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Abstract
Long Short-Term Memory (LSTM) networks can learn long-range order dependencies across time steps,
making them particularly well-suited for a variety of use-cases in Natural Language Processing (NLP),
such as text generation. We believe that bird species classification can be framed as a sequence prediction
problem of taxonomy, where the different ranks can be sequentially predicted to impose more structure
on the output space of the model. In this paper, we explore the effectiveness of this novel framework
by training and testing an LSTM network on the Xeno-Canto dataset. We compare our model against
Multi-Layer Perceptron (MLP) baselines and existing works for audio-based bird classification. Our
model outperformed the baselines, achieving 70% accuracy, which serves as a proof of concept that this
architecture is expressive enough to be competitive for bird species classification. We conclude that with
additional improvements, this method can achieve even more robust performance.
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1. Introduction

Long Short-Term Memory (LSTM) networks are particularly well-suited to making predictions
based on sequences of data. While vanilla Recurrent Neural Networks (RNNs) suffer from the
vanishing gradient problem, LSTMs can learn long-range order dependencies across time steps
which is why LSTMs have become increasingly prevalent in language modeling[1].

We are curious to see if LSTMs can also be applied to a different domain: bird sounds! All
three of us love spending time in nature and want to build an app that can help us identify
different birds. Most existing deployed bird classification tools use a semi-automated approach
that requires ecologists to have extensive knowledge in signal processing, rendering them
impractical [2]. Our model’s objective is to take a bird sound audio file as input and then classify
the correct species of the bird using extracted features from the audio file.

We believe that bird species classification can be framed as a sequence prediction problem of
taxonomy, making the LSTM architecture a good model candidate as we can design architectures
similar to sequential text generation models. In particular, the unique insight we believe we have
is that the ranks (parts of a taxonomy) can be sequentially predicted to impose more structure
on the output space of the model. We explore the effectiveness of this novel application of
LSTMs and compare our model against ML baselines and existing works for audio-based bird
classification.
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2. Related Work

Prior to the advent of deep learning, Support Vector Machines (SVMs) and Random Forests were
the preferred approach to the bird audio classification task [2]. Now, many state-of-the-art solu-
tions for audio-based bird classification are based on fully-supervised deep convolutional neural
networks (CNNs) [3, 2]. These approaches typically treat the task as an image classification
one by transforming the raw audio into spectrograms. Many researchers fine-tune pretrained
ImageNet-based models on spectrograms of bird calls, though some models use more complex
architectures like ResNet [4] or BirdNET [5].

Many scholars have also used hybrid RNN-based approaches for the audio classification task.
Liu et al. [6] added a Bi-directional Long Short-Term Memory (Bi-LSTM) neural network to
DenseNet to extract the temporal correlation features of bird songs, allowing for superior bird
song recognition with an average accuracy between 90% and 93%. There are also approaches
that weakly label examples which allows them to be robust against background sounds in the
audio [7].

However, there did not seem to exist any works that leveraged the sequential structure or
hierarchical relationships of taxonomy in bird audio classification, which we believe to be
valuable information.

3. Methods

3.1. Dataset and Features

The Xeno-Canto dataset1 is a collection of 712,477 bird audio recordings over 10,314 different
bird species. It is a widely used dataset for the bird audio species classification task and it was
used as the primary dataset to train the state-of-the-art BirdNET model[5].

We used 14850 samples across 152 species for our training and validation. These examples
were provided through the BirdCLEF 2022[8, 9]. The 14850 samples were split into a 60%−
20%− 20% train-test-validation set. Rather than using raw data as an input to the model, we
denoise the audio and model the human hearing property at the feature extraction stage. Since
humans perceive changes in low frequency sounds with more nuance than they do changes in
high frequency sounds, we decided to use the Mel scale to map the audio data to the frequency
that mimics what humans would perceive. Using the LibROSA package [10], we extracted the
Mel-frequency cepstral coefficients, the spectral centroid, short time Fourier transform, and
Mel spectrogram for each audio file. By looking at the label histogram of the dataset shown
below, it is clear that there is some heavy class imbalance across the species in this dataset. This
motivates us to oversample the train set and val set so that we can train a model that has high
precision on the minority species. This results in a completely flat species distribution for the
train and val sets.

Additionally, for each model we trained, we worked to prevent overfitting using a validation
set and saving the models that perform best on the validation set. We also used this validation
set as the performance metric to tune each of the hyperparameters including learning rate,

1https://xeno-canto.org/
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hidden sizes and dropout probability. Additionally, we had a patience mechanism where if the
loss on the validation set increased for 50 consecutive epochs, then training would terminate.

Figure 1: Histogram of Species Labels in Dataset

3.2. Baselines

3.2.1. Multi-Layer Perceptron

The first baseline is a Multi-Layer Perceptron (MLP) model which we used to see if there is a
relatively simple non-linear class boundary using the extracted features.

We trained a three-layer perceptron with hidden sizes 512, 128 using a ReLU non-linearity.
This model was trained with Cross Entropy Loss, the Adam optimizer, and a learning rate of
0.001 for 1000 epochs.

3.2.2. Logit-Shifted Multi-Layer Perceptron

The second baseline consists of four Multi-Layer Perceptron models like in the first baseline
– one for each taxonomic rank. Then starting from the highest rank – order – we use the
corresponding MLP’s prediction to boost the logits of the relevant labels outputted by the MLP
for the next taxonomic rank, as shown in Figure 2. For example, the logits for families belonging
to the order predicted by the order MLP would be increased by a large constant 𝐶 larger than
any other logit in the vector. Then the family prediction would boost the logits for the genuses
that belong to that family and so on.

We trained the four MLPs according to the previous section using the same loss, optimizer,
hyperparameters and training epochs. However, the output layer sizes for the order, family,



genus and species MLPs were 17, 41, 103 and 152 respectively. For inference, we loaded the best
checkpoint for each rank’s MLP and began the logit shifting process described above, starting
by predicting order and ultimately predicting species.

Figure 2: Architecture of MLP Logit Shifting Baseline

3.3. LSTM with Logit-Shifting

Our main model for this project is an LSTM model. A single LSTM cell is shown in Figure 3
where the purpose of the cell is to extract key information about the each input while also
saving key parameters over the entirety of the model. The model outputs this information in the
hidden state ℎ and the cell state 𝑐 which are then passed to the next LSTM cell in the sequence.

In particular, if we look at the model architecture in Figure 3, we see that 𝑥0 is the extracted
features which is inputted into the first LSTM cell to product a hidden state and cell state ℎ0, 𝑐0.
Then the hidden state is plugged into the linear layers with a dropout layer in between to get
the predicted order (i.e. predict the highest taxonomic rank). The soft distribution over the
order is then passed in as 𝑥1 to the next LSTM cell which gives a new hidden state and cell
state ℎ1, 𝑐1. Then we pass ℎ1 into a seperate linear layer, dropout, linear layer architecture
to predict logits over the family (i.e. the next taxonomic rank) and so on. We also apply logit
shifting mechanism, described in four MLP baseline, to possible logits at each taxonomy and
thus reduce the size of the prediction task.

We trained our LSTM using Cross Entropy Loss and the Adam optimizer with a learning rate
of 0.001. The loss was calculated for each of the taxonomic ranks since given the true species
label, we are able to backtrace to find the true genus, family and order labels to give us losses
𝐽0, 𝐽1, 𝐽2, 𝐽3. Then the overall loss of the model is

𝐽 =

3∑︁
𝑖=0

𝐽𝑖 (1)

Notably, during training of the model, we used teacher forcing [11]–a standard technique in
text generation models– to mitigate the propagation of training errors forward. We implement



this technique to minimize noisy gradients and better locate sources of error. We achieve teacher
forcing by passing in the true probability distribution over the order, family and genus as the
𝑥1, 𝑥2 and 𝑥3 inputs in Figure 3 regardless of the predicted distribution of the model. We also
use the true distribution instead of the predicted distribution for logit shifting during training.
In this way, each subsequent layer operates under the assumption that the previous layer was
exactly correct in its prediction. However, the hidden state of the LSTM still gets passed through
to the next layer without any direct tampering.

In terms of experimentation, we tried different model structures using the hidden state of
each LSTM cell when predicting each rank. Initially, we started by just having no extra fully-
connected layers between the hidden state and the logits used for predicting the rank. We felt
like the model was not expressive enough as it seemed to be underfitting (the validation loss
was not decreasing), so we then decided to add an extra linear layer followed by dropout layer
for robustness between the hidden state of each LSTM and output layer for that rank. The final
model parameters we settled on was a hidden size of 512 for the LSTM which is fed into a
512× 256 linear layer which undergoes dropout with 𝑝 = 0.4 and then is fed into a final linear
layer of size 256 by the output size.

Figure 3: LSTM with Logit Shifting Architecture (including structure of single LSTM cell) [12]

4. Results

Since our task is an imbalanced classification problem, we choose to evaluate our model on
metrics besides just accuracy: precision, recall, and F1 score. The performance of each of the
models over all of the metrics is shown in Table 1.

4.1. Baselines

For the baseline Multi-Layer Perceptron, the model achieves a test accuracy of 0.57. The
accuracy and loss curves begin to plateau around 1000 epochs and we found no significant
improvement when trained for longer.

Then, when we compare the Logit-Shifted MLP to the simple MLP, we observed a 4.8



percentage point increase in accuracy, but a decrease in other metrics – namely precision, recall,
F1.

Figure 4: MLP Baseline Accuracy and Loss for prediction at each taxonomic rank

4.2. LSTM with Logit-Shifting

As one can see, as the LSTM progresses to further ranks, the gap between train accuracy
and validation tends to grow. This intuitively makes sense since the further along we go in
the ranks, the more options there are. Here we also observe around epoch 1000 the negative
downstream effects of incorrect order prediction, as can be seen in the train and validation
loss downward spikes. We compare the MLP, logit-shifted four MLPs, and LSTM over the
key metrics: Accuracy, Precision, Recall and F1 in Table 1 which shows that the LSTM model
outperforms both baselines.

Table 1
Model Metrics. The LSTM performs best and points to the sequential prediction paradigm as a viable
framework for bird classification.

Model Accuracy Precision Recall F1

MLP 0.5747 0.6286 0.8238 0.6880
Logit-Shifted Four MLPs 0.6229 0.6263 0.6421 0.6096
LSTM with Logit-Shifting 0.7040 0.7006 0.8828 0.7553

5. Conclusion and Future Work

In this study, the LSTM architecture outperformed all of the other baselines, likely due to
the expressive power of the hidden cells combined with the hierarchical setup for the task.
We conclude that this model is a potentially viable approach for the taxonomic sequence
prediction task which should be explored further. More broadly, machine learning tasks like



(a) Model Loss for Species Pre-
diction

(b) Accuracy of Model predicting at each taxon level

Figure 5: LSTM with Logit-Shifting Training Curves

taxonomy classification, in which there is some hierarchical structure in the output space, can be
interpreted under the same sequential prediction paradigm to reduce the scope of the prediction
problem at each level of the hierarchy. Looking forward, we think that the model performance
can be improved by adding the LSTM on top of other models; for example, logits extracted from
BirdNET could be used as the features inputted to the LSTM.

Another interesting result is with regard to the four MLPs paired with logit-shifting baseline
as we saw that the accuracy increased compared to the standard MLP whereas the precision,
recall and F1 decreased. This indicates that the four-MLP model is performing quite accurately
on majority classes while performing much worse on minority bird species compared to the
standard MLP. This could be because biases that occur in predictions at the higher levels of
taxonomy get compounded over the course of the prediction. Thus the model’s accuracy on
minority bird species – which likely fall under minority bird genuses, families and orders – is
worse compared to the standard MLP’s performance. One future experiment could be to train
four different bird classifiers like BirdNET at each taxonomy level and then concatenating them
using the same logit shifting mechanism to determine whether these results are unique to the
MLP architecture or occur over any bird classification model.
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