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Abstract
This paper is a working note for the PlantCLEF2022 challenge aiming to identify plants with a large-scale
dataset, several millions of images and 80,000 classes. Although there are many images, each class only
includes 36 images around on average and thus it can be regarded as a few-shot image classification. To
address this issue, transfer learning is validated to be useful in many scenarios and a popular strategy
is employing a convolution neural network (CNN) pretrained in a supervised manner. But inspired by
the literature on computer vision, we instead leverage a self-supervised vision transformer (ViT) and
secure the first place with MA-MRR 0.62692, 0.019 higher than the second place, and 0.116 than the third.
Furthermore, we achieve 0.64079 if training the model twenty epochs longer. Compared to the popular
strategy with CNN, self-supervised ViT has two advantages. First, ViT does not embrace any inductive
bias, such as translating invariance embraced in CNN, and thus owns a more powerful model capacity.
Second, self-supervised pretraining obtains a task-agnostic feature extractor that may be better for the
downstream task. To be more specific, a recently proposed self-supervised ViT model pretrained in
ImageNet, masked autoencoder (MAE), is finetuned in PlantCLEF2022 dataset and then tested to report
the evaluation. Except for the challenge, we discuss its possible impacts, such as taking the dataset to
pretrain a model for plant-related tasks. Especially, our preliminary results suggest that the pretrained
model in PlantCLEF2022 essentially contributes to image-based plant disease recognition on several
public datasets. Via our analysis and experimental results, we believe that our work encourages the
community to utilize the self-supervised ViT model, the PlantCLEF2022 dataset, and our pretrained model
in the dataset. Our codes and trained model are public at https://github.com/xml94/PlantCLEF2022.
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1. Introduction

Recognizing different species is one of requirements to maintain biodiversity, however, it requires
human experts to spend much time with a high cost [1]. Simultaneously, deep learning has been
showing its potential to automatically classify images. The PlantCLEF2022 challenge [1, 2] is
held towards this issue to identify plant species given their images and owns a large-scale and
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Figure 1: Comparison between the popular strategy of transfer learning, supervised CNN, and our
strategy, self-supervised ViT. Our method differs from the popular one in two cases, ViT as feature
extractor instead of CNN, and self-supervised pretraining in the source domain without annotations.

complex dataset taken from real field with 80,000 classes and millions of images. Although there
are many images in total, each class averagely owns about 36 images and thus the challenge can
be regarded as a few-shot image classification [3]. To address the image classification, transfer
learning is verified to be one effective and efficient method, by which useful knowledge can be
adapted from a much bigger source dataset to a small target dataset [4].

A popular strategy to perform transfer learning is pretraining a convolution neural network
(CNN) in a supervised manner in a source dataset, ImageNet [5] and then the network is
finetuned in a target dataset [6, 7, 8, 9]. However, there are two weak points in this strategy.
First, as pretrained in a supervised way, the learned features of the model is task related
[10], which could be not good when the target dataset is not similar to the source dataset,
especially for a fine-grained target dataset [11]. In fact, the ImageNet is far from the fine-grained
PlantCLEF2022 dataset as discussed in the next section. Second, CNNs embrace an inductive
bias, such as translation invariance [12] that the corresponding class or identity is same if one
image is translated a little. Due to the inductive bias, the capacity of CNN-based models is
limited and the capacity could be improved if the inductive bias is removed.

Fortunately, the two weak points are eased very recently by self-supervised learning (SSL)
[13] and vision transformer (ViT) [12], respectively. On one hand, SSL employs an predefined
task, such as reconstruction [14], context prediction [15], and predicting rotations [16], instead
of supervised signals. On the other hand, ViT discards the local connection and shared filters
of CNNs and holds global attentions. Considering the character of the PlantCLEF2022 dataset
and the current success on computer vision, we employ a self-supervised pretrained vision
transformer to address the PlantCLEF2022 challenge and the strategy has been proved to



significantly contribute to plant disease recognition [17]. The comparison of the popular
strategy and our strategy is illustrated in Figure 1. To be more specific, a ViT-based masked
autoencoder (MAE) pretrained in a self-supervised manner in ImageNet is finetuned and tested
in the PlantCLEF2022 dataset. In spite of the simpleness, we secure the first place of the official
challenge with MA-MRR 0.62692, 0.019 higher than the second place and 0.116 than the third.
Moreover we found that we can further get a better performance, 0.64079, if we fine-tune the
model longer.

Except for the challenge, we also discuss its possible impacts. We first recognize two distinct
characters of the PlantCLEF2022 dataset. On one hand, it is related with observation-level
image classification, instead of usual image-level image classification. One observation refers
to multiple images taken for a specific target, such as one field plant in the PlantCLEF2022
dataset, which makes one class with heterogeneous and robust features. On the other hand,
PlantCLEF2022 introduced a large-scale plant-related image dataset with an immense image
variance [18]. Because of the two characters, we argue that a pretrained model in the Plant-
CLEF2022 dataset can be a powerful start point towards plant image-related applications. Not
trivially, our preliminary experimental results suggest that it benefits plant disease recognition
on several public dataset, such as quicker convergence speed and better performance even with
few number of images. To facilitate the related applications, we public our codes and pretrained
model at https://github.com/xml94/PlantCLEF2022 and we hope that our work encourages
the community to utilize the self-supervised ViT model, the PlantCLEF2022 dataset, and our
pretrained model in the dataset.

2. Material and evaluation metric

Training dataset. PlantCLEF2022 dataset consists of training and testing dataset. The official
training dataset has two categories, web and trusted. The web one covers about 1.1 million
images and 57,000 classes, in which the images and their annotations are not directly from
human experts. In contrast, the trusted one in a global scale is collected and annotated by
experts, with 2,885,052 images and 80,000 classes. Each class includes 36.1 images averagely and
to ease the class-imbalance issue, has no more than 100 images. Except for the images and their
labels, some other information are also given, such as species and genus in plant taxonomy. As
the datasets are huge and the limitation of computing devices, we just utilize the trusted one as
training dataset considering the quality of the annotations.

The PlantCLEF2022 challenge differs from other plant-related tasks. First, the task objective
is recognizing one plant identity given their images whereas other related tasks focus on disease
recognition for specific plant, Plant Village [19], tomato leaf disease [20], and apple leaf disease
[21]. Second, the main visual content of every image is diverse, such as leaf, fruit, flower, and
habitat, not just leaf as in Plant Village and tomato dataset. Figure 2 and Figure 3 display some
images of two classes from PlantCLEF2022 training dataset and we can see that the backgrounds,
viewpoints, illuminations, sizes, and colors are different. Therefore, image variations [18] are
essentially big, which requires classification model to learn robust yet heterogeneous features
for each class. Besides, the images in PlantCLEF2022 are collected from real field with multiple
resolutions, instead of lab as Plant Village with the same resolution.



Figure 2: Images of Cycas armstrongii Miq species from PlantCLEF2022 training dataset. The images
from the same species are heterogeneous in background, viewpoint, and size.

Testing dataset and observation. The testing dataset of PlantCLEF2022 includes 55,306
images and similar to the training dataset, various organs in the images are interested. Diversely,
this task asks to classify for each observation, instead of each image as usual image classifica-
tion. One observation refers to an actual plant and multiple images can be taken for a single
observation. In the testing dataset, 55,306 images are captured from 26,868 observations and
Figure 4 displays six observations. Moreover, the testing dataset just includes part of the labels
in the training dataset, instead of the same as the training dataset as usual image classification.
Furthermore, the observation level classification requires the model to integrate its multiple
images to output a final prediction, discussed in the next section. Details of the training and
testing dataset of the PlantCLEF2022 challenge are shown in Table 1.

Evaluation metric. Macro averaged mean reciprocal rank (MA-MRR) is utilized to evaluated
to different submissions for PlantCLEF2022 challenge. The challenge requests a submission
with a rank based on score with a given length for each testing observation, and the rank is
thirty for the challenge. Assume there are 𝑁 classes in the testing dataset and class 𝑛 has 𝑂𝑛

observations. Mathematically, MA-MRR can be formalized as1,2:

1https://en.wikipedia.org/wiki/Mean_reciprocal_rank
2https://androidkt.com/micro-macro-averages-for-imbalance-multiclass-classification/



Figure 3: Images of Aralia nudicaulis L. species from PlantCLEF2022 training dataset. The images from
the same plant species are heterogeneous in background, illumination, and color.
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where 𝑟𝑎𝑛𝑘𝑖 refers to the rank position of the first relevant ground-truth label for the 𝑖−th
observation from one class. Conceptually, if all of observation are classified correctly in the
first, then MA-MRR is one where the accuracy is hundred percent. In contrast, if MA-MRR is
smaller then the model is worse. Intuitively, the observation-level enable us to observe different
parts of plants, while MA-MRR allows more than one chances to recognize plant species for a
specific image, 30 chances in the challenge.



Dataset Details
Training Has two sub-datasets, web and trusted. The web one has 1.1 million images and 57,000

classes of plant where the annotation is searched from internet and thus may be with
noises. The trusted one, annotated by human experts, includes 2,885,052 images and
covers 80,000 classes. The Trusted one gives meta-data about the organs or habitat of
plant in each image. The images in the trusted training dataset embrace a huge variation,
such as illuminations, background, colors. Figure 2 and Figure 3 display some images
from two individual types of plant.

Testing Includes 26,868 observations with 55,306 images. The classification should be done in
observation-level, not image-level as usual image classification requests. One observation
refers to one actual plant with several pictures taken from different viewpoints, which
requires a classification model to combine the predictions of multiple images taken from
a same observation. Figure 4 shows six observations with diverse organs or habitats.
Besides, the testing dataset only share part of the plant identity in the trusted training
dataset, instead of the same as usual image classification. Simultaneously, the images in
the training and testing dataset are collected from real field and in a similar resolution,
about 450 × 600.

Table 1
Details of the training and testing dataset in the PlantCLEF2022 challenge.

3. Method

3.1. Model and finetuning details

Masked autoencoder (MAE) [22] is chose to achieve the challenge as a self-supervised vision
transformer because of its high performance and stable training process. Figure 5 illustrates its
high-level architecture. In MAE, an image is firstly split into patches that are then randomly
blocked. To save computation, only the unblocked patches are fed to an encoder to extract
features, followed by a decoder to reconstruct the whole image. To pretrain the model, MAE
employs a reconstruction loss and the original input image as the ground truth. After pretraining,
the decoder is discarded and only the encoder is utilized taking unblocked images with a auxliary
classifier head.

We borrow the ViT-large MAE model pretrained in ImageNet1k dataset. Random cropping
and random horizontal flipping are leveraged as data augmentation strategy and the random
masking, 75% as ratio, is another type of data augmentation. The model is trained with bacth
size 4,096 and 800 epochs, 40 epochs as warming up. Besides, the learning rate is 0.00015 with
0.05 weight decay. The normalization is performed in block-level, instead of image-level as usual.
Although only ViT-large model is leveraged for PlantCLEF2022 challenge, ViT-huge model is
also encouraged but taken time and devices into consideration, we did not do experiments with
this model.
Finetuning process. As finetuning the ViT-large MAE model with only four RTX 3090

GPUs, we set the actual batch size 512 and train the model 100 epochs. AdamW is employed as
optimizer with learning rate 0.0005, 0.65 layer decay, and 0.05 weight decay. MixUp [23] and
CutMix [24] are utilized as data augmentation. Besides, the added classifier is a linear function
with 80,000 as the number of output, the number of class in PlantCLEF2022 trusted training
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Figure 4: Six observations of testing dataset in PlantCLEF2022. One observation refers to an actual
plant and we can take multiple images for single observation. The PlantCLEF2022 challenge requires
classification in observation level, instead of image level as usual image classification.

dataset.

3.2. Integration towards observation

As discussed in the second section, the PlantCLEF2022 challenge is a classification in observation-
level, instead of image-level, and each observation is asked to be with a class-score rank.
Therefore, we should integrate the decisions when one observation has multiple images as our
model obtains individual decision for each image. In this subsection, we analyze several possible
strategies to get the final decision for each observation. Let 𝑟𝑗𝑠 denote the testing probability
score rank of the 𝑗−th image of one observation. Accordingly, 𝑟𝑗𝑐 is the testing class rank with
the same length. Besides, 𝑟𝑐𝑖 and 𝑟𝑠𝑖 are the 𝑖-th class-score pair and means the class and the
corresponding probability score, respectively. The rank requires 𝑟𝑠𝑝 > 𝑟𝑠𝑞 if 𝑝 < 𝑞. Formally,
the final desired output {𝑟𝑠, 𝑟𝑐}, pair of class and corresponding score, is formulated as

{𝑟𝑐, 𝑟𝑠} = ℐ(∪𝑛
𝑗=1({𝑟𝑗𝑐 , 𝑟𝑗𝑠})), (2)

where ℐ means an integration operation and the observation has 𝑛 individual images. There
are three possible integration operations:

• Single-random: {𝑟𝑐, 𝑟𝑠} = {𝑟𝑗𝑐 , 𝑟𝑗𝑠} where 𝑗 = 𝑟𝑎𝑛𝑑(𝑛). Randomly sample an image
from one observation and use the class-score rank pair of the random sample as the
counterpart of the observation. In this way, observation-level classification deteriorates



Figure 5: The high-level architecture of MAE [22]. With MAE, an image is split into patches that
are then randomly blocked. The unblocked patches are fed to an encoder, followed by a decoder to
reconstruct the whole input image. After the unsupervised pratraining, the decoder is discarded and
only the encoder are utilized in down-stream task. The input is not blocked and a specific classifier
is added after the encoder when fine-tuning the model in a target task. As the model is based on ViT
and pretrained in an unsupervised manner, we termed our strategy ViT-based unsupervised transfer
learning.

into image-level and hence this performance can be regarded as a baseline to see the
impact of observation.

• Single-highest: {𝑟𝑐, 𝑟𝑠} = {𝑟𝑗𝑐 , 𝑟𝑗𝑠} where 𝑟𝑗𝑠1 = 𝑚𝑎𝑥{𝑟1𝑠1 , 𝑟
2
𝑠1 , ..., 𝑟

𝑛
𝑠1}. Single means

the final rank pair is from only one image and highest denotes the highest top-1 score.
Therefore, the rank pair is taken as the final prediction for the observation if the image
has the highest top-1 score.

• Multi-sorted. Multi means that the final rank pair is from multiple images, instead of a
single image. In this way, the scores of all images from an same observation are sorted:
𝑠𝑜𝑟𝑡(∪𝑛

𝑗=1∪30
𝑖=1 𝑟

𝑗
𝑠𝑖); and then, after removing duplicates of same classes, the first required

length (30) of class-score pair are taken as the final ranking pair.

4. Submissions

4.1. Official submissions

We report seven official submissions by fine-tuning the MAE model with different epochs.
Because the first run was utilized to check the submission format, we do not report it. As
the training dataset is huge, we did not finish the training process before the deadline of the
challenge. With the setting as given in implementation detail subsection, fine-tuning costs
about 5 hours for every epoch. We just finished 80 epochs before the deadline. Besides, we just
applied the single-highest strategy towards observation because of limited time. Our results of
official submissions are shown in Table 2 and Figure 6. We find that the performance becomes
better when training longer and it seems that the performance can be improved further. Table



Submission Run 2 3 4 5 6 7 8
Epoch 12 15 24 49 67 77 80

MA-MRR 0.55865 0.56772 0.58110 0.60219 0.61632 0.62497 0.62692

Table 2
The performance of our official submissions.

Figure 6: The tendency of our official submissions. It is seems that our method can be improved further
via fine-tuning longer.

Team MA-MRR
Ours 0.62692

Second place 0.60781
Third place 0.51043

Fourth place 0.46010

Table 3
The comparison of the official final performances for the PlantCLEF2022 challenge. Our method
outperforms others by a clear margin.

3 shows several performances from different teams. From the table, our method outperforms
other rivals by a clear margin.

4.2. Late submissions

After official submissions, we fine-tuned our model longer until 100 epochs. Figure 7 displays
the complete performance of our submissions via fine-tuning a MAE model. We can see that
training longer contributes more. Further, it seems that the performance can be improved more
by extending the training process, which is leaved to our future work. Besides, we validate the
performance of the single-highest and multi-sorted and the performances are displayes in Table
4. The multi-sorted one slightly surpasses the single-highest one, which demonstrates that
observation-level identification has potential than image-level, as the single-highest can be cast
as to find the optimal way to identify the species of plant. Because of time limitation, we did



Epoch Single-highest Multi-sorted
80 0.62692 No
100 0.63668 0.64079

Table 4
Performances of different integration strategies, single-highest and multi-sorted.

Figure 7: The complete performance of our submissions via fine-tuning a MAE model 100 epochs with
single-highest integration strategy. The official submissions are highlighted by red colors.

not perform the single-random strategy but we guess that it was inferior to the single-highest.

5. Discussions

Future work. Although we secured the first place in the PlantCLEF2022 challenge, there are
several points left. First of all, to achieve better performance, training longer is one of possible
way. Besides, using more datasets to pretrain a model in a self-supervised manner, including
PlantCLEF2022, is also encouraged. Secondly, the reasons why our strategy is effective and
efficient for the challenge are not clear in current experiments. Towards this issue, ablation
studies are desired, such replacing CNN with ViT and replacing supervised with self-supervised.
Third, we only leveraged the large model of MAE, other types of model with different training
strategies and loss function are also possible, such as contrast learning-based [25] [26] and
text-image pair-based [27]. Fourth, we only used images and their annotations for the challenge
and the meta-data introduced in material section were not utilized. Therefore, we emphasize
that our work is just a start point about the challenge and more understandings can be made in
the future.
Observations. Our work validates the effectiveness of observation-level classification. We

argue that this idea can be extended to other related task where taking multiple images to
improve the performance of a task. For example, most of plant diseases are recognized based
on front leaf [19] [20] [28] [29]. On the other hand, some patterns in the back side of leaf are
useful to recognize the type of disease [30]. Thus, observation-level classification would ease



Dataset Details
PlantVillage Includes leaves of 16 plants with 38 classes and 54,305 images. Images are taken in

lab with similar illuminations and simple background. Some diseases are split into
two parts according to their severities.

Apple2020 Includes only apple leaves with 3,642 images and 4 classes. Images are taken in
the real field.

Apple2021 This dataset is an extension of Apple2020 but with 18,632 images and 6 classes.
TaiwanTomato Owns 622 images of tomato leaves in 5 classes. Images are taken in the real field

with more complex images. As having less images, it can be taken as a harder
dataset.

Table 5
Details of four plant disease datasets.

some applications and is encouraged.
Dataset. As training a model in a similar source domain with a big dataset is beneficial

to down-stream task with a little dataset [27, 11], PlantCLEF2022 dataset can be regarded as
one of source dataset for plant-related down-stream tasks. For example, recognizing plant
disease, classifying weed from crops, and detecting fruits. We perform some preliminary
experiments on plant disease recognition on four public datasets, PlantVillage [19], Apple2020
[21], Apple2021 [31], and TaiwanTomato [32]. Details of the plant disease dataset are given in
Table 5. The annotated images of the four datasets are split into three parts, training, validation
and testing. The validation and testing dataset own 20% of the total annotated dataset while
the training dataset owns 20%, 40%, and 60%. We compare two pretrained models to verify the
PlantCLEF2022 dataset in plant disease recognition. One of the pretrained model is the model
from MAE [22], self-supervised trained in ImageNet1k dataset. Another one is our model in this
paper, finetuning the MAE model in PlantCLEF2022 dataset. The accuracy of the experiments
is shown in Table 6 and two validation accuracy during the training process are displayed in
Figure 8 and Figure 9. From the table and figures, we can see that the pretrained model in
PlantCLEF2022 can improve the performance and speed the convergence, even with few labeled
images. Therefore, we public not only our codes but also the fine-tuned models to encourage
related applications.

6. Conclusion

In this paper, we leveraged a very simple transfer learning strategy to achieve the PlantCLEF2022
challenge and secured the first place with a clear superiority to other rivals. Our strategy differs
from current popular strategy in two ways, pretrained in a self-supervised way instead of
supervised, based on vision transformer instead of convolution neural network, which gives
a better feature space and a more powerful model, respectively. Simultaneously, we analyze
the PlantCLEF2022 training and testing datasets that include millions of images with plenty
of meta-data. Through our analysis, we believe that the PlantCLEF2022 dataset are going to
contribute plant related tasks, such as plant disease recognition as validated in our preliminary
experiments.



Target Dataset Source Dataset 20% 40% 60%

PlantVillage
ImageNet 99.5 99.8 99.8

PlantCLEF2022 99.7 99.9 99.9

Apple2020
ImageNet 48.8 92.8 93.9

PlantCLEF2022 95.3 97.2 97.5

Apple2021
ImageNet 93.2 93.7 95.2

PlantCLEF2022 95.6 95.6 96.4

TaiwanTomato
ImageNet 25.2 43.3 55.9

PlantCLEF2022 59.1 75.6 81.9

Table 6
The accuracy of plant disease recognition on multiple public datasets with different pretrained model.
20%, 40%, and 60% are the ratio of training dataset from the original target dataset with annotation.
Validation and testing dataset are awalys in 20%. The validation is utilized to choose the best training
model that is further tested in the testing dataset.

Figure 8: The validation accuracy curve of PlantVillage dataset. Pretrained with PlantCLEF2022
accelerates the convergence.
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Figure 9: The validation accuracy curve of Apple2020 dataset. Pretrained with PlantCLEF2022 obtains
better performance.
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A. Online Resources

The codes and pretrained model are available via

• GitHub,
• Pretrained model in Google Drive.

https://github.com/xml94/PlantCLEF2022
https://drive.google.com/drive/folders/1JCVX58oVZFuIttPHaeAjs_zkMXkzzJeA
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