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Abstract
Deep learning has been successful in a variety of challenging image classification tasks, characterized
by complex and large datasets. Ensemble learning further improves model performance by inferring
compound decision boundaries in the feature space, and assorting importance to the most representative
features to effectively discriminate between image classes. This paper details a deep learning based
feature extraction and subsequent boosting ensemble approach for fungi species classification. The
proposed workflow leverages state-of-the-art deep learning architectures such as ResNeXt and Efficient-
Net among others, trains them by transfer learning onto a fungi image dataset for feature extraction,
and finally integrates the output representation vectors with geographic metadata to train a gradient
boosting ensemble classifier that predicts the fungi species. The authors trained multiple deep learning
architectures, assessed their individual performance and selected effective feature extraction models.
Multiple experiments were performed in choosing these models, and to subsequently perform hyper-
parameter tuning to train the boosting classifier. The approach attained a maximum macro-averaged
F1-Score of 48.96% on the test data. The corresponding validation F1-Score and Accuracy scores were
50.22% and 85.11%, respectively. Furthermore, the best model exhibited more confident predictions
than its inferior counterparts, indicating improved inter-class discerning.
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1. Introduction

This paper presents the participation of Sri Sivasubramaniya Nadar College of Engineering,
India for the FungiCLEF-2022 [1] challenge for fungi species identification held jointly by
LifeCLEF-2022 [2, 3] lab of the CLEF 2022 conference and the FGVC9 workshop organized in
conjunction with CVPR 2022 conference.

In India, the infection rate of fungi-based diseases such as Mucormycosis was 45374, with
a mortality rate of over 4300. Fungi are also essential to the survival of many organisms and
sustaining the food cycle as they attract attention as predators of invertebrate animals, act as
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catalysts, and so on. Manual identification of such species is no easy task as it involves running
through almost 5.1 million species.

The aim of the FungiCLEF challenge is to assist citizens, scientists, and nature enthusiasts
by automatic recognition of fungi species based on non-standardized photographs, habitat,
substrate, and location information that are available as a part of the meta-data.

2. Related work

The usage of convolutional neural networks in the classification and identification of fungi
species is a concept that has been floating around for quite a while. The integration of computer
vision and machine learning with the development of more efficient algorithms will undoubtedly
be a hotspot for future studies in the context of the mushroom industry [4].

2.1. FungiCLEF

A study in 2021 in the Turkish Journal of Computer and Mathematics Education by Sukanya S.
Gaikwad [5] used a convolutional neural network to classify various species of fungi, specifically
on fungi affected apple leaf diseases. They obtained an accuracy of 88.90% in the classification
of fungi.

In a study by M.E. Mital, pre-trained deep learning models were employed in classifying 9
kinds of Aspergillus. The methodology comprised of preprocessing, deep-learning and perfor-
mance evaluation. This study achieved a 93.33% testing accuracy proving that the transferred
knowledge is accurate, compatible and reliable [6].

A submission to the Danish Fungi 2020 by Lukáš Picek showed that experiments using
convolutional neural networks and the recent Vision Transformers showed that ViT achieves
results superior to convolutional neural network baselines with 80.45% accuracy and 0.74 macro
F1 score, reducing the convolutional neural network error by 9% and 12% respectively. By
incorporating metadata into the decision tree process, the error rate came down significantly
by 15% [7].

A study by Krzysztof Przybył to evaluate rapeseed samples obtained in the process of storage
experiments with different humidity and temperature conditions, the classification was carried
out based on the different levels of contamination with filamentous fungi. The classifiers that
were compared were devised on the basis of the environments TensorFlow (deep learning)
and Statistics (machine learning). The lowest classification error of 14% for the test set, 18%
classification error for Multi-Layer Perceptron Networks (MLPN), and 21% classification error
for Radial Basis Function Networks (RBFN), in the process of recognizing mold in rapeseed with
the use of convolutional neural networks [8].

Finally, a paper written by Pranjal Maurya focused on developing a method for classification
of mushroom using its texture feature, which is based on the machine learning approach. The
performance published was 76.60% by using support vector machine classifier, which was found
better with respect to the other classifiers like k-nearest neighbors, Logistic Regression, Linear
Discriminant, Decision Tree, and Ensemble classifiers [9].



3. Methods

Convolutional neural networks are deep learning algorithms that use 3 major types of layers,
namely: convolutional layer, pooling layer, and fully connected layer.

In our approach to this problem, we have used different convolutional neural network-based
approaches like ResNet101, ResNet50, and EfficientNetB0. The workflow was implemented
using Python v3.9.0 and primarily uses TensorFlow V.2.4.0.

3.1. Dataset

The training dataset of the FungiCLEF-2022 challenge consists of 295938 training images spread
over 99% fungi and 1% protozoa belonging to 1604 species observed mostly around Denmark.
This challenge, being a new entrant into the foray of LifeCLEF challenges, unfortunately cannot
be compared to previous year’s datasets. The dataset includes 30 different country codes 5
localities with just over 1% distribution among Store Hareskov and Hegedal and the remaining
98% over the other localities. All the methods used involve convolutional neural networks. The
models used are ResNet101 and EfficientNetB0.

3.2. Image Preprocessing

The photos were first placed into an input sequencer, where the outlier images were found. The
images were analyzed, and it was discovered that they were of varying sizes and scales. As a
result, image augmentation was used to convert all of the photographs to RGB and scale them
to a standard size of 800 by 600 pixels 224× 224× 3 dimensions [10].

The images were linearly normalized to values between 0 and 1 to reduce the effect of
irrelevant characteristics in the context of the needed task, such as variance in lighting conditions
among the shots. To make the model more general, immune to the impact of positional and
orientation-based bias, and prevent memory by improving image diversity, transformations
such as scale and rotation, as well as contrast and saturation variations, were induced on the
model inputs. The aforementioned modifications were utilized to augment the input photos
with RandAugment [11]. RandAugment has two parameters: the number of augmentation
transformations to apply in order (N) and the magnitude of all modifications (M). N=3 and M=4
were chosen as the values for the ResNet model by experimentation.

3.3. Feature Extraction

Feature extraction is a method prescribed to transform raw data into numerical features. It
is preferred as applying machine learning algorithms directly on the raw data yields poorer
results. High data rates and information redundancy can be cut down using feature extraction.
Since the task this time involved a large data set of over 110GB of training images along with
geographic metadata, the data rate is very high. Thus, redundant features are an obvious
by-product. Feature extraction thus helped extract only the unique features that describe the
images, such as shapes and edges.



3.4. Deep Learning Models Considered

The feature extraction models for fungi image was selected after experimenting with multiple
deep-learning architectures.

ResNet101 [12] is a well-known convolutional neural network model that was introduced in
2015. This model addresses the degradation problem, which asserts that as network depth grows,
accuracy becomes saturated and subsequently rapidly declines. ResNet solves the degradation
problem by using shortcut connections that bypass one or more layers, which was inspired by
the Highway network [13], which employed gated shortcut connections to manage the flow of
information in the shortcut.

EfficientNet(s) [14] are a class of convolutional neural networks that were built in 2019. It’s a
small-scale architecture with about 11 million trainable parameters. It was created with the
help of a multi-objective neural network that prioritized precision and floating point operations.
It supports compound scaling while maintaining network balance across all dimensions. It
employs an inverted bottleneck as well as a depth-wise convolutional network that includes
squeeze and excitation operations. It employs MBConv blocks [15] that serve as Inverted Linear
BottleNeck layers. These layers use Depth-Wise Separable Convolution operations. The model
complexity of the variants increases from B0 to B7. The authors experimented with B0, B4 and
B6 variants to scale the model complexity and find the best suited intricacy for the fungi dataset.

Another popular convolutional neural network model, ResNeXt101 [16], is very similar to the
ResNet101 model. ResNet101 features a lot of sequential layers, while ResNeXt101 contains a lot
of parallel stacking layers. Like the Inception module [17, 18], it uses a split-transform-merge
technique. ResNeXt shares hyperparameters for all the blocks, unlike the Inception module
which has different filters and sizes for each block.

3.5. Gradient Boosting Ensemble Classifier

Ensemble methods are techniques used to counter the high variance produced by a single neural
network by adding an inherent bias that is obtained from multiple models. They tend to give
higher accuracy than their resident models. Boosting is an ensemble technique in which the
new models are sequentially added to the existing features to correct the errors.

In our method, an ensemble of the models trained off the aforementioned architectures were
conjoined with metadata features — country, three-level-precise location information, substrate
and habitat. These metadata features along with the 4096 features extracted from each of the
two models, was concatenated and fed to a gradient boosting classifier.

The team used the XGBoost library package [19] for implementing the boosting classifier.
XGBoost is a high-speed and high-performance implementation of gradient boosted decision
trees. XGBoost’s superior execution speed was factored-in while choosing from all the available
implementation libraries.

3.6. Prediction of Out-of-the-Scope Classes

The FungiCLEF-2022 test dataset is known to contain images of Fungi that belong to classes,
not exposed to the model as part of the training set. From a practical perspective, predicting a
previously unseen observation as an unidentified class is as salient as assorting a seen class into



its corresponding class. Failure to do either, is misleading. It is, therefore, imperative that such
out-of-the-scope observations are identified and flagged.

To manage such observations during prediction, the authors have adopted a prediction
confidence thresholding strategy. The gradient boosting classifier employs the softmax activation
function in its classification layer. Consequently, it outputs a discrete probability distribution —
𝑃 , over all the 1604 seen classes, such that Equation 1 is satisfied.

1603∑︁
𝑖=0

𝑃 (𝑋 = 𝑖) = 1 (1)

where, 𝑖 denotes the class id of the known classes of fungi species, and 𝑃 (𝑋 = 𝑖) denotes the
probability that a specific observation belongs to class 𝑖.

The most predominantly adopted strategy to predict the observation’s class from this distri-
bution is the Maximum Likelihood Estimate (MLE) [20] of this probability distribution, with
respect to the training data — predict that the observation belongs to class 𝑘, such that 𝑃 (𝑋)
has a global maxima at 𝑋 = 𝑘. The same strategy is adopted by the authors, with one nuance.

The prediction probability associated with a class represents the model’s confidence about an
observation belonging to that class. If the value at the global maxima of 𝑃 (𝑋) is not strikingly
higher than the value of 𝑃 (𝑋) at other points, it suggests that the model is not very confi-
dent about its prediction. Extending this idea, the proposed prediction confidence thresholding
method classifies an observation as out-of-scope if the maximum prediction confidence for
the observation falls below a specific threshold value. One such threshold value is arrived
at for each trained ensemble model, by adopting a qualitative, experiment-based method. A
histogram of maximum prediction probabilities of the model, for each observation in the test
set, is plotted. Subsequently, multiple confidence values are sampled from lower end of the
x-axis of the histogram, and tried for prediction to choose an optimal value. The method is
described in greater detail, under the subsequent section on Experiments.

4. Experiments

Transfer learning from the weights obtained during training with the ImageNet data set [21], and
fine-tuning on the FungiCLEF-2022 training data were used to train the model. The prediction
accuracy of the models was tracked throughout training in order to select the collection of
feature extractors to employ for ensembling later. ResNeXt101 and EfficientNetB4 were chosen
as feature extractors for ensembling based on observed network performance. The ensembling
was performed using the XGBoost gradient boosting library package.

The forward propagation is described during training and prediction. Each observation is
made up of numerous fungus photos, as well as contextual geographic information like nation
and exact area where the photograph was taken on four layers, as well as specific attributes like
substrate and habitat. Each image in an observation is preprocessed before being fed through
the two feature extraction networks to generate two 4096-element-long representation vectors.
These vectors are combined with numeric encoded nation, location at three-level precision,
substrate, and habitat metadata for the image to produce a final vector with a size of 8198.
The numeric encoding was achieved with the help of Label Encoders from the scikit-learn



Figure 1: Prediction workflow used in the proposed work for the classification of fungi species from
their images and metadata using an ensembling gradient boosting classifier. Note: Model architectures
depicted are illustrative only and NOT accurate representations of the underlying network design.

[22] library wherein, the categorical country codes available as training data are converted
to integral class labels that can be fed as input to the feature extraction neural network. The
boosting ensemble classifier is fed these 8198 features to generate a probability distribution
over all potential fungi species classes. This workflow is depicted in Figure 1. Categories in any
metadata feature that are present in the testing data, but not encountered in the training set
are encoded as 0, a commonly adopted strategy to deal with unseen categorical data in deep
learning methods.

To obtain a single aggregate distribution of probabilities over all classes, the corresponding
class probability values collected for each image in an observation are averaged. As a result, each
observation has only one unique probability distribution. The classification label is assigned to
the class that has the highest aggregate probability value.

The subsequent sections describe the model training experiments and parameters.

4.1. Model Training

The details of the model training process, performed through transfer-learning is presented in
this section. A summary of the parameters used for model training is tabulated in Table 1.

Table 1
Model training parameters used to train each of the convolutional neural networks used for this
classification task.

Parameter Optimizer Learning rate Batch Size Epochs

ResNet101 Adam 3𝑒−5 32 45
EfficientNetB0 Adam 3𝑒−2 32 50
EfficientNetB4 Adam 1𝑒−3 32 60
EfficientNetB6 Adam 3𝑒−3 32 45

ResNeXt101 Adam 3𝑒−3 32 25



4.1.1. ResNet101

The feature extraction layers of ResNet101 were trained with a two-step classification block,
comprising two dense blocks with 4096 and 1604 neurons respectively. The extracted features
were percolated through a flatten layer to obtain, before feeding to the classification block. In
addition, a dropout layer was added after the dense layer to avoid overfitting. Dropout rates
between 0.30 and 0.70 were experimented and set to 0.55 in the final version of the model.
The model was trained with the Adam optimizer at an initial learning rate of 3𝑒−5. It was
back-propagated using the Categorical Cross-Entropy (CCE) loss. For feature extraction, the
output of the first dense layer was used to produce a feature vector of 4096 elements. During
training, the model’s prediction accuracy was tracked to later choose the feature extractor to
use for ensembling.

4.1.2. EfficientNetB0

EfficientNetB0 was also trained with a two-step classification block, comprising two dense
blocks with 4096 and 1604 neurons, respectively. The extracted features were percolated through
a flatten layer to obtain, before feeding to the classification block. The dropout layer added
after the dense layer for this network was experimented between 0.30 and 0.70 and fixed at 0.30.
The model was trained using the Adam optimizer at an initial learning rate of 3𝑒−2. It was
back-propagated using the Categorical Cross-Entropy (CCE) loss. For feature extraction, the
output of the first dense layer was used to produce a feature vector of 4096 elements.

4.1.3. EfficientNetB4

EfficientNetB4 was trained with a two-step classification block, also comprising two dense
blocks with 4096 and 1604 neurons, respectively. While the final layers of the architecture are
the same as the other EfficientNet models, the dropout layer added after the dense layer for
this network was experimented between 0.30 and 0.70 and fixed at 0.35 for this model. The
model was trained using the Adam optimizer at an initial learning rate of 1𝑒−3. A Categorical
Cross-Entropy (CCE) loss was used to back-propagate, and a 4096-sized vector was extracted as
a feature-representation.

4.1.4. EfficientNetB6

EfficientNetB6 followed the same approach — two dense blocks with 4096 and 1604 neurons,
dropout layers, and CCE loss for back-propagation, and optimized with Adam — with differences
only in the hyperparameters. The dropout layer after the dense layer was fixed at a dropout
rate of 0.45 after experiments. The learning rate was initially set at 3𝑒−3. A 4096-sized vector
was extracted as feature-representation.

4.1.5. ResNeXt101

The ResNeXt101 architecture was augmented, following the same strategy as the aforementioned
models i.e. by adding a two-step classification block of 4096 and 1604 neurons, respectively.
Here, the dropout after experimenting, was set at 0.60 — a significantly high rate due to excessive



early-onset overfitting. Adam optimizer, along with CCE loss was used for training, with an
initial learning rate of 3𝑒−3.

4.2. Loss, Metrics, Activation and Optimizer Used

The loss functions, activation functions, optimizers, and evaluation metrics used in the model
training experiments are listed under this section, along with their parameterizations and
equations.

4.2.1. Adam Optimizer

Adam [23] is a stochastic optimization method which is used on gradient descent and maintains
a single learning rate (alpha) throughout training. Adam combines the advantages of the
Adaptive Gradient Algorithm and Root Mean Square Propagation. Unlike the Root Mean Square
Propagation, in which the first moment about the mean is used, Adam uses the average of the
second moments about the mean too. In effect, Adam provides an optimization algorithm that
can handle sparse gradients on noisy problems, by maintaining a per-parameter learning rate.

4.2.2. Categorical Cross Entropy Loss

The categorical cross entropy is a measure of the difference between two discrete probability
distributions. It is calculated using the formula in Equation 2.

𝐿𝑜𝑠𝑠 = −
𝑛∑︁

𝑖=1

𝑦𝑖𝑙𝑜𝑔𝑡𝑖, (2)

where, 𝑦𝑖represents the corresponding target value for 𝑡𝑖 the scalar model output.

4.2.3. Softmax Activation

The Softmax activation function is used at the end of the output layer to produce the posterior
probability distribution over all classes, based on equation 3. Softmax is essentially a mathe-
matical function that converts a vector of numbers into a vector of probabilities, where the
probabilities of each value are proportional to the relative scale of each value in the vector. In
effect, it normalizes the outputs, converting them from weighted sum values into probabilities
that sum to one.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑥𝑝(𝑧𝑖)

Σ𝑗𝑒𝑥𝑝(𝑧𝑗)
(3)

where, 𝑧 represents the values from the neurons of the output layer. The exponential acts as the
non-linear function. These values are divided by the sum of exponential values to normalize
and convert them into probabilities.



4.2.4. F1-Score Metric

The F1-Score is usually calculated as the harmonic mean of precision and recall. This is concretely
expressed in the equation 4.

𝐹1 =
2𝑝𝑠𝑟𝑠
𝑝𝑠 + 𝑟𝑠

, (4)

𝑝𝑠 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
(5)

𝑟𝑠 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
(6)

where, 𝐹1 represents the F1-score, 𝑝𝑠 represents precision, 𝑟𝑠 represents recall, 𝑇𝑝represents true-
positive, 𝐹𝑝 represents false-positive and 𝐹𝑛 represents false-negative. The contest prescribed
macro-averaged F1-Score as the evaluation metric.

4.2.5. Accuracy Metric

The accuracy score (Acc) is computed as the ratio of correct predictions to the total number
samples. This is expressed in the equation 7.

𝐴𝑐𝑐 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
(7)

where, 𝐴𝑐𝑐 represents the accuracy score, 𝑇𝑝represents true-positive, 𝑇𝑛 represents true-
negative, 𝐹𝑝 represents false-positive and 𝐹𝑛 represents false-negative.

4.3. XGBoost Ensemble Classifier

Ensembling was performed with the XGBoost classifier. A grid-search strategy6 was adopted
and hyperparameters were fine-tuned [24] for optimal performance when training the XGBoost
classifier. The tree’s maximum depth was set to 32. The model would become more sophisticated
and prone to overfitting if this parameter was increased. Because increasing this value will
consume too much memory during training the deep tree, a low value of 16 was chosen.

Learning rates greater than 0.03 were found to cause rapid divergence, therefore values in
the 10𝑒−3 to 10𝑒−5 range were utilized. Grid-search was carried out by altering the learning
rates in this range and using decision trees ranging from 100 to 1000. To fine-tune the tree-level
parameters, the combinations with the best accuracy scores were chosen.

The maximum depth of the tree is left to be selected according to the classifier’s training
progress and is not fixed in stone. This causes the depth to increase until the leaves are pure
(i.e., all samples belong to the same class) or the minimum number of samples required to divide
further has been reached. Some classes may require deeper branches to gather more information
from the features due to the data set’s long-tailed distribution. To prevent overfitting, a grid
search over values in the range of 32 to 256 was used to set an upper limit on the number of
leaves.

The learning task and accompanying learning target are then specified using objective
parameters. The Softmax objective function was chosen to set up the classifier for multiclass
classification, and the number of classes was set at 1604, explicitly.



Figure 2: Histogram of maximum prediction confidence over the test set for the ensemble model
corresponding to Submission 1 in Table 3. The orange-colored line-graph depicts cumulative frequency.
The red-colored dotted line-graph depicts the 5% quantile of frequency.

4.4. Threshold Value for Out-of-the-Scope Classes

The authors adopted a prediction confidence thresholding method to handle out-of-the-scope
classes. A threshold value is arrived at for each trained ensemble model by adopting a qualitative,
trial-based method. First, a histogram of maximum prediction probabilities of the model for
each observation in the test set is plotted. The histograms for the best and the worst among the
top-5 post-competition submissions are presented in Figures 2 and 3, respectively.

The x-axis represents the maximum confidence values for predictions on the observations,
while the y-axis tracks the frequency of these maximum confidence values. Subsequently, the
x-axis point of 5% cumulative frequency is identified (denoted by the red-colored dotted-line
in Figure 2). Since the proportion of out-of-the-scope classes is not known, multiple points —
typically, 2-4 points were chosen during experiments — on the left-hand side of this 5% quantile
line are chosen as threshold values, and predictions are made based on each of these threshold
values.

5. Results and Conclusion

The data provided with the metadata — namely country, location at three-levels of precision,
substrate, and habitat metadata — were employed as categorical features for the gradient
boosting classifier. The inclusion of contextual information showed a strong impact on the
classification results — the testing F1-score of the best submission improved from 15.71% to



Figure 3: Histogram of maximum prediction confidence over the test set for the ensemble model
corresponding to Submission 5 in Table 3. The orange-colored line-graph depicts cumulative frequency.
The red-colored dotted line-graph depicts the 5% quantile of frequency.

16.28%. Likewise, the cross-validation accuracy and F1-score for the same model improved
from 61.72% and 41.95% to 63.88% and 42.74%, upon inclusion of the geographic data.

Figure 4 represents the relative importance of the 16 most effective image features extracted
using the trained neural networks, along with the six metadata features used to train the
ensemble classifier. The feature importance values were normalized and scaled between 0 and
100 to realize the relative impacts. Features named as f1, f2, etc. denote features extracted from
the neural networks. It is worth mentioning that f0 through f4095 denote features extracted
using EfficientNetB0, while f4096 through f8191 represent the ResNeXt101-extracted features. It
is evident that the country, level-0 location, and habitat information have a significant influence
on classification. Further, the more specific location information — level-1 and level-2 — have
not contributed as much to the classification. The substrate metadata also serves a significant
impact.

After deciding the baseline architectures for ensembling — namely, EfficientNetB4 and
ResNeXt101 — based on individual prediction performance, the baseline models were trained
towards convergence. Following this, the multiple ensemble models were trained using the
gradient boosting classifier using the two baseline models and contextual data, with different
hyperparameter settings. The ensemble classifier’s performance was improved over several
runs, by tuning the hyperparameters of the gradient boosting classifier. The contest prescribed
F1-scores macro-averaged across all classes as the evaluation metric. Model runs were evalu-
ated on the given stratum of validation set using this metric. The metrics were evaluated as



Figure 4: Relative importance on a scale of 0-100 of the 14 most impactful features extracted from the
deep-learning models, along with the six metadata features used to train the classifier.

an average over the five iterations (for 5-fold cross validation) performed in each run during
training.

Subsequently, the experiment described in Section 4.4 was applied on the models with top
scores on the validation set to sample multiple threshold values for each model, and class
predictions were made based on each threshold value. The top-5 results from this pool of
predictions is summarized in Table 2 for competition submissions, and in Table 3 for post-
competition evaluations.

The histograms used in the experiment for sampling threshold values for the best and worst
post-competition performance are presented in Figure 2 and 3, respectively. It is worth noting
that the 5% quantile — represented using the red-colored dotted-line — occurred at a confidence
value of 0.53 for the best submission, as opposed to 0.24 for the worst model. Further, it can be
observed that a majority of the confidence values occur between 0.4 and 0.6 for the best model,
and between 0.2 and 0.4 for the worst — indicating a rightward shift. These observations signify
that the best-performing model not only predicted a larger proportion of classes correctly, but
did so with a higher prediction confidence. This is of practical importance in situations where
uncertainty in predictions has serious repercussions.

Our team achieved a training accuracy of 67.12%, validation accuracy of 63.88%. The corre-
sponding model secured an F1-score of 16.28% on the competition’s test data. Our team placed
29𝑠𝑡 among 40 participating teams. A complete summary of the model performance is listed in
Table 2.

Based on the results, it is apparent that the inclusion of contextual geographic data for fungi



Table 2
Performance metrics of the 5 best submissions, ordered best to worst. F1-Scores are macro-averaged
across classes.

Submission# Training Accuracy Validation Accuracy Validation F1-Score Test F1-Score

1 67.12 63.88 42.74 16.28
2 63.76 60.79 38.88 16.23
3 60.11 58.21 38.42 15.64
4 60.14 57.13 37.21 14.17
5 53.42 49.22 30.97 12.35

species classification has had a contributing effect. The best post-competition results are on par
with the 27𝑡ℎ best submission. Furthermore, the ensembling of features extracted using multiple
neural architectures, and adopting transfer learning to adapt the pretrained models to the
specific data domain, looks promising. Several existing approaches have introduced metadata
such as population counts of various species, more location-specific geographic data such as
city, state, and climatic features such as temperature and humidity. An interesting approach is
to employ class-wise probability priors to the neural networks based on such metadata [25].

On account of insufficient computing resources to complete all model training experiments
in time for the large dataset of fungi images, the run submissions had to be generated before
complete model convergence. Significant improvements were observed in classification accuracy
after the submission deadline in the validation, as well as testing performance (through the
late submission option). Submission number 3 (refer to Table 2), in particular, showed good
improvements when the boosting classifier was trained further with the same hyperparameter
settings. A summary of post-competition improvements in prediction results during the working
notes submission phase of FungiCLEF-2022 is tabulated in Table 3.

Table 3
Performance metrics of the 5 best submissions post-competition, ordered best to worst. F1-Scores are
macro-averaged across classes.

Submission# Training Accuracy Validation Accuracy Validation F1-Score Test F1-Score

1 86.78 85.11 50.22 48.96
2 83.37 80.56 46.78 41.54
3 78.43 77.10 40.14 37.52
4 74.81 71.82 37.13 34.63
5 73.16 70.84 34.76 33.29

It is evident that subsequent hyperparameter tuning and training have been effective —
both in terms of the proportion of classes predicted correctly, as well as the confidence of
these predictions. Hence, the team believes and suggests that the ensembling approach is
an effective option for applying to data-intensive and high-complexity image classification



tasks that are commonly released as a LifeCLEF task. We further conjecture that training the
individual models to convergence, and subsequently applying the boosting ensembler with
hyperparameter tuning will culminate in a superior prediction performance, that exhausts
the proposed architectures’ and methodology’s potential. In addition, approaches involving
input image resolution variations, usage of alternative pre-trained weights [26], as well as the
inclusion of custom training layers to the frozen base model when transfer learning [27] can
greatly improve the quality of feature extraction. Finally, the application of image preprocessing
techniques can be of significance in improving the overall model performance, particularly
that of the neural networks used for feature extraction [28]. However, the authors could not
expend sufficient time to systematically and exhaustively experiment with image preprocessing
techniques to analyze their impact on classification performance, due to the aforementioned
time and computational constraints. Further experiments will also explore these directions.
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