train ⋅ 𝑓 (+)(𝑥) + (1− 𝛼train) ⋅ 𝑓 (−)(𝑥), 𝑓val(𝑥) = 𝛼val ⋅ 𝑓 (+)(𝑥) + (1− 𝛼val) ⋅ 𝑓 (−)(𝑥), and
𝑓test(𝑥) = 𝛼test ⋅ 𝑓 (+)(𝑥) + (1 − 𝛼test) ⋅ 𝑓 (−)(𝑥). In other words, we assume that the distributions
of the positive class in the training, validation, and test set are identical (and we make the same
assumption for the negative class). Moreover, we assume that the mixture parameters differ
across the data sets. The combination of these assumptions is referred to as prior-probability
shift [13].

We consider a soft-classifier ̂𝛿 thatmaps each feature vector 𝑥 to an estimate of 𝑃(𝑌 = +|𝑋 = 𝑥).
The soft-classifier ̂𝛿 can be obtained from a machine learning algorithm which is trained using
the training data 𝐷train. Then, we compute probability estimates ̂𝛿 (𝑥) for all feature vectors
in the validation set 𝐷val. Note that these values can only be interpreted as classification
probabilities if the classifier is properly calibrated. Otherwise, we interpret these values as
scores. With those scores, we can estimate marginal densities for ̂𝛿 (𝑥) for both classes. We
define ̂𝑓 (𝑖) as the estimated marginal probability density function for ̂𝛿 (𝑥) given that 𝑦 = 𝑖. The
true positive rate and false positive rate can be computed by integrating 𝑓 (𝑖). Hence, 𝐹 (+)(𝑥)
denotes the true positive rate and 𝐹 (−)(𝑥) denotes the false positive rate.

Quantifiers of type Classify, Count and Correct use a threshold to make an initial guess of the
prevalence. The threshold value is based on the estimated score that an observation in 𝐷test
has a positive label. Usually, classifiers use a threshold with a score/probability of 1

2 to classify

an observation. Observations with an estimated score larger than or equal to 1
2 are labeled as

positive and observations with an estimated score smaller than 1
2 are labeled as negative. Other

score values could also be chosen as the threshold value. We will define the threshold value
by 𝜃, where we assume 𝜃 ∈ [0, 1] for convenience. Then, observations with an estimated score
larger than 𝜃 are positively labelled and observations with an estimated score smaller than 𝜃 are
negatively labelled.
There are several ways to estimate the prevalence of 𝐷test using 𝐷train and 𝐷val, which we

will discuss in the next subsections.



Classify-and-count (𝛼̂CC)

The most straightforward technique to estimate the prevalence 𝛼 is by simply counting the
number of observations that have a score larger than a certain threshold 𝜃 ∈ [0, 1] in 𝐷test and
dividing it by the total number of observations in 𝐷test. This technique is more commonly
known as the classify-and-count quantifier 𝛼̂CC. The classify-and-count quantifier 𝛼̂CC is not a
good quantifier for 𝛼, even when the underlying classifier performs well. Good classification
performance is not sufficient enough for reliable quantification [1]. The most common threshold
for 𝜃 is 1

2 , which makes sense for classification but is, in general, suboptimal for quantification.

For a biased soft-classifier ̂𝛿 (𝑥) and/or when the prevalences differ across the training, validation
and test set, a threshold of 𝜃 = 0.5 is suboptimal for quantification. Given the notation from the
previous paragraphs, we define the classify-and-count quantifier as

𝛼̂CC(𝐷test, 𝜃) =
1

𝑛test
∑

𝑥∈𝐷test

𝟙{ ̂𝛿(𝑥)≥𝜃}. (1)

In the next subsection, we use the classify-and-count quantifier to define the adjusted-count
quantifier.

Adjusted count (𝛼̂AC)

The adjusted-count quantifier (𝛼̂AC) corrects the classify-and-count quantifier 𝛼̂CC using esti-
mated classification rates. The adjusted-count quantifier uses the true positive rate and false
positive rate for the classifier ̂𝛿 (𝑥) ≥ 𝜃 to adjust the classify-and-count estimate. The two
classification rates are estimated from the validation set. The classification rates of class 𝑖 are
computed by counting the proportion of observations in 𝐷val with a label 𝑦 = 𝑖 that have a
score ̂𝛿 (𝑥) larger than 𝜃. Then, the classification rates are defined as

̂𝐹 (𝑖)(𝐷val, 𝜃) =
∑(𝑥,𝑦)∈𝐷val∶𝑦=𝑖 {𝟙{ ̂𝛿(𝑥)≥𝜃}}

∑𝑦∈𝐷val
{𝟙{𝑦=𝑖}}

. (2)

The adjusted-count quantifier is then derived as

𝛼̂AC(𝐷test, 𝐷val, 𝜃) =
𝛼̂CC(𝐷test, 𝜃) − ̂𝐹 (−)(𝐷val, 𝜃)
̂𝐹 (+)(𝐷val, 𝜃) − ̂𝐹 (−)(𝐷val, 𝜃)

. (3)

In contrast to classify-and-count, the adjusted-count quantifier has been proven to be asymptot-
ically unbiased [8, 10, 12]. The adjusted-count quantifier does not compute reliable prevalence
estimates for each threshold value 𝜃. If 𝜃 is such that the difference between true positive rate
̂𝐹 (+)(𝐷val, 𝜃) and false positive rate ̂𝐹 (−)(𝐷val, 𝜃) is small, then the numerator of Eq. (3) is small,

which, in turn, leads to a large variance of the quantifier [8, 12].



Median sweep (𝛼̂MS)

Themedian sweep quantifier uses the adjusted-count quantifier to compute prevalence estimates
for a range of threshold values. Then, it takes the median value of the computed range of
prevalence estimates as the final estimate [3]. As a remedy for the large variance of the adjusted-
count quantifier, Forman advised to only compute the adjusted-count quantifier for those
threshold values 𝜃 for which the difference between ̂𝐹 (+)(𝐷val, 𝜃) and ̂𝐹 (−)(𝐷val, 𝜃) is bigger than
1
4 [3]. In notation, the median sweep is

𝛼̂MS(𝐷test, 𝐷val) = med ({𝛼̂AC(𝐷test, 𝐷val, 𝜃) ∶ ̂𝐹 (+)(𝐷val, 𝜃) − ̂𝐹 (−)(𝐷val) >
1
4
}) . (4)

This can be simplified by only considering thresholds 𝜃 ∈ { ̂𝛿(𝑥) ∶ 𝑥 ∈ 𝐷test}, which can be
computed easily. Now, we have a finite set of prevalence estimates, which makes it easy to
compute the median.
We implement median sweep by fitting the estimated probabilities/scores of the validation

set 𝐷val to an empirical cumulative density function (ecdf ). The empirical cumulative density
function is computed similarly to the classify-and-count quantifier 𝛼̂𝐶𝐶, but then using the
validation data 𝐷val conditional on the labels. Hence, ̂𝐹 (+)MS (𝑥) defines the function of the true

positive rate using the median sweep paradigm and ̂𝐹 (−)MS (𝑥) defines the function of the false
positive rate using the median sweep paradigm.

2.2. Continuous sweep

In this section, we first explain why it is difficult to derive the mean square error for the median
sweep quantifier. Second, we introduce the continuous sweep quantifier. We introduce two
variants of the continuous sweep quantifier: the original continuous sweep quantifier and the
simplified continuous sweep quantifier.

Difficulties median sweep

In Section 2.1, we explained how the median sweep quantifier works. The median sweep
quantifier has a few properties that make it difficult to derive the mean square error. We present
the three most important reasons.
First, the classify-and-count quantifier 𝛼̂𝐶𝐶 and classification rates ̂𝐹 (−) and ̂𝐹 (+), are inter-

preted as step functions in 𝜃. Step functions are not differentiable, so are therefore difficult to
study analytically. Second, outliers are removed using a complicated data-dependent function,
see Eq. (4). Every test set has a different number of observations that pass the data-dependent
function and therefore computations grow fast since we need to compute the variance for every
number of observations that pass the data-dependent function. Third, it is in general difficult to
compute the mean and variance of the median as a function, especially for complex algorithms
and distributions. Even for proper densities, we need to invert the cumulative density function
to compute the median analytically, which is often unavailable.

In the next subsection, we propose solutions to the problems that occur with median sweep
and we introduce the continuous sweep quantifier.



Continuous sweep quantifier

The continuous sweep quantifier is a smoothed adaptation of the median sweep quantifier. The
continuous sweep quantifier provides solutions for the problems that occur for the median
sweep regarding computing theoretical results.

Instead of using step functions for the classify-and-count quantifier 𝛼̂𝐶𝐶 and the classification
rates ̂𝐹 (−) and ̂𝐹 (+), the continuous sweep quantifier uses continuous functions. If we know
the type of distribution, estimating the classify-and-count quantifier 𝛼̂𝐶𝐶 and the classification
rates ̂𝐹 (−) and ̂𝐹 (+) can be done parametrically with maximum likelihood estimation. If we do
not know the type of distribution, we use kernel methods to estimate the marginal densities.
In this paper, we use kernel estimates to compute the continuous functions for the classify-
and-count quantifier 𝛼̂𝐶𝐶 and the classification rates ̂𝐹 (−) and ̂𝐹 (+). These functions are now
continuous instead of discrete. Then, classification rates ̂𝐹 (−) and ̂𝐹 (+) are kernel cumulative
density functions given a soft-classifier ̂𝛿 (𝑥) and validation data 𝐷val, and where the classify-
and-count quantifier 𝛼̂CC is a kernel cumulative density function given a soft-classifier ̂𝛿 (𝑥) and
test data 𝐷test. Figures 1a, 1b and 1c show some examples. The black dots in Figures 1a and
1b show the observations in 𝐷𝑣𝑎𝑙 where from we construct the empirical density functions for
the true positive rate and the false positive rate. The red lines show the continuous function of
the classification rates using a kernel. The black dots in Figure 1c show the classify-and-count
estimate for each observation in 𝐷test and the red line shows the continuous function of the
classify-and-count quantifier for each threshold value 𝜃. Figure 1d shows two things: the
continuous function of the adjusted-count quantifier using the functions in Figures 1a, 1b, and
1c, and the prevalence estimates of each observation in 𝐷test that we need to compute median
sweep. All continuous functions seem to resemble their discrete equivalent.

With continuous sweep, we should still consider that prevalence estimates for extreme values
of 𝜃 have large variances. With median sweep, we discard every prevalence estimate where the
difference between the classification rates is smaller than 1

4 . In order to keep the differences
between continuous sweep and median sweep as small as possible, we propose to apply the same
decision rule to continuous sweep as to median sweep. Consider two decision boundaries 𝜃𝑙 and
𝜃𝑟, where 𝜃𝑙 is the lower (left) threshold value where ̂𝐹 (+)(𝐷val, 𝜃)− ̂𝐹 (−)(𝐷val, 𝜃) =

1
4 and 𝜃𝑟 is the

upper (right) threshold value where ̂𝐹 (+)(𝐷val, 𝜃) − ̂𝐹 (−)(𝐷val, 𝜃) =
1
4 . In Figure 1d, the decision

boundaries 𝜃𝑙 and 𝜃𝑟 are showed with a vertical orange line. Then we integrate to compute the
area between 𝜃𝑙 and 𝜃𝑟, where ̂𝐹 (+)(𝐷val, 𝜃) − ̂𝐹 (−)(𝐷val, 𝜃) ≥

1
4 , and divide it by the difference

between 𝜃𝑙 and 𝜃𝑟. In Figure 1d, we see a slight difference between the decision boundaries of
the continuous sweep quantifier and the decision rule of the median sweep quantifier. In this
example, the median sweep quantifier allows observations with more extreme threshold values
𝜃 than the continuous sweep quantifier in their calculations. This can be seen by the blue dots
that lay at the outside of the orange decision boundaries. Therefore, the kernels do not exactly
match the discrete observations.

Using the estimated continuous distributions, we can estimate the adjusted-count quantifier
for any threshold. Hence, instead of computing the median of discrete data points, we propose
to use integration across the whole probability range to compute the expected value of (𝛼̂CS).
Finding the median is more complex since we need to find the quantile function of 𝛼̂𝐴𝐶. In
Figure 1d, we see that the function of the adjusted-count quantifier against the threshold values



is not bijective. This property makes it hard to find the inverse function, which enables to
compute the median. Therefore, we propose to compute the (weighted) mean instead of the
median. Even though the median is a more robust estimator, we think that the mean should give
similar estimates because the outliers are discarded using the decision rule. The mean can be
computed by computing the area under the curve using integrals of the continuous functions.

In order to make the continuous sweep quantifier as similar as the median sweep quantifier,
we should weight areas with many observations in 𝐷test more than areas with little observations
in 𝐷test. The probability density function of the observations’ threshold values in 𝐷test ( ̂𝑓𝛿(𝑥)(𝜃))
defines the weights of the continuous sweep quantifier. In fact, this is the (negative value of the)
derivative of the classify-and-count quantifier with respect to 𝜃. We have already computed
the function of the classify-and-count quantifier and can use its derivative with respect to 𝜃 to
compute the weights. Taking into account the decision boundaries, the expected value of the
continuous sweep quantifier 𝛼̂CS is given by

𝛼̂CS(𝐷test, 𝐷val, 𝜃𝑙, 𝜃𝑟) =
1

̂𝐹 (𝜃𝑟) − ̂𝐹 (𝜃𝑙)
∫
𝜃𝑟

𝜃=𝜃𝑙

̂𝑓𝛿(𝑥)(𝜃) ⋅ 𝛼̂𝐴𝐶(𝐷test, 𝐷val, 𝜃) 𝑑𝜃

= 1
𝛼̂CC(𝐷test, 𝜃𝑟) − 𝛼̂AC(𝐷test, 𝜃𝑙) ∫

𝜃𝑟

𝜃=𝜃𝑙
−( 𝑑

𝑑𝜃
𝛼̂𝐶𝐶(𝐷test, 𝜃)) 𝛼̂𝐶𝐶(𝐷test, 𝐷val, 𝜃) 𝑑𝜃

= 1
𝛼̂AC(𝐷test, 𝜃𝑟) − 𝛼̂CC(𝐷test, 𝜃𝑙) ∫

𝜃𝑟

𝜃=𝜃𝑙
−( 𝑑

𝑑𝜃
𝛼̂𝐶𝐶(𝐷test, 𝜃))

𝛼̂𝐶𝐶(𝐷test, 𝜃) − ̂𝐹 (−)(𝐷val, 𝜃)
̂𝐹 (+)(𝐷val, 𝜃) − ̂𝐹 (−)(𝐷val, 𝜃)

𝑑𝜃.

(5)

The integral of Eq. (5) is numerically tedious because it contains many estimates from the
data. In order to reduce numerical complexity, we introduce the simplified continuous sweep
quantifier 𝛼̂SCS. The simplified continuous sweep quantifier does not contain ̂𝑓𝛿(𝑥)(𝜃) in the
integral. The interpretation of leaving out this density is that we no longer weight areas with
many observations in 𝐷test more than areas with little observations in 𝐷test. We believe that
the impact of this omission on the theoretical properties of the quantifier are limited. We
include a brief explanation, as an elaborate theoretical analysis is out of scope of this paper.
First, we note that the adjusted count estimator is asymptotically unbiased for every threshold
value 𝜃 [8, 10, 12]. Hence, the continuous sweep quantifier can be interpreted as a weighted
average of asymptotically unbiased estimators and the simplified continuous sweep quantifier
can be interpreted as an unweighted average of asymptotically unbiased estimators. Both
quantifiers are therefore asymptotically unbiased estimators. The difference between the two
is the asymptotic variance. A more detailed theoretical comparison between median sweep,
continuous sweep, and simplified continuous will be included in a future paper. The key take
home message is that the simplified continuous sweep quantifier is theoretically similar to
the continuous sweep quantifier and has more appealing numerical properties. The simplified
continuous sweep quantifier 𝛼̂SCS that can be computed as

𝛼̂SCS(𝐷test, 𝐷val, 𝜃𝑙, 𝜃𝑟) =
1

𝜃𝑟 − 𝜃𝑙 ∫
𝜃𝑟

𝜃=𝜃𝑙
𝛼̂𝐴𝐶(𝐷test, 𝐷val, 𝜃) 𝑑𝜃

= 1
𝜃𝑟 − 𝜃𝑙 ∫

𝜃𝑟

𝜃=𝜃𝑙

𝛼̂𝐶𝐶(𝐷test, 𝜃) − ̂𝐹 (−)(𝐷val, 𝜃)
̂𝐹 (+)(𝐷val, 𝜃) − ̂𝐹 (−)(𝐷val, 𝜃)

𝑑𝜃. (6)



Concluding, the continuous sweep quantifiers are continuous adaptations of median sweep,
butmakes it easier to compute theoretical results. In the next section, we compare the continuous
sweep quantifiers with the median sweep quantifier with the data provided by the LeQua2022
Task.
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Figure 1: This figure shows the strong numerical similarity between median sweep as in Eq. 4 and our
continuous sweep method as in Eqs. 5 and 6. In subfigures (a)-(c), the red curves are the continuous
version of the discrete median sweep estimates (black dots). In subfigure (d), the black line shows the
estimated adjusted-count value for every threshold value 𝜃 using the curve from subfigures (a)-(c). The
vertical, orange lines show the decision boundaries 𝜃𝑙 and 𝜃𝑟. The blue dots shows the adjusted-count
estimates from median sweep that pass the criterion that the difference between the true positive
rate and the false positive rate is larger than 1

4
, the red dots are the estimates that fail the criterion.

The median sweep quantifier is computed by taking the median of the blue dots in subfigure (d). The
simplified continuous sweep quantifier can be computed by integrating the area between the decision
boundaries of subfigure (d) and divide it by the distance between the decision boundaries. The original
continuous sweep quantifier can be computed by integrating the weighted area between the decision
boundaries of subfigure (d) and divide it by the weighted distance between the decision boundaries.
These weights are based on the classify-and-count quantifier.



3. Evaluation

In this section, we evaluate the continuous sweep quantifiers and themedian sweep quantifier. In
short, the objective is to quantify the prevalence 𝛼 of positive product reviews (from a webshop)
as accurate as possible across 5, 000 test sets. For more information on the quantification task,
we refer to the paper of the LeQua 2022 Task [6]. First, we explain the technical details of our
study. Second, we show the results of the quantifiers on the test datasets. Third, we explain the
similarities and differences between the continuous sweep quantifiers and the median sweep
quantifier regarding the quantification task.

3.1. Technical setup

The analysis is performed using statistical software R version 4.1.3 [14]. Besides the core
packages, we used tidyverse and tidymodels [15, 16]. The training data consists of 5, 000
observations, each with 300 covariates and a label on whether the review is positive or negative.
The training set is imbalanced: 3, 870 reviews are positive and 1, 130 reviews are negative. We
randomly split this dataset in two parts: a training set 𝐷train containing 4, 000 observations and
validation set 𝐷val containing 1, 000 observations from the complete training data. The training
data 𝐷train was balanced, which means that some of the negatively labelled observations are
replicated to match the number of positively labelled observations.

Our classification model was a support vector machine (SVM) [17], denoted by ̂𝛿. The SVM is
trainedwith the training data𝐷train. Themodel had a linear kernel boundary and a regularisation
parameter 𝐶 = 1. We converted the decision values of the SVM to probabilities/scores using
Platt scaling [18], such that we could use the theory of the previous section.

We computed the classify-and-count estimator 𝛼̂CC and classification rates 𝐹 (+)MS (𝑥) and 𝐹
(−)
MS (𝑥)

for the median sweep quantifier using the ecdf function. The ecdf function fits a empirical step
function from the input data.

We computed the classify-and-count estimator 𝛼̂CC and classification rates 𝐹 (+)CS (𝑥) and 𝐹 (−)CS (𝑥)
for the continuous sweep quantifiers using the kcde function from the ks package [19]. Moreover,
we computed ̂𝑓𝛿(𝑥)(𝜃) using the kde function from the same ks package. We added no additional
arguments for both functions, except the boundaries for the estimated probabilities, which are
set to 0 and 1.

3.2. Results

In this section, we evaluated the median sweep quantifier and the continuous sweep quantifiers
on the test sets of the LeQua2022 task. First, we compared the median sweep quantifier and
the continuous sweep quantifiers with the true prevalences. Second, we compared the median
sweep quantifier with the continuous sweep quantifiers.
First, we evaluated the median sweep quantifier on the test sets. Figures 2a, 2b plot the

estimated prevalence by the median sweep quantifier against the true prevalence, and the
residuals. Obviously, the error of very small estimated prevalences is positive and the error of
the very large estimated prevalence is negative. Moreover, it seems that there is a small positive
bias among the estimated prevalences.



Table 1
Comparing summary statistics between the median sweep and continuous sweep quantifiers with the
test sets.

Quantifier Bias Variance MAE
Continuous sweep 0.02565 0.00302 0.0473
Simplified continuous sweep -0.00916 0.00151 0.0317
Median sweep 0.00650 0.00129 0.0289

Second, we evaluate the continuous sweep quantifiers on the test sets. Figure 2c and 2e plots
the estimated prevalence by the continuous sweep quantifiers against the true prevalence, Figure
2d and 2f plot the estimated prevalence by the continuous sweep quantifiers against the residuals.
We see different results between the continuous sweep quantifiers. The continuous sweep
quantifier performs worse than the simplified continuous sweep quantifier: the continuous
sweep quantifier has a large bias for large prevalence values and it has more variance than
the simplified continuous sweep quantifier. It is clear that the simplified continuous sweep
quantifier performs better than the original continuous sweep quantifier and therefore, we will
now only compare the simplified continuous sweep quantifier with the median sweep quantifier.

When we compare the median sweep quantifier with the simplified continuous sweep quan-
tifier, we see some similarities and differences. The two quantifiers seem to have only little
bias across the range of prevalences, however, the direction of the bias is different. Moreover,
the pattern of the bias is different. The bias of the median sweep quantifier is monotonically
increasing (Figure 2b) while the bias of the simplified continuous sweep quantifier seems to have
a local minimum and a local maximum (Figure 2f). The variance of the simplified continuous
sweep quantifier is slightly larger than the variance of the median sweep quantifier, see Table 1,
hence the mean absolute error (MAE) of the simplified continuous sweep quantifier is slightly
larger than the MAE of the median sweep quantifier.

The simplified continuous sweep quantifier has more variance than the median sweep quan-
tifier. A reason could be that the mean is more sensitive to extreme values than the median.
Figure 3 shows nine examples of the adjusted-count integral and the median sweep estimates.
Remarkable is that the continuous sweep function is close to the discrete estimates over the
whole range of 𝜃, except around the value of 𝜃𝑟. This difference can be a possible cause of the
small difference between the continuous sweep quantifier and the median sweep quantifier.

Concluding, the simplified continuous sweep quantifier is a quantifier that performs slightly
worse than the median sweep quantifier using the procedure described in this section. The
original continuous sweep quantifier performs much worse than the other two quantifiers. The
results for the simplified continuous sweep quantifier and the median sweep quantifier are
similar and we believe that we can use the (simplified) continuous sweep quantifier to compute
theoretical results that are related to the median sweep quantifier.
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(a) Median sweep against true prevalences
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(b) Fitted residuals median sweep
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(c) Continuous sweep against true prevalences
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(d) Fitted residuals continuous sweep
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(e) Simplified continuous sweep against true
prevalences
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(f) Fitted residuals simplified continuous sweep

Figure 2: Quantifiers against true prevalence among 5, 000 test sets. The fitted red lines plot the line
where the estimated prevalence is equal to the true prevalence. The blue lines plot a fitted GAM-model
representing the bias among the prevalences.
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Figure 3: Nine examples of the adjusted-count integral. The black line denotes the estimated adjusted
count quantifier at threshold 𝜃 for a development set. The orange vertical lines are the two decision
boundaries 𝜃𝑙 and 𝜃𝑟 and the grey horizontal lines denote the prevalence of each development set. The
blue dots show the adjusted-count estimates from the median sweep that pass the criterion that the
difference between the true positive rate and the false positive rate is larger than 1

4
, and the red dots are

the estimates that fail the criterion.



4. Conclusion and Discussion

The goal of this paper was to design the continuous sweep quantifier, study its empirical
performance, and specify a research agenda for the theoretical analysis of this new quantifier.
In this paper, we constructed the continuous sweep quantifier. We provided two versions

of the continuous sweep quantifier: the original continuous sweep quantifier where every
threshold is weighted with the classify-and-count quantifier and the simplified continuous
sweep quantifier without weights. The continuous sweep quantifiers are based on the well-
known median sweep quantifier. Previous research has shown that the median sweep quantifier
is a good quantifier. However, it is not well understood why it performs well because it is hard
to derive its theoretical properties. The median sweep quantifier uses empirical distributions
for the classify-and-count quantifier 𝛼̂AC and the classification rates 𝐹 (+)(𝑥) and 𝐹 (−)(𝑥) which
makes it hard to do proper calculations on, like differentiating and integrating. Moreover,
median sweep uses discrete decision rules to remove outliers, which makes the calculations
more complicated. Last, the median is hard to compute analytically since the functions of the
prevalence 𝛼 against threshold 𝜃 is non-bijective. Therefore, we proposed a new quantifier
named the continuous sweep. The continuous sweep quantifier is a modification of the median
sweep quantifier that enables computing theoretical results. The continuous sweep quantifier 1)
used kernel estimates instead of the empirical distribution, 2) constructed decision boundaries
instead of applying discrete decision rules, and 3) used the mean instead of the median. Figure
1 showed that the continuous functions are closely related to the empirical functions.

The simplified continuous sweep quantifier performed similar to the median sweep quantifier
in terms of bias and variance. The original continuous sweep quantifier performed much worse
than the simplified continuous sweep quantifier. Both continuous sweep quantifiers can be
further optimized by choosing better kernels and other hyper-parameters.

The outline for the theoretical agenda is separated into two parts: defining the assumptions
of the continuous distributions, and second we discuss how to compute the theoretical results.

First, we make assumptions about the continuous distributions. In this paper, the continuous
distributions are kernels with default parameters estimated from the training and validation
data. Deriving theoretical results from default kernels is still a cumbersome task. Therefore, we
can make assumptions on the distributions. We start using basic distributional distributions
such as the uniform. Later on, we can extend it to more complex distributional distributions
such as the beta.

Second, we discuss how to compute the theoretical results. In the first step, we assume that
the classification rates follow a uniform distribution where the limits are given. Then, we can
compute the expected value of the classify-and-count quantifier for each prevalence 𝛼 over
each threshold value 𝜃. Adding the information of the distributions of the classification rates,
we can compute the expected value of the adjusted-count quantifier using [8] and iterate over
the whole range of 𝜃 to compute the expected value of the continuous sweep quantifier. We
can apply a similar strategy for the variance. Combining the expected value and the variance
results in a value for the mean square error for the continuous sweep quantifier. Having the
mean square error of the continuous sweep quantifier, we can compare it with the mean square
error for other quantifiers like the adjusted count, calibration or mixed quantifier [8, 9, 10].
After computing theoretical results for the continuous sweep quantifier, we can further im-



prove the continuous sweep quantifier. The continuous sweep quantifier has been constructed to
compute theoretical results for the median sweep quantifier. With innovative techniques regard-
ing kernel estimates and handling large variances, we can improve the predictive performance
of the continuous sweep quantifier.
In conclusion, the continuous sweep quantifier can be used to understand median sweep

more thoroughly. It enables us to compute theoretical results for bias and variance in future
papers.

References

[1] P. González, A. Castaño, N. V. Chawla, J. Coz, A review on quantification learning, ACM
Computing Surveys 50 (2017) 74:1–74:40.

[2] G. Forman, Counting Positives Accurately Despite Inaccurate Classification, volume
3720, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 564–575. URL: http:
//link.springer.com/10.1007/11564096_55, series Title: Lecture Notes in Computer Sci-
ence DOI: 10.1007/11564096_55.

[3] G. Forman, Quantifying counts and costs via classification, Data Mining and Knowledge
Discovery 17 (2008) 164–206. URL: http://link.springer.com/10.1007/s10618-008-0097-y.
doi:10.1007/s10618- 008- 0097- y .

[4] L. Milli, A. Monreale, G. Rossetti, F. Giannotti, D. Pedreschi, F. Sebastiani, Quantification
trees, IEEE, 2013, p. 528–536.

[5] V. N. Vapnik, Statistical learning theory, 1998.
[6] A. Esuli, A. Moreo, F. Sebastiani, Lequa@clef2022: Learning to quantify, 2021. URL: https:

//arxiv.org/abs/2111.11249. doi:10.48550/ARXIV.2111.11249 .
[7] T. Schumacher, M. Strohmaier, F. Lemmerich, A comparative evaluation of quantifica-

tion methods, arXiv:2103.03223 [cs] (2021). URL: http://arxiv.org/abs/2103.03223, arXiv:
2103.03223.

[8] K. Kloos, Q. Meertens, S. Scholtus, J. Karch, Comparing correction methods to reduce
misclassification bias, Springer International Publishing, Cham, 2021, pp. 64–90.

[9] K. Kloos, A new generic method to improve machine learning applications in official
statistics, Statistical Journal of the IAOS 37 (2021) 1181–1196. URL: http://dx.doi.org/10.
3233/SJI-210885. doi:10.3233/sji- 210885 .

[10] Q. A. Meertens, C. G. H. Diks, H. J. Van Den Herik, F. W. Takes, Understanding the output
quality of official statistics that are based on machine learning algorithms, 2021.

[11] D. Tasche, Fisher consistency for prior probability shift, The Journal of Machine Learning
Research 18 (2017) 3338–3369.

[12] D. Tasche, Minimising quantifier variance under prior probability shift, 2021. URL: https:
//arxiv.org/abs/2107.08209. doi:10.48550/ARXIV.2107.08209 .

[13] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla, F. Herrera, A unifying
view on dataset shift in classification, Pattern recognition 45 (2012) 521–530.

[14] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation
for Statistical Computing, Vienna, Austria, 2021. URL: https://www.R-project.org/.

[15] H. Wickham, M. Averick, J. Bryan, W. Chang, L. McGowan, R. François, G. Grolemund,

http://link.springer.com/10.1007/11564096_55
http://link.springer.com/10.1007/11564096_55
http://link.springer.com/10.1007/s10618-008-0097-y
http://dx.doi.org/10.1007/s10618-008-0097-y
https://arxiv.org/abs/2111.11249
https://arxiv.org/abs/2111.11249
http://dx.doi.org/10.48550/ARXIV.2111.11249
http://arxiv.org/abs/2103.03223
http://dx.doi.org/10.3233/SJI-210885
http://dx.doi.org/10.3233/SJI-210885
http://dx.doi.org/10.3233/sji-210885
https://arxiv.org/abs/2107.08209
https://arxiv.org/abs/2107.08209
http://dx.doi.org/10.48550/ARXIV.2107.08209
https://www.R-project.org/


A. Hayes, L. Henry, J. Hester, M. Kuhn, T. Pedersen, E. Miller, S. Bache, K. Müller, J. Ooms,
D. Robinson, D. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, H. Yutani,
Welcome to the tidyverse, J. Open Source Softw. 4 (2019) 1686. URL: http://dx.doi.org/10.
21105/joss.01686. doi:10.21105/joss.01686 .

[16] M. Kuhn, H. Wickham, Tidymodels: a collection of packages for modeling and machine
learning using tidyverse principles., 2020. URL: https://www.tidymodels.org.

[17] J. H. Friedman, T. Hastie, R. Tibshirani, et al., The elements of statistical learning, Springer,
New York, 2001. doi:10.1007/978- 0- 387- 84858- 7 .

[18] A. Karatzoglou, A. Smola, K. Hornik, A. Zeileis, kernlab – an S4 package for kernel methods
in R, 2004. URL: http://www.jstatsoft.org/v11/i09/.

[19] T. Duong, ks: Kernel Smoothing, 2022. URL: https://CRAN.R-project.org/package=ks, r
package version 1.13.4.

http://dx.doi.org/10.21105/joss.01686
http://dx.doi.org/10.21105/joss.01686
http://dx.doi.org/10.21105/joss.01686
https://www.tidymodels.org
http://dx.doi.org/10.1007/978-0-387-84858-7
http://www.jstatsoft.org/v11/i09/
https://CRAN.R-project.org/package=ks

	1 Introduction
	2 Methods
	2.1 Notation and median sweep
	2.2 Continuous sweep

	3 Evaluation
	3.1 Technical setup
	3.2 Results

	4 Conclusion and Discussion

