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Abstract
Automatic snake species identification based on non-standardized photographs is an important task to
improve the medical treatment of snake bites in developing countries. To overcome this problem, the
SnakeCLEF 2022 challenge provides a large data set containing photographs and geospatial data for
1,572 snake species. This paper describes the participation of the FHDO Biomedical Computer Science
Group (BCSG) in this challenge. The presented experiments included object detection with You Only
Look Once (YOLO) v5, feature concatenation, and multiplication with prior probabilities of regional
metadata. The experiments showed that object detection, geospatial feature concatenation, Test Time
Augmentation (TTA), and multiplication with regional prior probabilities can improve the detection task.
The best results in the challenge were achieved by an ensemble model combining three EfficientNet-B4,
two EfficientNet-v2-M, one EfficientNet-B5, and one ConvNeXt model. The ensemble reached an 𝐹 𝑝𝑢𝑏

1

score of 75.426 % and an 𝐹 𝑝𝑟𝑖𝑣
1 score of 70.798 %.
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1. Introduction

This paper presents the participation of University of Applied Sciences and Arts Dortmund
(FHDO) Biomedical Computer Science Group (BCSG) at the Conference of Labs of the Evaluation
Forum (CLEF) 20221 SnakeCLEF [1] challenge2 for snake species identification. This challenge
is part of the LifeCLEF 2022 [2, 3] research platform focusing on the automated identification of
species. The LifeCLEF platform consists of five data-driven challenges. The code to reproduce
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the participation is available online3.
The annual mortality of snakebites is between 81,000 and 138,000 people [4]. In addition,

400,000 victims of snakebites suffer from incurable physical and psychological disabilities each
year [4]. Identifying the snake species might help to administer the right antivenom [5] and
thus reduce the number of victims. Additionally, the protection of harmful snakes could be
improved using snake species identification, by reducing the number of snakes that were killed
out of people’s fear [6].

The SnakeCLEF challenge aims to feature data-driven analysis and thus improve the iden-
tification of snake species based on non-standardized photographs. This paper summarizes
the experiments and results of FHDO BCSG for the SnakeCLEF 2022 challenge. The presented
approach expands the FHDO BCSG submissions [7, 8] for SnakeCLEF 2020 [9] and SnakeCLEF
2021 [10].

In comparison to the participation in SnakeCLEF 2021 [8], the classification models were
expanded using ConvNeXt [11] and EfficientNet-v2 [12] models. For object detection, You only
look once (YOLO) v5 [13] was introduced and compared to the previously used Mask Region-
Based Convolutional Neural Network (Mask-RCNN) [14]. Geospatial feature concatenation was
implemented to combine image and location information. Additionally, the effect of different
optimizers, including Sharpness Aware Minimization (SAM) [15] and AdamW [16], as well as
learning rate schedulers, including Cosine Annealing with Warm Restarts (CAWR) [17] was
investigated.

The article is structured as follows: In Section 2, the related work in this field of research
is described. Section 3 summarizes the SnakeCLEF 2022 data set and Section 4 describes the
Machine Learning (ML) workflow and the methods used for implementation. Section 5 shows
the results achieved using this workflow. Finally, the results are summarized and concluded in
Section 6 which also mentions limitations and gives an outlook on future work.

2. Related Work

In early research [18], classical ML requiring manual extraction of features, was used to identify
snake species. For example, taxonomic features of 1,299 images were extracted to differentiate
six species in a semiautomatic approach [18]. However, manual feature extraction is a tedious
task. To omit manual feature extraction, field-based approaches were developed which collect
unstructured photographs and extract textural or deep learning features from snake images.
Unfortunately, those images often suffered from poor image quality.

Color and Edge Directivity Descriptors (CEDDs) [19] are extracted as textural features in [20].
The data set included 349 images of 22 Malaysian snake species recorded at the Perlis Snake Park,
Malaysia. The rarest species in this data set included three images. For the final classification,
five classical ML models were applied. The best accuracy of 89.22 % was obtained for the
nearest neighbor classifier.

In recently published studies [21, 22, 23, 24, 25] deep learning-based approaches are used for
snake species identification. Some of these studies were designed as object detection tasks.

3Participation of FHDO BCSG at SnakeCLEF 2022: https://github.com/DiffPro-ML/SnakeCLEF_2022_FHDO_
BCSG [Last accessed: 2022-06-30].
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For example, different deep learning-based object detection methods were compared to each
other in [21]. The data set which was extracted from ImageNet-1k [26] and augmented by a
Google Image search4 included 1,027 images of eleven Australian species. The least frequent
class contained 60 images. The best mean Average Precision (mAP) was achieved for a Faster
Region-Based Convolutional Neural Network (Faster RCNN) [27] with a ResNet [28] backbone.

A similar approach [22] used Faster RCNN with different detection layers. The data set which
was collected using three data sources contained 250 images of nine species occurring on the
Galápagos Islands, Ecuador. To collect the data set, two internet searches performed on the
platforms Google and Flickr and an image data set provided by the Ecuadorian Institution
of Tropical Herping5 were accessed. Similar to the previously described method, the ResNet
backbone achieved the best accuracy of 75 %.

Further studies performed deep learning-based classification tasks. For example, the per-
formances of three deep learning networks, namely VGG16 [29], DenseNet161 [30], and Mo-
bileNetV2 [31] are compared in [23]. The data set contained 3,050 images of 28 species. As a
pre-processing step, the GrabCut [32] algorithm was applied to extract the snakes from the
image background. An accuracy of 72 % was reached for the test data set and the DenseNet161
architecture.

A deep Siamese network [33] for one-shot learning was developed in [34]. The network was
trained on 200 images of the World Health Organization (WHO) venomous snake database.
This data set included three to 16 images per class.

Although the previously described methods each investigated less than 30 distinguishable
species, more than 600 out of 3,700 snake species worldwide are medically relevant [35].

The SnakeCLEF challenge [10, 35] overcomes this disadvantage by providing a more diverse
data set containing images of more than 1,000 species. Multiple deep learning approaches were
successfully submitted in previous rounds of this challenge.

In SnakeCLEF 2020 [9] the winning approach [36] used a ResNet architecture pre-trained on
ImageNet-21k [37] and reached a macro-averaging 𝐹1 score of 62.54 %. The FHDO BCSG [7]
combined object detection and image classification using a Mask-RCNN [14] instance detection
framework and an EfficientNet-B4 [38] classification model. This method reached a macro-
averaging 𝐹1 score of 40.35 %. In post competition experiments, the score could be optimized
to 59.4 %.

The winning approach [39] of SnakeCLEF 2021 combined object detection with an EfficientDet-
D1 [40] model, and an EfficientNet-B0 classifier as well as likelihood weighting to fuse image
and location information. The best model reached a macro-averaging 𝐹1 score of 90.30 %.

Experiments with multiple Convolutional Neural Network (CNN) architectures were pre-
sented in [41]. The best 𝐹1 score of 83.0 % was reached for an ensemble model combining
two ResNeSt [42] models with a ResNet [28], and a ResNeXt [43] model. The ensemble was
generated using a majority voting of the top-1 predictions of the individual models.

The FHDO BCSG [8] expanded the SnakeCLEF 2020 workflow by combining object detection
with EfficientNets and Vision Transformers (ViT) [44]. The best model was an ensemble

4Google Image Search: https://images.google.com/imghp?hl=de&gl=de&gws_rd=ssl, [Last accessed: 2022-06-
30].

5Tropical Herping: https://www.tropicalherping.com/, [Last accessed: 2022-06-30].
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averaging the model predictions of an EfficientNet-B4 model and ViTs. This submission reached
a macro-averaging 𝐹1 score of 78.75 %.

This research expands the ML workflow developed from FHDO BCSG [7, 8] in SnakeCLEF
2020 and SnakeCLEF 2021 by adding a new geospatial feature concatenation strategy, using
YOLOv5 for object detection, and implementing diverse classification model architectures,
learning rate schedulers as well as optimizers.

3. Data Set

The SnakeCLEF 2022 data set included 318,531 images of 187,129 observations. The training
data set contained 270,251 (84.84 %) images belonging to 158,698 (84.81 %) observations. The
remaining 48,280 (15.16 %) images pertaining to 28,431 (15.19 %) observations were used as a
test set. The data set contains images of 1,572 different snake species and originated from the
iNaturalist platform6.

The distribution of images per snake species is highly imbalanced. The most frequent species
was the Natrix natrix containing 5,518 images, for 20 species only three images were
collected.

In addition to the photographs, metadata that provides information about the region (country),
the country code (code), and if the species is endemic (endemic) is available. Most images
(𝑛 = 63, 194; 23.38 %) are taken in the US. The region with the most images was Texas
(𝑛 = 15, 138; 5.60 %). For 10,980 images (4.06 %) no information about the region was avail-
able. No country code was available for 8,487 training images (3.14 %). Of the 1,572 species,
267 (16.98 %) were endemic.

4. Methods

In the following, the methods and the ML workflow, which was visualized in Figure 1 are
elaborated. The workflow was implemented in a modular way, thus, different submissions
can investigate the effect of different parts and their interactions. The programming language
Python v3.6.9 [45] was used for implementation.

The workflow divides into two stages, the pre-processing and the classification stage. The
pre-processing stage starts with loading the image data set, followed by an optional object
detection step. Object detection was successfully applied as a pre-processing step in previous
snake species classification tasks [7, 8, 39, 46]. The object detection was followed by an image
pre-processing step which scales the images to a uniform, quadratic size. The classification
stage starts with image augmentation to make the subsequent deep learning models more
robust [47]. EfficientNets, EfficientNet-v2 [12], and ConvNeXt [11] models were trained to
distinguish between snake species. As the data set included multiple images per observation,
multi-instance learning summarized the predictions for each observation. Finally, optional
metadata multiplication was implemented. In this step, the model’s prediction probabilities and

6iNaturalist: https://www.inaturalist.org/, [Last accessed: 2022-06-30].
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Figure 1: ML workflow used to differentiate between snake species.

the a priori probability distribution of the snake species given the regional information were
implemented.

4.1. Object Detection

The idea of using object detection as a pre-processing step for species classification originated
from the winning team [46] of round 2 of the AICrowd Snake Species Identification Chal-
lenge [35]. The aim is to focus the classification model on the object that should be classified.

The starting point for the training of the YOLOv5, as well as the Mask-RCNN object detection
model, were 1,800 manually annotated snake images taken from last year’s SnakeCLEF 20217

data set. Those were randomly split into a training (𝑛 = 1, 440, 80.0 %) and a validation
(𝑛 = 360, 20.0 %) set. The object detection results are summarized in Section 5.1.

4.1.1. YOLOv5

YOLOv58, as a state-of-the-art object detection framework, is used in this work to detect snakes
in non-standardized photographs and differentiate them from the background.

Unlike the object detectors before, which examine many potential regions in an image to find
present objects, YOLO [13] directly works on the whole image. For this, YOLO divides the whole

7Imageclef.org. 2022. SnakeCLEF 2021 | ImageCLEF / LifeCLEF - Multimedia Retrieval in CLEF. https://www.
imageclef.org/SnakeCLEF2021 [Last accessed: 2022-06-30].

8Glenn Jocher et al., 2022. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export
and Inference. https://zenodo.org/record/6222936 [Last accessed: 2022-06-30].
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image into N×N grid cells, and with only one forward pass through a trained YOLOv5 model,
several bounding boxes are predicted for each cell. The cell which contains the object’s center
points is mainly responsible for detecting the object. The metric Intersection over Union (IoU)
is used to evaluate object localization. In the case that multiple bounding boxes for different
objects are in an image, non-max suppression (NMS) [48] is used to make sure that objects
are only detected once. NMS works in that way that first, it looks for class probabilities (𝑃𝑐)
associated with each of these detections for particular objects. Secondly, the largest 𝑃𝑐, which
is the most confident detection for the object, is taken. Next, NMS is analyzing the remaining
bounding boxes and selects all bounding boxes which have a high IoU with the bounding box of
highest 𝑃𝑐 and suppresses them. This procedure is repeated on the remaining bounding boxes.
Multiple anchor boxes are used if more than one central point of an object or an overlapping of
a different object in the same cell. These anchor box shapes are slightly different, which can
also help capture various shapes of objects.

First of all, a YOLOv5l model (later referred to as baseline) was trained for 200 epochs with
a batch size of 14 and an image input size of 640 on 1,800 manually annotated snake images,
taken from the SnakeCLEF 2021 data set randomly split into a training (𝑛 = 1, 440, 80.0 %)
and a validation (𝑛 = 360, 20.0 %) set. Additionally, the pre-trained weights and the default
hyperparameters for the YOLOv5l model were used.

This baseline model was used to predict bounding boxes on all images from the SnakeCLEF
20229 data set. Only the bounding boxes with a minimum confidence p of at least 85.0 %
were selected. The images found with their corresponding bounding boxes were then split
without further evaluation of the bounding box quality into training or validation sets based
on the observation_id from the given metadata. The 1,800 manually annotated images of the
SnakeCLEF 2021 data set were no longer used for training or validation.

This training and validation set, which only contains bounding boxes with at least a confidence
of 85.0 %, was used to train another YOLOv5l model (later referenced to as YOLOv5l_basic)
for 50 epochs, with a batch size of 24 and an image input size of 640. In addition, the pre-trained
weights and the default hyperparameters for the YOLOv5l model were used. This trained model
was then used for object detection.

Self-training [49] with a feature query on the confidence value of each bounding box was
carried out in a higher number of iterations in the following experiment by starting with
the best weights of the baseline model and default hyperparameters of YOLOv5, predicting
bounding boxes for all snake images in the SnakeCLEF 2022 data set. Furthermore, the minimum
confidence p of 70.0 % was specified for this first run to save only well-recognizable snakes
and their bounding box for the next run. These bounding boxes were split without further
evaluation of the bounding box quality together with the corresponding snake image using the
observation_id in the metadata, either for training or validation. The enlarged data set consisting
of snake images and corresponding bounding boxes was used to train another YOLOv5l model
for 30 epochs with the same image input and batch size. This model was used for further
self-training as already described, with the difference that this time only those images were
viewed which did not yet have a bounding box with a confidence greater than p. The procedure

9Imageclef.org. 2022. SnakeCLEF2022 | ImageCLEF / LifeCLEF - Multimedia Retrieval in CLEF. https://www.
imageclef.org/SnakeCLEF2022 [Last accessed: 2022-06-30].

https://www.imageclef.org/SnakeCLEF2022
https://www.imageclef.org/SnakeCLEF2022


was carried out three times, and in the last run, p was set to 55.0 % in order to include the
remaining challenging images.

With the larger data set generated by the self-training approach above, a YOLOv5l model
(referred to as YOLOv5l_adv) and a YOLOv5x6 model (referred to as YOLOv5lx6_adv) were
created. Both models were examined in the following two experiments to see how well they
could improve the snake classification model. The settings of YOLOv5 parameters in the
experiments are listed in Table 1.

1. In this experiment, the YOLOv5l model was selected as a compromise between model
size and performance (mAP) among all YOLOv5 models10. It was trained for 50 epochs
with a batch size of 26 and an image input size of 640 on the enlarged data set. Further,
the YOLOv5l model settings and the influence on the classification model can be found
via YOLOv5l_adv.

2. For the second experiment, a YOLOv5x6 model, as the biggest and most accurate (mAP)
model11 was selected. It was trained for 16 epochs with a batch size of 4 and an image
input size of 1,280 pixels on the enlarged data set. The YOLOv5x6 model settings and the
influence on the classification model can be found via YOLOv5x6_adv.

Table 1
Settings used for the YOLOv5 models as well as the size of the data set on which they were trained
(#images𝑡𝑟𝑎𝑖𝑛) and validated (#images𝑣𝑎𝑙) are presented below. Abbreviations: OD: Object detection,
Img: Image., train: training dataset, val: validation dataset.

Name OD model Batch size Img. input Epochs # img𝑡𝑟𝑎𝑖𝑛 # img𝑣𝑎𝑙
size

YOLOv5l_basic YOLOv5l 14 640 50 155,282 20,431
YOLOv5l_adv YOLOv5l 26 640 50 234,886 37,582
YOLOv5x6_adv YOLOv5x6 4 1280 16 234,886 37,582

To obtain information about the bounding boxes generated by YOLOv5, Figure 2 and Figure 3
can be used. Both were generated with the available training and validation data. Figure 2 shows
a 2D plot of the relative coordinates of the central point of all bounding boxes against each
other to get information on where the bounding box center points are located in the original
images. The plot shows, that most snakes are found in the middle of the images. No distortion
into a specific direction was observed for the center points of the bounding boxes. Figure 3 plots
the relative width and height of all bounding boxes against each other to obtain information
about the sizes of the bounding boxes. The plot shows no clear conspicuous observations.
Some bounding boxes are extremely narrow or high. This might be caused by the anatomy of
snakes but might lead to strong distortions if the images are scaled up. Additionally, there are
accumulated observations on the diagonal line of the image. This observation suggests that
the proportion of width and height of the bounding boxes correspond to the proportion of the
images.

10Pytorch.org. 2022. YOLOv5. https://pytorch.org/hub/ultralytics_yolov5/ [Last accessed 2022-06-30].
11Pytorch.org. 2022. YOLOv5. https://pytorch.org/hub/ultralytics_yolov5/ [Last accessed: 2022-06-30].
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Figure 2: Comparison between all relative coordinates 𝑋0 and 𝑌0 of bounding box center points in the
created training (n=234,886) and validation (n=37,582) datasets.

4.1.2. Mask-RCNN

As a comparison, a Mask-RCNN [14] was trained similarly to previous work [7, 8]. Mask-
RCNN is an extension of Faster RCNN [27] and implements instance segmentation. Instance
segmentation is a combination of object detection and semantic segmentation. This means, that
bounding boxes are identified for each object of interest, and each pixel in a bounding box was
segmented into a predefined range of given classes. Accordingly, the Mask-RCNN architecture
consists of two phases, the first phase is identical to Faster RCNN. This phase includes a Region
Proposal Network to identify candidate bounding boxes and non-maximum suppression [48]
to focus on the most promising candidates. In the second stage, a Region Of Interest (ROI)
Align Network was applied to the remaining candidate bounding boxes followed by a parallel
implementation of fully connected networks to identify the object class and the offset of the
bounding boxes. Finally, a CNN was trained for the semantic segmentation task.

In this work, Mask-RCNN was trained to differentiate between snakes and background. For
this reason, only the object detection part of the method was applied. The training of the
Mask-RCNN was split into two phases. In the first warm-up phase, newly added layers were



Figure 3: Comparison between all relative widths and heights of bounding boxes in the created training
(n=234,886) and validation (n=37,582) datasets.

trained for 20 epochs. Afterwards, the weights of the entire model were fine-tuned for another
30 epochs.

An adaption12 to Tensorflow 2.1.0 of the implementation of the Mask-RCNN model imple-
mented by Abdulla13 has been used to implement the Mask-RCNN. No data augmentation
was implemented during training and a threshold of 0.3 was used for the minimum detection
confidence. Stochastic Gradient Descent (SGD) [50] was used to optimize the model weights,
with a momentum value of 0.9, a weight decay of 10−4, and a mini-batch size of 8.

4.2. Image Augmentations

The classification models were trained using six different image augmentation pipelines. The
basic pipeline includes random cropping of approximately 10 % of the image length and
width, as well as random horizontal and vertical flipping each with a probability of 𝑝 = 0.5.
The images are normalized with a mean and standard deviation of 0.5 for each dimension. This
pipeline was implemented using the Python package torchvision v0.11.2+cu111 [51]. In post
competition experiments, a slightly different pipeline called base was used, differing mainly in

12DiffProML Mask-RCNN: https://github.com/DiffPro-ML/Mask_RCNN, [Last accessed: 2022-06-30].
13Matterport Mask-RCNN: https://github.com/matterport/Mask_RCNN, [Last accessed: 2022-06-30].
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cropping and normalization with ImageNet default values for scale (0.08 to 1.0), ratios (34 to 4
3 )

as well as channel means (0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225).
A comparison pipeline, including random horizontal and vertical flipping, Random eras-

ing [52], and normalization with the predefined ImageNet-1k values was implemented. The
flipping transforms were performed with a probability of 𝑝 = 0.5 each. During random erasing,
a rectangular region is randomly selected in the image. In this work, the pixel values in this
region are replaced with 0. Random erasing was executed with a probability of 𝑝 = 0.5. In each
image, between 2 % and 33 % of the original image area was erased. The aspect ratio of the
erased area ranged between 0.3 and 3.3. Random erasing was implemented using the Python
package timm v0.4.11 [53]. This pipeline is called the Era pipeline in the following.

RandAugment [54] was used in two augmentation pipelines. First, the Rand pipeline included
random cropping of approximately 10% of the image length and width, as well as RandAugment
augmentations. The RandAugment algorithm randomly selects 𝑛 out of 14 basic augmenta-
tions for each image and applies those with a magnitude of 𝑚. The selected augmentations
were applied sequentially. In the implementation, 31 magnitude steps were introduced. The
Rand pipeline in this paper selected two augmentation transforms (𝑛 = 2) and a magnitude
step of 9 (𝑚 = 9). The images are normalized with a mean and standard deviation of 0.5
for each dimension. RandAugment was implemented using the Python package torchvision
v0.11.2+cu111 [51].

The fourth pipeline, namely RandEra, included the basic augmentations, RandAugment
with𝑛 = 3 and𝑚 = 10, as well as Random erasing with the previously defined hyperparameters.
In this pipeline, Random erasing was implemented using the Python package torchvision
v0.11.2+cu111 [51].

The AutoEra pipeline combines the previously defined random erasing strategy and the
AutoAugment [55] strategy. AutoAugment uses a reinforcement learning search strategy
to optimize the image augmentation pipeline. The search space included 16 augmentation
strategies, 10 augmentation magnitudes controlling the intensity of the augmentations as well
as 11 probability steps. The AutoAugment strategy was implemented using the Python package
timm v0.4.11 [53].

The last pipeline is named AutoEraCut and includes, the previously described AutoAugment,
and Random Erasing modules, as well as the CutMix [56] augmentation method. CutMix [56] is
an augmentation strategy combining CutOut [57] and MixUp [58] augmentations. Parts of the
original image are replaced by patches of different images in the training data set. In addition,
label smoothing was applied by adapting the ground truth labels in proportion to the area of
the patches. In this work, CutMix was applied with a probability of 𝑝 = 0.5, and the Python
library timm v0.4.11 [53] was used for implementation with default values. The results of the
different augmentation pipelines are summarized in Section 5.2.

4.3. Model Training

Three model architectures were implemented during model training. Those are described in
Section 4.3.1, Section 4.3.2, and Section 4.3.3. All models and pre-trained weights were loaded
using the Python library timm v0.4.11 [53]. PyTorch v1.10.1+cu111 [51] was used to train
the models. The results achieved using the model architectures are presented in Section 5.3.



In addition, the effects of multiple optimizers, namely Adam [59], SGD [50], and SAM [15]
with an SGD base optimizer were investigated. The parameters of the Adam optimizer were
𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8. The Python library sam-pytorch v0.0.1 [60, 61] was used
to implement the SAM optimizer. In comparison to the models trained using the Adam and
SGD optimizers, no mixed precision [62] training was implemented for SAM. Some models
were trained using CAWR [17] as a learning rate scheduler. For all optimizers, different learning
rates and mini-batch sizes were used as is documented in Section 5.

4.3.1. EfficientNets

The base architecture of EfficientNets [38] resulted from an architecture search. This search
optimizes for both, accuracy and Floating-Point Operations Per Second (FLOPS). EfficientNets
mainly consisted of Mobile Inverted Bottleneck Convolutional (MBConv) layers. To increase
model performances, the base model is successively scaled up using a uniform balance between
model depth, model width, and image resolution. While EfficientNets are smaller and faster than
many of the compared models, they achieved state-of-the-art performances on the ImageNet
classification task [38].

In this work, EfficientNet-B4 and EfficientNet-B5 models were trained for snake species
detection. For the EfficientNet-B4 models, all images were scaled to an image size of 380× 380
pixels. An image size of 456× 456 pixels was used for the EfficientNet-B5 models. The model
weights were initialized using a model pre-trained on the ImageNet-1k data set [26]. The output
layer of the model included 1,572 neurons corresponding to the number of snake species in the
data set. The resulting EfficientNet-B4 model contained 20,367,212 parameters, whereas the
EfficientNet-B5 model contained 31,561,812 parameters.

4.3.2. EfficientNet-v2

EfficientNet-v2 [12] is an advanced version of EfficientNets, intended to counteract the observed
bottlenecks. Therefore, the original EfficientNet search space used for the architecture search
was enriched. For example, later MBConv blocks of EfficientNets were gradually replaced by
Fused-MBConv blocks. The architecture search optimizes for accuracy, parameter efficiency,
and training efficiency. To avoid excessive memory consumption, the uniform training strategy
of EfficientNets was replaced by a non-uniform strategy. The resulting EfficientNet-v2 models
train up to four times faster than the original EfficientNet models, and the number of parameters
was reduced with a factor of 6.8 [12].

This work uses the EfficientNet-v2-M model with an image size of 384 × 384 pixels. The
model weights were initialized using a model pre-trained on the ImageNet-1k data set [26] as
well as on the ImageNet-21k data set [37]. The output layer of the model included 1,572 neurons.
The resulting EfficientNet-v2-M model contained 54,872,088 parameters.

4.3.3. ConvNeXt

Vision Transformers (ViTs) [44] and its further developments have quickly gained popularity
and superseded CNNs as state-of-the-art models for image classification. The ConvNeXt archi-



tecture [11] is an approach to modernize the standard CNN architecture (ResNet50) regarding
the design choices of ViT. Therefore, the authors of ConvNeXt conducted several experiments
to discover the key components that lead to the performance differences. A key component
was changing the multi-stage macro design of the architecture to reduce the stage computation
ratio and changing the stem to a simpler "patchify" layer similar to ViT [11]. Other changes
included the use of inverted bottleneck blocks with depth-wise convolution, a larger kernel size,
and an increased network width to the same number of channels as the Swin-Transformer [11].
ConvNeXt also adopted some features of the micro-scale architecture of transformers, such as
replacing the Rectified Linear Units (ReLU) activation function with its smoother Gaussian Error
Linear Unit (GELU) [63] variant, using fewer normalization layers, and replacing BatchNorm
layers with simple Layer-Normalization [11]. Other performance differences resulted from
similar training techniques as for ViT, e.g., the use of the AdamW [16] optimizer, extended
training epochs, heavy data augmentation including CutMix, RandAugment, Random erasing,
and label smoothing [11].

In this work, ImageNet-21k [37] pre-trained ConvNeXt-L models were trained with an image
size of 384 × 384 pixels and an adjusted output layer size of 1,572 neurons. The resulting
ConvNeXt-L models contained a total of 198,619,428 parameters.

4.4. Using Geospatial Feature Concatenation

As mentioned in Section 3, the data set contains additional metadata including region informa-
tion for most of the images. The idea is to train a model that uses the region information as
additional features to the image data to improve the classification performance of the snake
species.

Unfortunately, the metadata only contains nominal region information in ISO-3166-ALHPA2
encoded form, which makes it difficult to interpret geographical relationships such as location
and distance between region information. A more practical way of representing region infor-
mation for deep learning, which also allows interpretation of geographic relationships, is the
use of numerical geospatial data such as latitude and longitude coordinates. For this reason, a
workflow was implemented to convert the ISO encoded region information of the metadata
to geospatial data with latitude and longitude coordinates. Therefore, the ALPHA2-ISO codes
were translated into country names using the Python package pycountry14, and then converted
to geospatial data with latitude and longitude coordinates in decimal notation (−90° to +90°
for latitude and −180° to +180° for longitude) using the Python package GeoPy15 and the
OpenStreetMap16 services. A drawback of this method is that only the longitude and latitude
coordinates of the center of a region are considered as well as the fact that the earth is a sphere
and coordinates of e.g. −179° and 179° longitude are far away by notation, although they are
actually very close to each other on the sphere.

To use geospatial data as additional features to the image data, the model architecture must
be adapted. For this purpose, a feature concatenation approach inspired by the Wide&Deep
architectures [64] was chosen. A CNN backbone first extracts features from the image data,

14pycountry package: https://github.com/flyingcircusio/pycountry, [Last accessed: 2022-06-30].
15GeoPy package: https://github.com/geopy/geopy, [Last accessed: 2022-06-30].
16OpenStreetMap: https://www.openstreetmap.de/, [Last accessed: 2022-06-30].

https://github.com/flyingcircusio/pycountry
https://github.com/geopy/geopy
https://www.openstreetmap.de/
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Figure 4: Schematic representation of an EfficientNet-B4 model architecture using feature concatenation
of image and geospatial features for snake species classification.

which are then represented as a flattened vector using global average pooling. The normalized
geospatial data of longitude and latitude coordinates (-1 to 1) are then concatenated with this
flattened image feature vector and passed to the fully connected classifier. To avoid linear
decision boundaries by multiplying the geospatial data with the image features, the classifier
contains a hidden fully connected layer with normalization and activation function. Empirical
experiments with different normalization methods such as BatchNorm and LayerNorm as well
as the activation functions tanh, Sigmoid Linear Units (SiLU) showed that BatchNorm [65] and
SiLU [66] provided the best results. To regulate early overfitting, dropout (𝑝 = 0.5) is used
before the output layer. In Figure 4, a schematic representation of the model architecture using
an EfficientNet-B4 as the CNN backbone is shown.

It should be noted that some images did not contain any region information in the data set
metadata and instead were marked as "unknown". To pass geospatial data for these images to
the model during training and testing, random values for the longitude and latitude coordinates
were determined. Random values from a uniform distribution have the disadvantage that they
could fall in regions that are not included in the data set, such as oceans. To prevent this, the
random values were drawn from a density function that was previously determined from the
frequencies of all known longitude and latitude coordinates in the data set using kernel density
estimation of scikit-learn17 package.

4.5. Test Time Augmentation (TTA)

Test Time Augmentation (TTA) [67, 68] is a method to make model predictions more robust.
During model inference, multiple augmented versions of an image are presented to the model.
Similar to multi-instance learning methods, the model predictions of one image are summarized.
In this work, the basic augmentation pipeline was used to generate ten augmented versions
of each image.

17scikit-learn package: https://scikit-learn.org/stable/, [Last accessed: 2022-06-30].

https://scikit-learn.org/stable/


4.6. Multi-Instance Learning

As was described in Section 3, some of the observations in the data set contained more than
one image. However, one snake species per observation should be predicted. To summarize the
model’s prediction probabilities per class, those are averaged across all images of an observation.

4.7. Multiplication with Regional Prior Probabilities

Regional information was optionally added to the probability predictions of the classification
models. In this work, the prior probabilities were estimated by the relative frequency distribution
of observations per snake species and region in the training data set. Two strategies were applied
to combine the region and the image information. First, the raw regional prior probabilities
were multiplied with the prediction probabilities of the observation. The second strategy used a
binarized version of the raw probabilities with a cut-off value of 0. Prior probabilities with non-
zero values were transformed to one, whereas those with a value of zero were kept unchanged.
For images with missing regional information, as well as for regions not available in the training
data set, the prior probability of the “unknown” class was used. The results achieved using
multiplication with regional prior probabilities are summarized in Section 5.8.

5. Results

In the following section, the classification results of the ML workflow, including multiple
ablation studies to investigate the effects of the modules, are described. The macro-averaging
𝐹1 scores of the classification models for the private (𝐹 𝑝𝑟𝑖𝑣

1 ) and the public (𝐹 𝑝𝑢𝑏
1 ) test data set

are summarized in Table 2. Additional information about the models is given in Table 10 in the
appendix. For better readability, 𝐹1 scores, as well as improvements in 𝐹1 scores are given as
percentage values in this work. It can be shown, that the results achieved for the public and the
private data set showed reasonable coherence. The best results during the challenge are achieved
for model 32, which was an ensemble of seven different models, namely model 1, model 6, model
16, model 24, model 25, model 29, and model 30. Those models are three EfficientNet-B4 models,
one EfficientNet-B5 model, one ConvNeXt-L model, and two EfficientNet-v2-M models. In the
ensemble, the raw predictions of all models were averaged without weighting. Afterwards,
the metadata multiplication was applied using the regional prior probabilities. This ensemble
reached an 𝐹 𝑝𝑢𝑏

1 score of 75.426 % and an 𝐹 𝑝𝑟𝑖𝑣
1 score of 70.798 %.

Some post competition experiments were performed after the SnakeCLEF 2022 deadline.
During this phase, the previous results were outperformed by model 34, which is the same
ensemble model as model 32 but was multiplied with the prior probabilities of the country code.
This multiplication results in an 𝐹 𝑝𝑢𝑏

1 score of 78.085 % and an 𝐹 𝑝𝑟𝑖𝑣
1 of 73.900 %.

The ablation studies investigated the use of object detection (introduced in Sec. 5.1), image
augmentation strategies (introduced in Sec. 5.2), deep learning classifiers (introduced in Sec. 5.3),
feature concatenation using geospatial data (introduced in Sec. 5.4), transfer learning (introduced
in Sec. 5.5), optimizers and learning rate schedulers (introduced in Sec. 5.6), TTA (introduced in
Sec. 5.7), and the multiplication with prior probabilities of regional information available for
the snake images (introduced in Sec. 5.8).



Table 2
Macro-averaging 𝐹1 scores achieved for the private (𝐹 𝑝𝑟𝑖𝑣

1 ) and public (𝐹 𝑝𝑢𝑏
1 ) test data set. The best

results are highlighted in bold. Ensemble 1 includes model 6, model 18, model 26, and model 27. Ensemble
2 is composed of model 1, model 6, model 18, model 26, model 27, model 31, and model 32. Abbreviations:
OD: object detection, E-B4: EfficientNet-B4, E-B5: EfficientNet-B5, E-v2-M: EfficientNet-v2-M, C-NeXt-
L: ConvNeXt-L. concat.: concatenation, Multip.: Multiplication, Augment.: Augmentation., Geosp.:
Geospatial., feat.: feature.

ID Model Transfer Geosp. OD Optimizer (LR) Scheduler Multip. Augment. 𝐹 𝑝𝑢𝑏
1 𝐹 𝑝𝑟𝑖𝑣

1

learning feat. concat. metadata (in %) (in %)

1 E-B4 ImageNet-1k - - Adam (10−4) - - basic 49.627 45.479
2 E-B4 ImageNet-1k - - Adam (10−4) - yes basic 67.126 61.879
3 E-B4 ImageNet-1k - YOLOv5l_basic Adam (10−4) - - basic 57.937 50.990
4 E-B4 ImageNet-1k - YOLOv5l_basic Adam (10−4) - yes basic 71.130 65.761
5 E-B4 ImageNet-1k - - Adam (10−4) - - Rand 51.758 45.299
6 E-B4 ImageNet-1k - - Adam (10−4) - yes Rand 67.509 62.000
7 E-B4 ImageNet-1k - YOLOv5l_adv Adam (10−4) - - basic 58.780 51.773
8 E-B4 ImageNet-1k - YOLOv5l_adv Adam (10−4) - yes basic 71.277 65.497
9 E-B4 ImageNet-1k - - SGD (10−1) CAWR (5,1) - basic 49.489 45.554
10 E-B4 ImageNet-1k - - SGD (10−1) CAWR (5,1) binary basic 66.937 64.579
11 E-B4 ImageNet-1k yes YOLOv5l_basic Adam (10−4) - - RandEra 62.546 58.744
12 E-B4 ImageNet-1k yes YOLOv5l_basic Adam (10−4) - yes RandEra 67.209 63.666
13 E-B4 ImageNet-1k yes YOLOv5l_basic Adam (10−4) - binary RandEra 67.502 65.083
14𝑎 E-B4 ImageNet-1k yes YOLOv5l_basic Adam (10−4) - yes RandEra 68.781 65.986
15 E-B5 ImageNet-1k - - Adam (10−4) - - basic 54.675 49.500
16 E-B5 ImageNet-1k - - Adam (10−4) - yes basic 68.947 63.953
17 E-B4 ImageNet-1k - MaskRCNN Adam (10−4) - - basic 55.251 48.827
18 E-B4 ImageNet-1k - MaskRCNN Adam (10−4) - yes basic 68.567 64.652
19 E-B4 ImageNet-1k - YOLOv5x6_adv Adam (10−4) - - basic 55.944 51.521
20 E-B4 ImageNet-1k - YOLOv5x6_adv Adam (10−4) - yes basic 70.958 66.137
21 C-NeXt-L ImageNet-21k yes YOLOv5l_basic Adam(10−5) - - AutoEra 68.129 64.987
22 C-NeXt-L ImageNet-21k yes YOLOv5l_basic Adam(10−5) - binary AutoEra 69.093 67.413
23 C-NeXt-L ImageNet-21k - YOLOv5l_basic Adam(10−5) - - AutoEra 62.499 59.009
24 C-NeXt-L ImageNet-21k - YOLOv5l_basic Adam(10−5) - binary AutoEra 70.426 66.852
25𝑏 E-B4 ImageNet-1k - - SAM (10−1) - binary basic 68.520 64.938
26 E-v2-M ImageNet-21k - - SGD (10−1) CAWR (5,2) binary basic 73.795 68.577
27 E-v2-M ImageNet-21k - - SGD (10−1) CAWR (5,2) binary basic 74.251 69.492
28 E-v2-M ImageNet-21k - YOLOv5l_basic SGD (10−1) CAWR (5,2) binary basic 73.903 69.733
29𝑐 E-v2-M ImageNet-21k - YOLOv5l_basic AdamW(10−4) - binary AutoEraCut 69.814 67.889
30 E-v2-M ImageNet-21k - YOLOv5l_basic SGD(10−2) CLR(50,10−5) binary Era 70.778 67.974
31 Ensemble 1 - - - - - binary - 74.205 70.432
32 Ensemble 2 - - - - - binary - 75.426 70.798

Post competition experiments
33 E-v2-M ImageNet-1k - - SGD (10−1) CAWR (5,2) binary basic 73.006 70.231
34 Ensemble 2 - - - - - binary code - 78.085 73.900
35 E-B4 ImageNet-1k yes YOLOv5l_basic Adam (10−4) - - basic 58.780 53.948
36 E-B4 ImageNet-1k yes YOLOv5l_basic Adam (10−4) - yes basic 64.048 61.439
37 E-B4 ImageNet-1k yes YOLOv5l_basic Adam (10−4) - binary basic 64.767 62.464
38 E-B4 ImageNet-1k - - SGD (10−1) - - basic 54.261 48.276
39 E-B4 ImageNet-1k - - SGD (10−1) - binary basic 68.530 64.567
40 E-v2-M ImageNet-21k - - SGD (10−1) - binary basic 71.372 66.670
41𝑑 E-B4 ImageNet-1k - - SGD (10−1) - binary basic 64.467 69.142
42 E-B4 ImageNet-1k - - Adam (10−4) - - base 53.014 48.710
43 E-B4 ImageNet-1k - - Adam (10−4) - - base + Rand 55.104 49.675
44 E-B4 ImageNet-1k - - Adam (10−4) - - base + RandEra 53.138 49.756
45 E-B4 ImageNet-1k - - Adam (10−4) - - base + Rand + RandEra 54.991 49.923
46 E-B4 ImageNet-1k - - Adam (10−4) - - base + CutMix 55.527 50.743
47 E-B4 ImageNet-1k - - Adam (10−4) - - base + Rand + CutMix 57.099 52.733
48 E-B4 ImageNet-1k - - Adam (10−4) - - base + Rand + RandEra + CutMix 54.873 50.442
49 E-B4 ImageNet-1k - - Adam (10−4) - binary code base 65.780 61.595
50 E-B4 ImageNet-1k - - Adam (10−4) - binary code base + Rand 67.738 62.411
51 E-B4 ImageNet-1k - - Adam (10−4) - binary code base + RandEra 66.010 61.334
52 E-B4 ImageNet-1k - - Adam (10−4) - binary code base + Rand + RandEra 65.819 61.825
53 E-B4 ImageNet-1k - - Adam (10−4) - binary code base + CutMix 68.016 64.004
54 E-B4 ImageNet-1k - - Adam (10−4) - binary code base + Rand + CutMix 69.777 64.191
55 E-B4 ImageNet-1k - - Adam (10−4) - binary code base + Rand + RandEra + CutMix 67.886 63.516
56 E-B4 ImageNet-1k - - Adam (10−4) - - base + Rand + CutMix 56.553 52.498
57 E-v2-m ImageNet-21k - - Adam (10−4) - - base + Rand + CutMix 63.469 57.261
58 C-NeXt-L ImageNet-21k - - Adam (10−4) - - base + Rand + CutMix 62.224 57.849
59 E-B4 ImageNet-1k - - Adam (10−4) - binary code base + Rand + CutMix 69.517 65.028
60 E-v2-m ImageNet-21k - - Adam (10−4) - binary code base + Rand + CutMix 73.737 68.444
61 C-NeXt-L ImageNet-21k - - Adam (10−4) - binary code base + Rand + CutMix 73.183 69.018
𝑎Model 14 was trained with TTA.
𝑏Model 25 was trained without mixed precision.
𝑐Model 29 was trained using cross-entropy with label smoothing.
𝑑Model 41 was trained without mixed precision.

All models were trained on an Ubuntu server using NVIDIA Tesla V100 16GB GPUs. Training
runtimes of a classification model on a single GPU, e.g. for the model with ID 35, took about
17h for 30 epochs. Due to these long training runtimes, some models were trained on up to four



GPUs, which reduced the training runtime, e.g. for model ID 11 to about 6h for 30 epochs.

5.1. Object Detection

This evaluation makes a distinction between the results with the multiplication of regional prior
probabilities and the results without it.

The basis for the comparison of the improvement of the 𝐹1 scores is the classification model
with ID 1. This model used neither regional information nor object detection. On average, the
YOLOv5 trials could improve the public 𝐹1 score by about +15.97 % and the private 𝐹1 score
by around 13.01 %. The object detection model with Mask-RCNN could improve the private 𝐹1

by 11.33 % and the public 𝐹1 by 7.32 %. The exact values for the individual approaches are
summarized in Table 3.

The results of the classification model with ID 2 are used to compare the results that were
generated, taking into account the multiplication with regional prior probabilities. Here, the
YOLOv5 models improved on average, the 𝐹 𝑝𝑟𝑖𝑣

1 score by 5.53 % and public 𝐹1 score by 6.33 %.
The object detection model with Mask-RCNN could improve the 𝐹 𝑝𝑟𝑖𝑣

1 score by 4.48 % and the
𝐹 𝑝𝑢𝑏
1 score by 2.15 %. The exact values can be found in Table 4.
However, the performance of both frameworks cannot be compared fairly, as the YOLOv5

models have been trained using active learning and active learning generated a large non-

Table 3
Comparison of the improvement of 𝐹 𝑝𝑟𝑖𝑣

1 and 𝐹 𝑝𝑢𝑏
1 without the inclusion of the country distribution,

in terms of the influence of object detection before classification. The comparison is based on 𝐹 𝑝𝑟𝑖𝑣
1

and 𝐹 𝑝𝑢𝑏
1 of the first model (ID 1), which has used neither object deletion nor the multiplication with

regional prior probabilities. The best results are highlighted in bold. Abbreviations: OD: object detection.

ID OD Model Improvement 𝐹 𝑝𝑢𝑏
1 Improvement 𝐹 𝑝𝑟𝑖𝑣

1

(in %) (in %)

3 YOLOv5l_basic YOLOv5l + 16.75 + 12.01
9 YOLOv5l_adv YOLOv5l + 18.44 + 13.79
21 YOLOv5x6_adv YOLOv5x6 + 12.73 + 13.24
19 Mask-RCNN Mask-RCNN + 11.33 + 7.32

Table 4
Comparison of the improvement of 𝐹 𝑝𝑟𝑖𝑣

1 and 𝐹 𝑝𝑢𝑏
1 with the multiplication of regional prior probabilities,

in terms of the influence of object detection before classification. The comparison is based on 𝐹 𝑝𝑟𝑖𝑣
1 and

𝐹 𝑝𝑢𝑏
1 of the first model (ID 2), which did not use object detection. The best results are highlighted in

bold. Abbreviations: OD: object detection.

ID OD model Improvement 𝐹 𝑝𝑢𝑏
1 Improvement 𝐹 𝑝𝑟𝑖𝑣

1

(in %) (in %)

4 YOLOv5l_basic YOLOv5l + 5.97 + 6.27
8 YOLOv5l_adv YOLOv5l + 6.18 + 5.85
20 YOLOv5x6_adv YOLOv5x6 + 5.71 + 6.88
18 Mask-RCNN Mask-RCNN + 2.15 + 4.48



evaluated data set. Nevertheless, the training of the classification model and the generation of
the snake class predictions remained consistent throughout the object detection experiments.

In these experiments, the object detection approaches, mainly increased the public and private
𝐹1 scores. However, for the comparison between model 27 (trained without object detection)
and model 28 (trained with object detection) a more complex behaviour was observed. For the
𝐹 𝑝𝑢𝑏
1 score, model 27 performed 0.456 % points (0.617 %) better than model 28. On the other

hand, model 28 reached an 𝐹 𝑝𝑟𝑖𝑣
1 score of 69.733 % which was 0.241 % points (0.347 %) better

than model 27. Thus, the snake classification model could be positively influenced by object
detection. Without multiplying the model prediction with the regional prior probabilities, the
influence of object detection is higher, but still, the 𝐹1 score is lower than the 𝐹1 score of the
results that consider the multiplication with the regional prior probabilities. In these results, the
influence of object recognition is less pronounced, but there is still a positive influence. Due to
time constraints, further experiments to improve object detection were not conducted for this
competition. The individual object detection models using YOLOv5 required some computation
time due to the large image data set. For the YOLOv5l_adv model, an approximate time of 75
minutes per epoch can be given, and for the YOLOv5x6_adv model, an approximate time of
630 minutes per epoch was observed. The latter model required an exceptionally long time for
training due to the small batch size (4) and the large image input (1280 px) and was therefore
stopped manually after the 16th epoch (after about seven days of training).

5.2. Image Augmentations

As previously described in Section 4.2, six augmentation pipelines were trained and compared
to each other, those comparisons are summarized in Table 5. The hyperparameters not included
in this table are equals for all models. The comparison of model 1 and model 5 shows, that
the RandAugment pipeline (model 5) outperformed the basic pipeline (model 1) by 2.131 %
points (4.294 %) on the public data set. Both architectures are EfficientNet-B4 which were
trained without object detection and with an Adam optimizer. However, for the private data set
both models reached a similar performance. The 𝐹 𝑝𝑟𝑖𝑣

1 score for model 1 was 0.180 % points
(0.396 %) better than the 𝐹 𝑝𝑟𝑖𝑣

1 score for model 5.
Model 2 is the same model as model 1 but the model’s prediction probabilities are multiplied

with the prior probabilities of the region. The same applies for model 5 and model 6. In the
comparison between model 2 and model 6, the latter, trained with the Rand augmentation
pipeline slightly outperforms model 2 by 0.383 % points (0.571 %) for the 𝐹 𝑝𝑢𝑏

1 score and by
0.121 % points (0.196 %) for the 𝐹 𝑝𝑟𝑖𝑣

1 .
In summary, the basic and Rand pipelines achieved similar results in the experiments. Slight

advantages are observed for the RandAugment pipeline.
Additional experiments on data augmentation were conducted after the challenge to test

base, Rand, RandomErasing, CutMix, and combinations of them under more comparable
conditions. For this purpose, an EfficientNet-B4 pre-trained on ImageNet-1k was trained with
images without object detection for 45 epochs. The results are shown in Table 5 under post
competition experiments. As described in section 4.2, augmentation base differs slightly from
basic in terms of cropping and normalization, making the results of the post competition



Table 5
Ablation study to compare the image augmentation pipelines. The hyperparameters not included in
this table are equals for all models. The best results are highlighted in bold. Abbreviations: concat.:
concatenation, Multip.: Multiplication.

ID Epochs Multip. metadata Augment. 𝐹 𝑝𝑢𝑏
1 𝐹 𝑝𝑟𝑖𝑣

1

(in %) (in %)

1 30 - basic 49.627 45.479
5 30 - Rand 51.758 45.299
2 30 yes basic 67.126 61.879
6 30 yes Rand 67.509 62.000

Post competition experiments
42 45 - base 53.014 48.710
43 45 - base + Rand 55.104 49.675
44 45 - base + RandEra 53.138 49.756
45 45 - base + Rand + RandEra 54.991 49.923
46 45 - base + CutMix 55.527 50.743
47 45 - base + Rand + CutMix 57.099 52.733
48 45 - base + Rand + RandEra + CutMix 54.873 50.442
49 45 binary code base 65.780 61.595
50 45 binary code base + Rand 67.738 62.411
51 45 binary code base + RandEra 66.010 61.334
52 45 binary code base + Rand + RandEra 65.819 61.825
53 45 binary code base + CutMix 68.016 64.004
54 45 binary code base + Rand + CutMix 69.777 64.191
55 45 binary code base + Rand + RandEra + CutMix 67.886 63.516

experiments not directly comparable to the previous experiments. The key findings of these
experiments were that much better results were obtained with the augmentation methods
base + Rand or CutMix as well as combinations of them. In addition, it was noticeable that
RandomErasing + base performed slightly better than base by itself, but in combination
with Rand and CutMix the results were much worse.

5.3. Classification Model

This section compares the results of different classification models. A summary of those results
can be found in Table 6.

Regarding those comparisons, it has to be noted, that image and batch sizes differed across
models which might lead to biases in the comparison.

The comparison between model 1 and model 15, as well as between model 2 and model 16
shows, that the EfficientNet-B5 model outperforms the EfficientNet-B4 model for the 𝐹 𝑝𝑢𝑏

1

and 𝐹 𝑝𝑟𝑖𝑣
1 scores. Model 1 and model 15 did not use the multiplication with regional prior

probabilities. In this comparison, the EfficientNet-B5 model outperformed the EfficientNet-B4
model for 5.048 % points (10.172 %) for the 𝐹 𝑝𝑢𝑏

1 score and 4.021 % points (8.841 %) for the
𝐹 𝑝𝑟𝑖𝑣
1 score.
Smaller differences were reached for model 2 and model 16, which used the multiplication



Table 6
Ablation study to compare the different classification models. For all models, macro-averaging 𝐹1

scores achieved for the private (𝐹 𝑝𝑟𝑖𝑣
1 ) and public (𝐹 𝑝𝑢𝑏

1 ) test data set are given. The hyperparameters
not included in this table are equals for the compared models. The best results are highlighted in
bold. Abbreviations: E-B4: EfficientNet-B4, E-B5: EfficientNet-B5, E-v2-M: EfficientNet-v2-M, C-NeXt-L:
ConvNeXt-L, LR: learning rate, Multip.: Multiplication.

ID Model Batch size Image size Optimizer (LR) Scheduler Multip. metadata 𝐹 𝑝𝑢𝑏
1 𝐹 𝑝𝑟𝑖𝑣

1

(in %) (in %)

1 E-B4 40 380 Adam (10−4) - - 49.627 45.479
15 E-B5 16 456 Adam (10−4) - - 54.675 49.500
2 E-B4 40 380 Adam (10−4) - yes 67.126 61.879
16 E-B5 16 456 Adam (10−4) - yes 68.947 63.953
9 E-B4 40 380 SGD (10−1) CAWR (5,1) binary 66.937 64.579
33 E-v2-M 32 384 SGD (10−1) CAWR (5,2) binary 73.006 70.231

Post competition experiments
56 E-B4 64 380 Adam (10−4) - - 56.553 52.498
57 E-v2-m 64 384 Adam (10−4) - - 63.469 57.261
58 C-NeXt-L 64 384 Adam (10−4) - - 62.224 57.849
59 E-B4 64 380 Adam (10−4) - binary code 69.517 65.028
60 E-v2-m 64 384 Adam (10−4) - binary code 73.737 68.444
61 C-NeXt-L 64 384 Adam (10−4) - binary code 73.183 69.018

with regional prior probabilities. The EfficientNet-B5 outperformed the EfficientNet-B4 for
1.821 % points (2.713 %) for the 𝐹 𝑝𝑢𝑏

1 score and 2.074 % points (3.352 %) for the 𝐹 𝑝𝑟𝑖𝑣
1 score.

The EfficientNet-B4 model was also compared to an EfficientNet-v2-M model, as can be seen
in Table 6. The EfficientNet-v2-M model (model 33) outperforms the EfficientNet-B4 model
(model 9) by 6.069 % points (9.067 %) for the 𝐹 𝑝𝑢𝑏

1 and 5.652 % points (8.752 %) for the 𝐹 𝑝𝑟𝑖𝑣
1

score.
Additional experiments on model architectures were conducted after the challenge to test

EfficientNet-B4, EfficientNet-v2-M as well as ConvNeXt-L under more comparable conditions.
Using the knowledge from the previous experiments, the pre-trained ImageNet models were
trained over 30 epochs on snake images without object detection at the same resolution as for
pre-training as well as basic + Rand + Mixup augmentations. The results are shown in Table
6 under post competition experiments. These results reveal once again that EfficientNet-v2-M
outperforms the less complex architecture EfficientNet-B4 of about 6.9 % points 𝐹 𝑝𝑢𝑏

1 and of
about 4.8% points 𝐹 𝑝𝑟𝑖𝑣

1 . Comparing the EfficientNet-v2-M model with the much more complex
ConvNeXt-L architecture, only marginal differences were observed. While the EfficientNet-
v2-M model achieved a slightly higher 𝐹 𝑝𝑢𝑏

1 of about 1.2 % points, the ConvNeXt-L model
achieved a slightly higher 𝐹 𝑝𝑟𝑖𝑣

1 of about 0.6 % points. Multiplication with binary regional
(code) prior probabilities improved the results of all model architectures, although the relative
proportions of the architectures did not change.

5.4. Geospatial Feature Concatenation

As mentioned in Section 4.4, a model architecture that uses geospatial data in addition to image
data was tested. More specifically, two model architectures were developed, using EfficientNet-



Table 7
Comparison of EfficientNet-B4 and ConvNeXt-L model architectures with geospatial feature concatena-
tion. For all models, macro-averaging 𝐹1 scores achieved for the private (𝐹 𝑝𝑟𝑖𝑣

1 ) and public (𝐹 𝑝𝑢𝑏
1 ) test

data set are given. The hyperparameters not included in this table are equals for all models. The best
results are highlighted in bold. Abbreviations: Multip.: Multiplication, concat.: concatenation, train.:
training, inf.: inference, E-B4: EfficientNet-B4, C-NeXt-L: ConvNeXt-L.

ID Model Geospatial Image size Image size Batch Epochs Multip. Augment. 𝐹 𝑝𝑢𝑏
1 𝐹 𝑝𝑟𝑖𝑣

1

feature concat. train. inf. size metadata (in %) (in %)

3 E-B4 - 380 380 40 30 - basic 57.937 50.990
4 E-B4 - 380 380 40 30 yes basic 71.130 65.761
37 E-B4 yes 380 380 40 30 - basic 58.780 53.948
38 E-B4 yes 380 380 40 30 yes basic 64.048 61.439
39 E-B4 yes 380 380 40 30 binary basic 64.767 62.464
23 C-NeXt-L yes 384 384 48 30(16) - AutoEra 68.129 64.987
24 C-NeXt-L yes 384 384 48 30(16) binary AutoEra 69.093 67.413
25 C-NeXt-L - 384 384 48 30(16) - AutoEra 62.499 59.009
26 C-NeXt-L - 384 384 48 30(16) binary AutoEra 70.426 66.852

B4 or ConvNeXt-L as the CNN backbone. The results of the EfficientNet-B4 and ConvNeXt-L
model architectures with geospatial feature concatenation are summarized in Table 7.

To evaluate the influence of geospatial feature concatenation for the EfficientNet-B4 model,
the experiment with ID 11 is relevant as well as the experiment with ID 3 without geospatial fea-
ture concatenation as reference. Without geospatial feature concatenation, the EfficientNet-B4
achieved an 𝐹 𝑝𝑢𝑏

1 of 57.937 % and an 𝐹 𝑝𝑟𝑖𝑣
1 of 50.990 %. With geospatial feature concate-

nation the EfficientNet-B4 (ID 37: 58.780 % 𝐹 𝑝𝑢𝑏
1 and 53.948 % 𝐹 𝑝𝑟𝑖𝑣

1 ) achieved a marginal
improvement of about 0.8 % points 𝐹 𝑝𝑢𝑏

1 and 3.0 % points 𝐹 𝑝𝑟𝑖𝑣
1 for snake species classifica-

tion. Comparing the results of the models after multiplying the prediction probabilities by
regional prior probabilities, as mentioned in Section 4.7, the experiments with IDs 4 and 36 are
relevant. Multiplying the prediction probabilities by regional prior probabilities and without
geospatial feature concatenation, the EfficientNet-B4 achieved an 𝐹 𝑝𝑢𝑏

1 of 71.130 % and an
𝐹 𝑝𝑟𝑖𝑣
1 of 65.761 %. In contrast, the EfficientNet-B4 with geospatial feature concatenation and

multiplication of the prediction probabilities by regional prior probabilities only reached an
𝐹 𝑝𝑢𝑏
1 of about 64.048 %, and an 𝐹 𝑝𝑟𝑖𝑣

1 of about 61.439 %. This is an improvement for the snake
species classification compared to the model with geospatial feature concatenation and without
multiplying the prediction probabilities by regional prior probabilities. However, it is also a
degradation compared to the model without geospatial feature concatenation and multiplication
of prediction probabilities by regional prior probabilities.

Similar effects were obtained for models with ConvNeXt-L CNN backbones in the experiments
with ID 21, 22, 23, and 24. In general, the classification results for snake species performed
better than with EfficientNet-B4. It should be noted that this comparisons should be made with
caution because different hyperparameters were used in the experiments of EfficientNet-B4
and ConvNeXt-L. Comparing the classification result of the ConvNeXt-L model (ID 21) with
geospatial feature concatenation, the 𝐹 𝑝𝑢𝑏

1 of about 68.129 % and 𝐹 𝑝𝑟𝑖𝑣
1 of about 64.987 % are

higher than for the ConvNeXt-L model (ID 23) without geospatial feature concatenation with
𝐹 𝑝𝑢𝑏
1 of about 62.499 % and 𝐹 𝑝𝑟𝑖𝑣

1 of about 59.009 %. However, it can also be seen that the



ConvNeXt-L model (ID 22) with geospatial feature concatenation and multiplication of the
prediction probabilities by binarized regional prior probabilities achieved a lower classification
result than the model (ID 24) without geospatial feature concatenation and multiplication of
the prediction probabilities by binarized regional prior probabilities.

Based on these results, it can be assumed that the concatenation of geospatial features has
only a minor effect on the classification result, while the simple multiplication of the prediction
probabilities by the regional prior probabilities has a more positive effect on the classification
of the snake species. Due to time constraints, no further experiments with geospatial feature
concatenation models were performed during the competition.

5.5. Transfer Learning

The SnakeCLEF 2022 data set contains 1,572 snake species and thus more than the 1,000 classes
of the ImageNet-1k data set. It was assumed that a model pre-trained for a data set with a larger
number of classes could improve the model performances. For this reason, one experiment was
carried out to compare EfficientNet-v2-M models pre-trained with the ImageNet-1k (model 33)
and the ImageNet-21k (model 27) data set. Model 27 which was pre-trained with the ImageNet-
21k data set slightly outperformed the model 33 for the 𝐹 𝑝𝑢𝑏

1 score by 1.245 % points (1.705 %).
However, model 33, pre-trained for the ImageNet-1k data set slightly outperformed model 27
for the 𝐹 𝑝𝑟𝑖𝑣

1 score by 0.739 % points (1.063 %). Overall, no clear advantage was observed
comparing the ImageNet-1k and the ImageNet-21k data sets for transfer learning.

5.6. Optimizers and LR Schedulers

The effect of CAWR as a LR Scheduler for snake species identification was investigated using
ablation studies. The results are summarized in Table 8. The CAWR scheduler was implemented
using two hyperparameter settings. In both settings, the number of iterations for the first restart
was set to 5 epochs. The factor increasing the number of epochs between two subsequent
restarts was set to 1 in the first setting and to 2 in the second one. The comparisons between
model 9 and model 38, as well as between model 10 and model 39 used the first setting. For
the 𝐹 𝑝𝑢𝑏

1 score, both models showed decreased results using the CAWR. The 𝐹 𝑝𝑟𝑖𝑣
1 score also

decreased. A slight improvement of 0.012 % points (0.019 %) in the 𝐹 𝑝𝑟𝑖𝑣
1 score was achieved

using the CAWR with the first setting for model 39. Model 27 was trained using CAWR with
the second setting. The results of this model outperformed the results of model 40 by 2.879 %
points (4.034 %) for the 𝐹 𝑝𝑢𝑏

1 and 2.822 % points (4.233 %) for the 𝐹 𝑝𝑟𝑖𝑣
1 .

The comparison of model 25 and model 41 investigated, whether the SAM optimizer improves
the snake species detection. Model 25 was trained using the SAM optimizer with an SGD
base classifier and a learning rate of 10−1. The comparison model 41 with an SGD classifier
with the same learning rate. The results show, that model 25, which used the SAM optimizer
outperformed model 41 by 4.472 % points (6.982 %) for the 𝐹 𝑝𝑢𝑏

1 and 3.499 % points (5.695 %)
for the 𝐹 𝑝𝑟𝑖𝑣

1 score. However, no further investigations with the SAM classifier were performed
because the implementation of the SAM classifier did not support mixed precision, which
increases the training time.



Table 8
Comparison of optimizers and LR schedulers. For all models, macro-averaging 𝐹1 scores achieved for
the private (𝐹 𝑝𝑟𝑖𝑣

1 ) and public (𝐹 𝑝𝑢𝑏
1 ) test data set are given. The hyperparameters not included in this

table are equals for all models. The best results are highlighted in bold. Abbreviations: LR: Learning
rate, Multip.: Multiplication.

ID Model Optimizer (LR) Scheduler Multip. metadata. 𝐹 𝑝𝑢𝑏
1 𝐹 𝑝𝑟𝑖𝑣

1

(in %) (in %)

9 E-B4 SGD (10−1) CAWR (5,1) - 49.489 45.554
38 E-B4 SGD (10−1) - - 54.261 48.276
10 E-B4 SGD (10−1) CAWR (5,1) binary 66.937 64.579
39 E-B4 SGD (10−1) - binary 68.530 64.567
27 E-v2-M SGD (10−1) CAWR (5,2) binary 74.251 69.492
40 E-v2-M SGD (10−1) - binary 71.372 66.670
25 E-B4 SAM (10−1) - binary 68.520 64.938
41 E-B4 SGD (10−1) - binary 64.048 61.439

5.7. Test Time Augmentation

As mentioned in Section 4.5, the effect of TTA on the classification result of the snake species
was evaluated. The experiments with IDs 12, 13, and 14 of Table 10 are relevant for this
evaluation, which represent the classification results of the same model with different inference
conditions. The experiment with ID 14 represents the classification results influenced by TTA,
which achieved an 𝐹 𝑝𝑢𝑏

1 of 68.781 % and an 𝐹 𝑝𝑟𝑖𝑣
1 of 65.986 %. Comparing the result with the

experiment of ID 12 without TTA (𝐹 𝑝𝑢𝑏
1 : 67.209 % and 𝐹 𝑝𝑟𝑖𝑣

1 : 63.666 %), an improvement of
1.572 % points (2.339 %) was achieved for 𝐹 𝑝𝑢𝑏

1 , and 2.320 % points (3.644 %) for 𝐹 𝑝𝑟𝑖𝑣
1 .

It should be noted that the prediction probabilities of both models were multiplied by the
raw regional prior probabilities during the experiments, as mentioned in Section 4.7. In the
experiment with ID 13, the prediction probabilities were multiplied by the regional binarized
prior probabilities and results of 67.502 % 𝐹 𝑝𝑢𝑏

1 and 65.083 % 𝐹 𝑝𝑟𝑖𝑣
1 were achieved. Comparing

these results with the TTA experiment of ID 14, the effect of TTA is minimal. This is one of
the reasons, besides the fact that TTA requires much longer inference times and only a limited
number of submissions were allowed during the challenge, why TTA was not applied in further
experiments.

5.8. Multiplication with Regional Prior Probabilities

The results of the ablation study executed to identify the effects of multiplication with regional
prior probabilities are summarized in Table 9. In all experiments, the results achieved using
multiplication with regional prior probabilities outperformed the raw predictions. The mean
improvement achieved by multiplying the raw regional prior probabilities to the model pre-
dictions is 14.725 % points (27.333 %) for the 𝐹 𝑝𝑢𝑏

1 score and 15.287 % points (31.569 %) for
the 𝐹 𝑝𝑟𝑖𝑣

1 score. The highest improvement for the 𝐹 𝑝𝑢𝑏
1 score was achieved for the comparison

between model 1 and model 2 (17.499 % points, 35.261 %). For the 𝐹 𝑝𝑟𝑖𝑣
1 score, the highest

improvement of 16.701 % points (36.868 %) was reached for the comparison of model 5 and



Table 9
Ablation study to identify the effect of the multiplication with regional prior probabilities. The best
results are highlighted in bold. Abbreviations: Multip.: Multiplication.

First comparison model Second comparison model Improvement
ID Multip. metadata 𝐹 𝑝𝑢𝑏

1 𝐹 𝑝𝑟𝑖𝑣
1 ID Multip. metadata 𝐹 𝑝𝑢𝑏

1 𝐹 𝑝𝑟𝑖𝑣
1 𝐹 𝑝𝑢𝑏

1 𝐹 𝑝𝑢𝑏
1 𝐹 𝑝𝑟𝑖𝑣

1 𝐹 𝑝𝑟𝑖𝑣
1

(%) (%) (%) (%) (% points) (%) (% points) (%)

1 - 49.627 45.479 2 yes 67.126 61.879 17.499 35.261 16.400 36.061
5 - 51.758 45.299 6 yes 67.509 62.000 15.751 30.432 16.701 36.868
7 - 58.780 51.773 8 yes 71.277 65.497 12.497 21.261 13.724 26.508
15 - 54.675 49.500 16 yes 68.947 63.953 14.272 26.103 14.453 29.198
19 - 55.251 48.827 20 yes 68.567 64.652 13.316 24.101 15.825 32.410
21 - 55.944 51.521 22 yes 70.958 66.137 15.014 26.838 14.616 28.369
9 - 49.489 45.554 10 binary 66.937 64.579 17.448 35.256 19.025 41.764
12 yes 67.209 63.666 13 binary 67.502 65.083 0.293 0.435 1.417 2.226
32 binary 75.426 70.798 34 binary code 78.085 73.900 2.659 3.525 3.102 4.381

model 6.
Only one comparison was performed to compare the multiplication with binarized regional

prior probabilities to the model probabilities. The comparison between model 9 and model 10
shows an improvement of 17.448 % points (35.256 %) for the 𝐹 𝑝𝑢𝑏

1 score and 19.025 % points
(41.764 %) for the 𝐹 𝑝𝑟𝑖𝑣

1 score.
Similar to previous work [7, 8], the comparison between model 12 which was multiplied with

raw regional prior probabilities of the and model 13, multiplied with the binarized regional
prior probabilities shows improved 𝐹 𝑝𝑢𝑏

1 (0.293 % points, 0.435 %) and 𝐹 𝑝𝑟𝑖𝑣
1 scores (1.417 %

points, 2.226 %) for the binarized variant.
After the deadline of the challenge expired, another variant of the best performing model

was submitted. Instead of multiplying model predictions with the regional binarized prior
probabilities, those were multiplied with the binarized prior probabilities of the country code.
The comparison of model 32 and model 34 visualized in Table 9 shows a further improvement of
2.659 % points (3.525 %) for the 𝐹 𝑝𝑢𝑏

1 score and 3.102 % points (4.381 %) for the 𝐹 𝑝𝑟𝑖𝑣
1 score.

Those improvements might result from less images with unknown values in the country codes
in comparison to the country information (described in Section 3) as well as less restrictive
prior probability distributions.

6. Conclusion

In this work, a deep learning based workflow was implemented to identify snake species in
photographs. Additional metadata available in the training and test data set include the region
and the country code. The workflow included object detection, image augmentation, classifica-
tion model training, feature concatenation, multi-instance learning, TTA, and multiplication
with regional prior probabilities. The effects of interesting modules are investigated using
ablation studies. Due to limitations in time and number of submissions during the challenge, for
some experiments, no ablation studies were executed, those were added using post competition
experiments.

In comparison to the participation in SnakeCLEF 2021, the classification models were ex-
panded using ConvNeXt and EfficientNet-v2 models. To improve the results of the object



detection as a pre-processing step, Mask-RCNN was replaced by YOLOv5. Additionally, geospa-
tial feature concatenation was implemented to combine image and location information.

Except for one experiment, the results of the ablation studies showed improved results for
the YOLOv5 object detection in comparison to the training without object detection and to the
Mask-RCNN model implemented in prior work. The different image augmentation pipelines
showed only slight performance differences in the snake classification. For the classification
models, EfficientNet-B5 models as well as EfficientNet-v2-M models outperformed EfficientNet-
B4 models. ConvNeXt-L models reached similar performances as the EfficientNet-v2-M models.
However, these comparisons were not totally fair, because image sizes, and batch sizes differed
between model architectures. Improved results were achieved using the SAM instead of the
SGD optimizer and CAWR as a learning rate scheduler.

Geospatial feature concatenation positively affects the classification results, but simple multi-
plication of the model prediction with the prior probabilities of the regional metadata had a more
positive effect on the snake species classification. The multiplication with prior probabilities
extracted from the country codes outperformed the multiplication with prior probabilities of the
regions. The best results during the challenge were achieved for an ensemble model consisting
of multiple architectures. Using TTA, slight improvements were achieved.

Future work will address transfer learning with classifiers pre-trained with biodiversity data.
More recently developed deep learning architectures like MetaFormers [69] show promising
results [70] in Fine-Grained Visual Classification (FGVC) and should thus be examined in
future work. Additionally, the impact of different mini-batch sizes and learning rates should be
investigated more systematically. The data set is imbalanced with only three observations in
the training data set for some species. To overcome this problem, future work should address
oversampling to improve the influence of underrepresented species. The problem of highly
imbalanced class distributions can be also addressed by using specific loss functions including
ArcFace [71] or SeeSaw [72]. Most of the presented classifiers were trained without a validation
data set, this procedure might lead to model overfitting. To avoid overfitting and thus make the
prediction models more robust, future work should monitor the model training process using a
validation data set.
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Table 10
Macro-averaging 𝐹1 scores achieved for the private (𝐹 𝑝𝑟𝑖𝑣

1 ) and public (𝐹 𝑝𝑢𝑏
1 ) test data set. The best results are highlighted in bold. Ensemble 1 includes model 6, 18,

26, and 27. Ensemble 2 is composed of model 1, 6, 18, 26, 27, 31, and 32. Abbreviations: OD: object detection, E-B4: EfficientNet-B4, E-B5: EfficientNet-B5, E-v2-M:
EfficientNet-v2-M, C-NeXt-L: ConvNeXt-L, concat.: concatenation, train.: training, inf.: inference, Multip.: Multiplication, Augment.: Augmentation.

ID Model Transfer Learning Geospatial OD Batch size Epochs𝑎 Image size Image size Optimizer (LR) Scheduler Multip. metadata Augment. Mixed precision 𝐹 𝑝𝑢𝑏
1 𝐹 𝑝𝑟𝑖𝑣

1

feature concat. train. inf. inf. (in %) (in %)

1 E-B4 ImageNet-1k - - 40 30 380 380 Adam (10−4) - - basic no 49.627 45.479
2 E-B4 ImageNet-1k - - 40 30 380 380 Adam (10−4) - yes basic no 67.126 61.879
3 E-B4 ImageNet-1k - YOLOv5l_basic 40 30 380 380 Adam (10−4) - - basic no 57.937 50.990
4 E-B4 ImageNet-1k - YOLOv5l_basic 40 30 380 380 Adam (10−4) - yes basic no 71.130 65.761
5 E-B4 ImageNet-1k - - 40 30 380 380 Adam (10−4) - - Rand no 51.758 45.299
6 E-B4 ImageNet-1k - - 40 30 380 380 Adam (10−4) - yes Rand no 67.509 62.000
7 E-B4 ImageNet-1k - YOLOv5l_adv 40 30 380 380 Adam (10−4) - - basic no 58.780 51.773
8 E-B4 ImageNet-1k - YOLOv5l_adv 40 30 380 380 Adam (10−4) - yes basic no 71.277 65.497
9 E-B4 ImageNet-1k - - 40 30 380 380 SGD (10−1) CAWR (5,1) - basic no 49.489 45.554
10 E-B4 ImageNet-1k - - 40 30 380 380 SGD (10−1) CAWR (5,1) binary basic no 66.937 64.579
11 E-B4 ImageNet-1k yes YOLOv5l_basic 128 30 380 380 Adam (10−4) - - RandEra no 62.546 58.744
12 E-B4 ImageNet-1k yes YOLOv5l_basic 128 30 380 380 Adam (10−4) - yes RandEra no 67.209 63.666
13 E-B4 ImageNet-1k yes YOLOv5l_basic 128 30 380 380 Adam (10−4) - binary RandEra no 67.502 65.083
14𝑏 E-B4 ImageNet-1k yes YOLOv5l_basic 128 30 380 380 Adam (10−4) - yes RandEra no 68.781 65.986
15 E-B5 ImageNet-1k - - 16 30 456 456 Adam (10−4) - - basic no 54.675 49.500
16 E-B5 ImageNet-1k - - 16 30 456 456 Adam (10−4) - yes basic no 68.947 63.953
17 E-B4 ImageNet-1k - MaskRCNN 40 30 380 380 Adam (10−4) - - basic no 55.251 48.827
18 E-B4 ImageNet-1k - MaskRCNN 40 30 380 380 Adam (10−4) - yes basic no 68.567 64.652
19 E-B4 ImageNet-1k - YOLOv5x6_adv 40 30 380 380 Adam (10−4) - - basic no 55.944 51.521
20 E-B4 ImageNet-1k - YOLOv5x6_adv 40 30 380 380 Adam (10−4) - yes basic no 70.958 66.137
21 C-NeXt-L ImageNet-21k yes YOLOv5l_basic 48 30 (16) 384 384 Adam(10−5) - - AutoEra no 68.129 64.987
22 C-NeXt-L ImageNet-21k yes YOLOv5l_basic 48 30 (16) 384 384 Adam(10−5) - binary AutoEra no 69.093 67.413
23 C-NeXt-L ImageNet-21k - YOLOv5l_basic 48 30 (16) 384 384 Adam(10−5) - - AutoEra no 62.499 59.009
24 C-NeXt-L ImageNet-21k - YOLOv5l_basic 48 30 (16) 384 384 Adam(10−5) - binary AutoEra no 70.426 66.852
25𝑐 E-B4 ImageNet-1k - - 10 30 380 380 SAM (10−1) - binary basic no 68.520 64.938
26 E-v2-M ImageNet-21k - - 32 30 384 384 SGD (10−1) CAWR (5,2) binary basic no 73.795 68.577
27 E-v2-M ImageNet-21k - - 32 30 384 384 SGD (10−1) CAWR (5,2) binary basic yes 74.251 69.492
28 E-v2-M ImageNet-21k - YOLOv5l_basic 32 30 384 384 SGD (10−1) CAWR (5,2) binary basic yes 73.903 69.733
29𝑑 E-v2-M ImageNet-21k - YOLOv5l_basic 88 64 (64) 384 384 AdamW(10−4) - binary AutoEraCut yes 69.814 67.889
30 E-v2-M ImageNet-21k - YOLOv5l_basic 96 50 (30) 384 384 SGD(10−2) CLR(50,10−5) binary Era yes 70.778 67.974
31 Ensemble 1 - - - - - - - - - binary - - 74.205 70.432
32 Ensemble 2 - - - - - - - - - binary - - 75.426 70.798

Post competition experiments
33 E-v2-M ImageNet-1k - - 32 30 384 384 SGD (10−1) CAWR (5,2) binary basic yes 73.006 70.231
34 Ensemble 2 - - - - - - - - - binary code - - 78.085 73.900
35 E-B4 ImageNet-1k yes YOLOv5l_basic 40 30 380 380 Adam (10−4) - - basic no 58.780 53.948
36 E-B4 ImageNet-1k yes YOLOv5l_basic 40 30 380 380 Adam (10−4) - yes basic no 64.048 61.439
37 E-B4 ImageNet-1k yes YOLOv5l_basic 40 30 380 380 Adam (10−4) - binary basic no 64.767 62.464
38 E-B4 ImageNet-1k - - 40 30 380 380 SGD (10−1) - - basic no 54.261 48.276
39 E-B4 ImageNet-1k - - 40 30 380 380 SGD (10−1) - binary basic no 68.530 64.567
40 E-v2-M ImageNet-21k - - 32 30 384 384 SGD (10−1) - binary basic yes 71.372 66.670
41𝑒 E-B4 ImageNet-1k - - 10 30 380 380 SGD (10−1) - binary basic no 64.467 69.142
42 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - - base yes 53.014 48.710
43 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - - base + Rand yes 55.104 49.675
44 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - - base + RandEra yes 53.138 49.756
45 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - - base + Rand + RandEra yes 54.991 49.923
46 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - - base + CutMix yes 55.527 50.743
47 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - - base + Rand + CutMix yes 57.099 52.733
48 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - - base + Rand + RandEra + CutMix yes 54.873 50.442
49 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - binary code base yes 65.780 61.595
50 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - binary code base + Rand yes 67.738 62.411
51 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - binary code base + RandEra yes 66.010 61.334
52 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - binary code base + Rand + RandEra yes 65.819 61.825
53 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - binary code base + CutMix yes 68.016 64.004
54 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - binary code base + Rand + CutMix yes 69.777 64.191
55 E-B4 ImageNet-1k - - 40 45 380 380 Adam (10−4) - binary code base + Rand + RandEra + CutMix yes 67.886 63.516
56 E-B4 ImageNet-1k - - 64 30 380 380 Adam (10−4) - - base + Rand + CutMix yes 56.553 52.498
57 E-v2-m ImageNet-21k - - 64 30 384 384 Adam (10−4) - - base + Rand + CutMix yes 63.469 57.261
58 C-NeXt-L ImageNet-21k - - 64 30 384 384 Adam (10−4) - - base + Rand + CutMix yes 62.224 57.849
59 E-B4 ImageNet-1k - - 64 30 380 380 Adam (10−4) - binary code base + Rand + CutMix yes 69.517 65.028
60 E-v2-m ImageNet-21k - - 64 30 384 384 Adam (10−4) - binary code base + Rand + CutMix yes 73.737 68.444
61 C-NeXt-L ImageNet-21k - - 64 30 384 384 Adam (10−4) - binary code base + Rand + CutMix yes 73.183 69.018
𝑎Values in brackets indicate a pre-trained model on a subset of the training data to evaluate the training effect on split-off validation data. Values in front of brackets refer to the following training epochs with the entire training data set.
𝑏Model 14 was trained with TTA.
𝑐Model 25 was trained without mixed precision.
𝑑Model 29 was trained using cross-entropy with label smoothing.
𝑒Model 41 was trained without mixed precision.
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