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Abstract

This paper describes an deep-learning based ensembling approach for snake species classification. The
proposed method employs state-of-the-art models such as ResNet and EfficientNet among others, applies
transfer learning and fine-tunes them to the target data domain — snake images, uses them as feature
extractors, and finally conjoins the produced representation vectors along with geographic metadata
information to train a gradient boosting ensemble classifier to predict the snake species. The authors
performed multiple experiments to train individual deep-learning architectures, select effective feature
extraction models, and train a gradient boosting classifier using their ensembled features. The approach
attained a maximum macro-averaged F1-Score of 51.39% on the test data. The corresponding validation
F1-Score and Accuracy scores were 52.04% and 87.13%, respectively.
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1. Introduction

The SnakeCLEF challenge 2022 [1] held as a part of the LifeCLEF-2022 [2, 3] lab of the CLEF
2022 conference and the FGVC9 workshop organized in conjunction with CVPR 2022 conference
aims to use image recognition to identify snake species.

The human population has been growing at an alarming rate from just over 1 billion in 1800
to 7.9 billion in 2000. This exponential increase in population has led to a demand for urban and
rural dwellings, which has resulted in degradation of animal habitats. One of the species affected
by this is snakes. India averages about 58000 snake bite deaths a year [4] which has become
the result of frequent wildlife encounters. Snake bites can range from minor symptoms like
nausea and breathlessness to major symptoms such as amputations and permanent disability. To
address such problems, identifying the type of snake would help administer a precise antidote.
Taxonomic identification of the species helps healthcare providers to articulate the symptoms,
responses of the treatment and antivenom efficacy and also aids in clinical management [5].

Furthermore, snake species identification is crucial for biodiversity, conservation, and global
health. Millions of snake bites occur globally every year, which often leads to snakebite
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envenoming, killing, and disabling humans across the globe [6]. Because of the high intra-class
and low inter-class variance, situational stress, and dread of potential danger, identifying the
snake species from both a manual standpoint and a machine perspective is imperative. An
accurate identification may also depend on various other factors, such as geographical location,
morph, color, sex or age. Knowing the geographic location can also contribute more towards
an accurate identification. An automatic system that helps in recognizing the snake species
from the photographic image and geographic information can be paramount in overcoming the
above problems. Hence, we propose an automated system that helps in identifying the snake
species from the given input images.

The data provided in the task includes standardized images obtained from the online Bio-
diversity platform iNaturalist and photographed images. The dataset has a very long-tailed
classification varying from about 6500 images to 5 samples. Different training set images such
as large, medium and small sized images along with the metadata information were provided.
We proposed a deep learning-based ensembling method using the large training set of images
and the metadata information.

2. Related Work

Deep learning-based models such as EfficientNets and Vision Transformer (ViT) models were
used and the prior probabilities of the location information were multiplied with the model
predictions was proposed in [7] to classify the snake species. A deep learning architecture
ResNeXt50-V2 was proposed for identifying 772 snake species [8]. Taxonomy based features
were used in classification of snakes in [9] which has used similarity nearest neighbor classifier.
The holistic methods such as k-nearest neighbors (kNN), support vector machine (SVM) and
logistic regression (LR) are used in combination of dimension reduction approach PCA and LDA
and the work was compared with CNN was proposed [10]. Study of deep learning, its strategies,
comparison of frameworks, and algorithms were presented [11].

2.1. SnakeCLEF

The best scoring team’s paper in SnakeCLEF-2021 written by Regé Borsodi [12], used an
EfficientNetB0 base model while incorporating object detection and preprocessing using an
EfficientNetD1 object detector. They got the highest F1 score of 0.90 with close to 95% clas-
sification accuracy. The 3rd best scoring team’s paper in SnakeCLEF-2021 [13] written by
Rail Chamidullin, went ahead with an ensemble of 4 models choosing to include ResNeSt50,
ResNeSt101, ResNeSt200, and ResNet101. A majority voting strategy was employed ResNeSt200
was chosen since the model achieved an F1 score of 0.83 and a 91.60 classification accuracy.

The paper submitted by Lucia Georgiana Coca for SnakeCLEF-2021 [14] used 3 different
models such as GoogleLeNet, VGG16 as well as ResNet. Vision transformers were used and
an ensemble ResNet model were employed and achieved F1 score of 0.79. Finally, the paper
published by Karthik Desingu et al. [15] employed a transfer learning method by ensembling the
features extracted from Inception-ResNet-v2 with the metadata information after preprocessing
the images.



Based on the results from last year’s submissions, our team observed that 2 architectures
stood out among the rest — ResNet101 and EfficientNetB0, producing very high individual F1
scores with base models. Also, most of the teams reported that using an ensemble model with
gradient boosting and the usage of transfer learning algorithms gave very high F1 score and
classification accuracy.

3. Methods

Transfer Learning [16] is a technique where a neural network is trained on a given problem
domain, and then used on another similar problem by adding one or more layers to the trained
model to fine-tune the model to solve the new problem at hand. This technique is generally used
to reduce the training time for a neural network model and also results in a lower generalization
error. The weights in the old model are typically used as a starting point in the fine-tuning
process. Ensembling [17] is another popular computational learning technique, where the
predictions or extracted features from multiple machine learning models are employed for
classification or regression, aiming to achieve improved performance than that of a single
model.

Our team applied transfer learning to calibrate state-of-the-art networks like ResNet101,
ResNeXt101 and EfficientNets for snake species classification. Our proposed method extracts
representative features from input snake images. The feature vectors were then fed to a gradient
boosting ensemble classifier, along with contextual categorical features to predict the class
probabilities for a given observation, thereby inferring its most probable class label.

3.1. Dataset

The given dataset consists of 187129 snake observations made with 318532 images belonging to
1572 unique species. A set of 208 countries are also recorded. The given metadata gives us useful
geographical information such as the country where the snake was spotted. This can be used to
supplement the visual information during training. The current dataset is vast compared to last
year’s challenge dataset which had only 772 distinct snake species on the contrary having a
414424 images. The number of images per species has drastically reduced from 536 last year to
212 this year.

While last year SnakeCLEF2021 [18] has 414424 photographs of 772 snake species collected
in 188 countries where present in the dataset, this year featured a significantly lower number
of photographs bringing the total down to 318532. The number of snake species incorporated
this year was 1572, increasing the number of species by more than a factor of 2 compared to
the previous years. The photographs were captured from across 208 countries, showing an
increase of 10.60% compared to the previous year. The dataset is particularly challenging due
to its long-tailed distribution — it has a heavy long-tailed class distribution, where the most
frequent species — Natrix natrix is represented by 6472 images and the least frequent species
by just 5 samples.



3.2. Input Image Preprocessing

The given images were first fed into an input sequencer where we noticed a lot of noisy data.
Analysis of the images presented the fact that they differed in size and were of different scales.
We thus employed a fold-down strategy to convert all images to the RGB format and resize
them to a standard size of 224 x 224 x 3 using bi-linear interpolation [19].

To eliminate the effect of irrelevant factors in the context of the required task such as variation
in lighting conditions among the photographs, the images were linearly normalized to values
between 0 and 1 Transformations such as scale and rotation, as well as contrast and saturation
variations were induced on the model inputs to make the model more generic, immune to the
impact of positional and orientation-based bias and prevent memorization by enhancing image
diversity. RandAugment [20] was used to augment the input images using the aforementioned
transformations. RandAugment is parameterized by two values - the number of augmentation
transformations to apply sequentially (N), and the magnitude for all the transformations (M).
The values used in [20] for the ResNet model i.e N=3 and M=4 were chosen, by example.

3.3. Feature Extraction

Reducing the number of resources to train on without losing relevant information is the basis
on which feature extraction is built. The dimensions are reduced such that the raw data is
made into chunks of manageable groups for processing. This method proved useful as the given
large dataset had over 110 GB of training images and thus the amount of features that actually
represent the dataset are shadowed by widely unrepresentative features.

Concretely, state-of-the-art neural networks were used as feature extractors that output
representation vectors for the input images. The feature extraction process is tuned to extract
representative and class-discriminate features through supervised learning, wherein class labels
are used as ground truth to backpropagate [21] and tune the model weights.

3.4. Deep Learning Architectures Considered

Multiple deep-learning architectures were considered for this classification task.

ResNet101 [22] is a popular convolutional neural network model developed in 2015. This
model solves the degradation problem which states that as the network depth increases accuracy
gets saturated and then degrades rapidly. ResNet101 uses shortcut connections that skip one or
more layers to solve the degradation problem which was inspired from the Highway network
[23] which used gated shortcut connections to control the flow of information in the shortcut.

EfficientNet(s) [24] are a class of convolutional neural networks that were built in 2019. It’s a
small-scale architecture with about 11 million trainable parameters. It was created with the
help of a multi-objective neural network that prioritized precision and floating point operations.
It supports compound scaling while maintaining network balance across all dimensions. It
employs an inverted bottleneck, as well as a depth-wise convolutional network that includes
squeeze and excitation operations. It employs MBConv blocks [25] that serve as Inverted Linear
BottleNeck layers. These layers use Depth-Wise Separable Convolution operations. The model
complexities of the variants increase from BO to B7. The authors experimented with B0, B4 and
B6 variants to scale the model complexity and find the best suited intricacy for the dataset.



ResNeXt101 [26] is another popular convolutional neural network model which is very
similar to the ResNet101 model. ResNet101 has many sequential layers whereas ResNeXt101 has
parallel stacking layers instead. It follows a split-transform-merge strategy like the Inception
module [27]. Unlike the Inception module which has different filters and sizes for each block,
ResNeXt shares these hyper-parameters for all the blocks.

3.5. Gradient Boosting Ensemble Classifier

Ensemble methods [17] are techniques employed to combine multiple model(s) to produce
improved results. They boast higher accuracy scores than the individual models themselves.
Boosting [28] is a prominent ensembling technique used wherein new models are added to
the existing features of the model to correct errors. Our solution adopted a gradient-boosting
ensemble approach to classify images into their corresponding snake species.

XGBoost [29] is an implementation of gradient boosted decision trees designed for speed
and performance. The XGBoost library package was chosen by the authors for implementation
among all the other available boosters for its superior execution speed.

4. Experiments

Model training was performed through transfer-learning from the weights obtained upon
training with the ImageNet data set [30], and fine-tuning on the Snake CLEF-2022 training data.
During model training, the models’ prediction accuracy were tracked to later choose the set of
feature extractors to use for ensembling. Based on the observed performance of each network,
ResNeXt101 and EfficientNetB6 were chosen as feature extractors for ensembling. The XGBoost
gradient boosting ensemble classifier was used for ensembling.

The forward propagation during training and prediction is described. Each observation is
composed of multiple snake images along with its contextual geographic information — the
country where the species was observed. Each image in an observation is first preprocessed,
then passed through the two feature extraction networks to obtain two representation vectors,
each of size 4096. These vectors are merged together, along with numeric encoded country
metadata for the image, to obtain a final vector of size 8193. The numeric encoding was achieved
with the help of Label Encoders from the scikit-learn [31] library wherein, the categorical
country codes available as training data are converted to integral class labels that can be fed
as input to the feature extraction neural network. These 8193 features are fed to the boosting
ensemble classifier to obtain a probability distribution over all possible snake species classes.
This workflow is depicted in Figure 1. Countries that are present in the testing data, but not
encountered in the training set are encoded as 0, a commonly adopted strategy to deal with
unseen categorical data in deep learning methods.

The corresponding class probability values obtained for each image in an observation are
averaged to obtain a single aggregate distribution of probabilities over all classes. Consequently,
there is one single probability distribution for each observation. The class that is attributed
with the highest aggregate probability value is output as the classification label.
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Figure 1: Prediction workflow used for the classification of snake species using an gradient boosted
ensembling classifier. Note: Model architectures depicted are illustrative only and NOT accurate
representations of the underlying network design.

4.1. Model Training

The details of the model training process, performed through transfer-learning is presented in
this section. A summary of the parameters used for model training is tabulated in Table 1.

Table 1
Model training parameters used to train each of the convolutional neural networks used for this
classification task.

Parameter ‘ Optimizer Learning rate Batch size Epochs

ResNet101 Adam 3e—4 32 40
EfficientNetB0 Adam le—5 32 40
EfficientNetB4 Adam le—4 32 40
EfficientNetB6 Adam 3e—2 32 40

ResNeXt101 Adam le—3 32 30

4.1.1. ResNet101

The feature extraction layers of ResNet101 were trained with a two-step classification block,
comprising two dense blocks with 4096 and 1572 neurons respectively. The extracted features
were percolated through a flatten layer to obtain, before feeding to the classification block. In
addition, a dropout layer was added after the dense layer to avoid overfitting. Dropout rates
between 0.30 and 0.70 were experimented and set to 0.40 in the final version of the model.
The model was trained with the Adam optimizer at an initial learning rate of 3e—4. It was
backpropagated using the Categorical Cross-Entropy (CCE) loss. For feature extraction, the
output of the first dense layer was used to produce a feature vector of 4096 elements. During
training, the model’s prediction accuracy was tracked to later choose the feature extractor to
use for ensembling.



4.1.2. EfficientNetB0

EfficientNetB0 was also trained with a two-step classification block, comprising two dense
blocks with 4096 and 1572 neurons respectively. The extracted features were percolated through
a flatten layer to obtain, before feeding to the classification block. The dropout layer added after
the dense layer for this network was experimented between 0.30 and 0.70 and fixed at 0.45. The
model was trained with the using the Adam optimizer at an initial learning rate of 1e—5. It was
back propagated using the Categorical Cross-Entropy (CCE) loss. For feature extraction, the
output of the first dense layer was used to produce a feature vector of 4096 elements.

4.1.3. EfficientNetB4

EfficientNetB4 was trained with a two-step classification block, also comprising two dense
blocks with 4096 and 1572 neurons respectively. While the final layers of the architecture
are same as the other EfficientNet models, the dropout layer added after the dense layer for
this network was experimented between 0.30 and 0.70 and fixed at 0.35 for this model. The
model was trained using the Adam optimizer at an initial learning rate of 1e—4. Categorical
Cross-Entropy (CCE) loss was used to back-propagate, and a 4096-sized vector was extracted as
feature-representation.

4.1.4. EfficientNetB6

EfficientNetB6 followed the same approach — two dense blocks with 4096 and 1572 neurons,
dropout layers, and CCE loss for back-propagation, and optimized with Adam — with differences
only in the hyperparameters. The dropout layer after the dense layer was fixed at a dropout
rate of 0.45 after experiments. The initial learning rate was set at 3e—2. A 4096-sized vector
was extracted as feature-representation.

4.1.5. ResNeXt101

The ResNeXt101 architecture was augmented following the same strategy as the aforementioned
two i.e. by adding a two-step classification block of 4096 and 1572 neurons respectively. Here,
the dropout after experimenting, was set at 0.30. An Adam optimizer along with CCE loss was
used for training, with an initial learning rate of le—3.

4.2. Loss, Metrics, Activation and Optimizer Used
The specific details of the loss functions, activation functions, optimizer, and evaluation metrics
used during the experiments are laid out in this section.

4.2.1. Adam Optimizer

Adam [32] is a stochastic optimization method which is used on gradient descent and maintains
a single learning rate (alpha) throughout training. Adam combines the advantages of the
Adaptive Gradient Algorithm and Root Mean Square Propagation. Unlike the Root Mean Square
Propagation in which the first moment about the mean is used, Adam uses the average of the



second moments about the mean too. In effect, Adam provides an optimization algorithm that
can handle sparse gradients on noisy problems, by maintaining a per-parameter learning rate.

4.2.2. Categorical Cross Entropy Loss

The categorical cross entropy is a measure of the difference between two discrete probability
distributions. It is calculated using the formula in Equation 1.

n
Loss = — Z yilogt;, (1)

=1

where, y; represents the corresponding target value for ¢; the scalar model output.

4.2.3. Softmax Activation

The Softmax activation function is used at the end of the output layer to produce the posterior
probability distribution over all classes, based on equation 2. Softmax is essentially a mathe-
matical function that converts a vector of numbers into a vector of probabilities, where the
probabilities of each value are proportional to the relative scale of each value in the vector. In
effect, it normalizes the outputs, converting them from weighted sum values into probabilities
that sum to one.
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where, z represents the values from the neurons of the output layer. The exponential acts as the
non-linear function. These values are divided by the sum of exponential values to normalize

softmax(z;) =

and convert them into probabilities.

4.2.4. F1-Score Metric

The F1-Score is usually calculated as the harmonic mean of precision and recall. This is concretely

expressed in Equation 3.
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where, [] represents the Fl-score, p, represents precision, r represents recall, 7}, represents
true-positive, F}, represents false-positive and £}, represents false-negative. The contest pre-
scribed macro-averaged F1-Score as the evaluation metric.



4.2.5. Accuracy Metric

The accuracy score (Acc) is computed as the ratio of correct predictions to the total number
samples. This is expressed in Equation 6.

(6)

where, Acc represents the accuracy score, T}, represents true-positive, 7}, represents true-
negative, F}, represents false-positive and £}, represents false-negative.

4.3. XGBoost Ensemble Classifier

The XGBoost classifier was used for ensembling. While using XGBoost, hyperparameters were
tuned [33] for optimal performance by trial and error. The maximum depth of the tree was
set to 32. Increasing this value would make the model more complex and prone to overfitting.
Increasing this value would also aggressively consume memory while training the deep tree
and thus a lower value of 32 was set.

It was observed that learning rates higher than 0.10 lead to quick divergence, hence values in
the range of 10e—3 to 10e—5 were used. Grid-search was performed by varying the learning
rates in this range, with decision trees in the range of 100 to 1000. Combinations having the
least losses were chosen to further tune the tree-level parameters. The maximum depth for the
tree is left to be determined based on the training progress of the classifier and is not set strictly.
This causes the depth to expand until the leaves are pure (has all samples belonging to the same
class) or has reached the threshold of minimum number of samples required to split further.
Due to the long-tailed distribution of the data set, some classes may require deeper branches to
capture more information from the features. To control overfitting, an upper limit was set on
the number of leaves by performing a grid search over values in range of 32 to 256.

Then, objective parameters helps specify the learning task and corresponding learning
objective. Softmax was chosen as the objective function. The classifier was configured for
multiclass classification and the number of classes was explicitly set to 1572.

5. Results and Conclusion

The country metadata was used as a categorical feature in the ensemble classifier. It showed a
strong impact on the classification result. With inclusion of this categorical country metadata,
the testing F1-score of the best submission improved from 2.68% to 3.64%. Likewise, the
cross-validation accuracy and F1-score for the same model improved from 37.62% and 26.55%
to 44.91% and 29.31%, upon inclusion of the geographic data.

Figure 2 represents the relative importance of the 20 most effective image or metadata features
of the 20 most impactful features used to train the ensemble classifier. The feature importance
values were normalized and scaled between 0 and 100 to realize the relative impacts. Features
named as f1, f2, etc. denote features extracted from the neural networks It is worth mentioning
that f0 through f4095 denote features extracted using EfficientNetB0, while f4096 through
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Figure 2: Relative importance on a scale of 0-100 of the 20 most impactful features used to train the
classifier. The first bar represents feature importance of country feature.

8191 represent the ResNet101-extracted features. It is evident that country information has a
signification influence on classification.

After deciding the baseline architectures for ensembling — namely, EfficientNetB6 and
ResNeXt101 — based on individual prediction performance, the baseline models were trained
towards convergence. Following this, the multiple ensemble models were trained using the
gradient boosting classifier using the two baseline models and contextual data, with different
hyperparameter settings. The ensemble classifier’s performance was improved over several
runs, by tuning the hyperparameters of the gradient boosting classifier. The contest prescribed
F1-scores macro-averaged across all classes as the evaluation metric. Model runs were evalu-
ated on the given stratum of validation set using this metric. The metrics were evaluated as
an average over the five iterations (for 5-fold cross validation) performed in each run during
training.

The top scoring models were then used to perform prediction on the test data and evaluated
on the contest website. The top-5 results from this pool of predictions is summarized in Table 2
for competition submissions, and in Table 3 for post-competition evaluations.

Our team achieved a training accuracy of 45.78%, validation accuracy of 44.91%. The
corresponding model secured an F1-score of 3.64% on the competition’s test data. Our team
placed 38" among 51 participating teams. These results are summarized in Table 2 below:

The results depict the integration of contextual geographic data for snake species classification
in a positive light. Furthermore, the fine-tuning and ensembling of features extracted using
multiple neural architectures, and merging contextual data looks promising. Several existing



Table 2
Performance metrics of the 5 best submissions. F1-Scores are macro-averaged across classes.

Submission#  Validation Accuracy Validation F1-Score  Test F1-Score

1 4491 29.31 3.64
2 40.72 26.13 3.38
3 35.11 25.27 2.53
4 35.18 25.46 2.15
5 34.97 2218 2.05

approaches have introduced metadata such as population counts of various species, more
location-specific geographic data such as city, state and climatic features such as temperature
and humidity. An interesting approach is to employ class-wise probability priors to the neural
networks based on such metadata [34].

On account of insufficient computing resources to complete all model training experiments
in time for the SnakeCLEF’s large snake dataset, results were submitted before complete model
convergence. Post the deadline, significant improvements were observed in classification
accuracy, particularly with Submission Numbers 1 and 4 (refer to Table 2) were observed upon
further training the baseline neural networks, and tuning hyperparameters of the gradient
boosting ensemble classifier. A summary of post-competition improvements in prediction
results during the working notes submission phase of SnakeCLEF-2022 is tabulated in Table 3.

Table 3

Performance metrics of the 5 best submissions post-competition, ordered best to worst. F1-Scores are
macro-averaged across classes.

Submission#  Training Accuracy Validation Accuracy Validation F1-Score  Test F1-Score

1 89.11 87.13 52.04 51.39
2 86.01 85.39 51.42 49.94
3 80.86 80.44 46.13 46.11
4 79.81 78.92 47.19 45.52
5 78.64 77.14 44.11 42.18

Our best post-competition result is at par with the 11" best of the 51 contesting teams. It
is apparent that subsequent hyperparameter tuning and training of the baseline networks, as
well as the boosting classifier, have been effective in improving the model performance. Hence,
the team believes and strongly advocates that for data-intensive and high-complexity image
classification tasks that are commonly released as LifeCLEF tasks, the adopted ensembling
approach using gradient boosting is an impactful option. We further conjecture that training
the individual models to convergence, and subsequently applying the boosting ensembler
with hyperparameter tuning will culminate in a far more superior classifier performance, that
exhausts the enitrety of the proposed architectures’ and methodology’s potential. Furthermore,



approaches involving input image resolution variations, usage of alternative pre-trained weights
[35], as well as the inclusion of custom training layers to the frozen base model when transfer
learning [36] can greatly improve the quality of feature extraction. In this participation, for
reasons of time constraints already described, the application of image preprocessing techniques
could not be experimented with exhaustively and systematically. The authors further speculate
that such an exercise would be of significance in improving the overall model performance,
particularly that of the baseline neural networks used for feature extraction [37].

Other approaches, such as varying input image resolutions and employing alternative pre-
trained weights [35] as well as including custom training layers to the frozen base model,
in addition to the classification block [36], can improve classifier performance. Finally, the
application of image preprocessing techniques can play a significant role in improving the
feature extraction ability of convolutional neural networks [37].
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