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Abstract
An accurate AI-driven system for automating snake species is of great value, allowing doctors to
quickly diagnose the condition of injured people and thus effectively reducing deaths due to snake bites.
SnakeCLEF 2022 challenge provides a dataset of 1,572 snake species, with information on their habitats.
Because the dataset has a long-tailed distribution, it is difficult to perform accurate identification. We
train the models by using the methods of AutoAugment, RandAugment and Focal Loss. Finally, we use
the model integration method to effectively improve the recognition accuracy and finally achieve macro
𝑓1 score of 71.82% on the private leaderboard. Our code can be found at https://github.com/CZP-1/An-
efficient-model-integration-based-snake-classification-algorithm.
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1. Introduction

Establishing a snake identification system is important for biodiversity, conservation and global
health. But snakes identify visually high intra-class differences and low inter-class differences
due to geographic location, color morphology, gender, or age. In contrast to general image
classification, the goal of fine-grained image classification is to correctly classify subclasses
that belong to the same superclass. Therefore, snake identification is a challenging fine-grained
recognition task. Publicly available datasets and benchmarks accelerate machine learning
research and allow quantitative comparisons of new approaches. In the fields of deep learning
and computer vision, rapid progress over the past decade has been largely driven by the
publication of large-scale image datasets. The same is true for the problem of FGVC, where
datasets, such as iNaturalist[1], have helped develop and evaluate new methods for fine-grained
domain adaptation. But there has been a lack of research on snakes. This paper describes a
method for image-based snake species identification submitted by the USTC-IAT-United team
to the SnakeCLEF 2022 challenge[2]– a part of LifeCLEF 2022 workshop[3, 4].
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Generally, the main methods of FGVC mainly focus on how to make the network focus
on the most discriminative regions, such as part-based models and attention-based models.
Inspired by human observational behavior, these methods introduce localization-induced biases
to neural networks with complex structures. In addition, some data augmentation methods
and loss functions can also make the model pay more attention to fine-grained feature regions.
When some species are visually indistinguishable, some extra-visual information can assist
fine-grained recognition, such as spatio-temporal priors and textual descriptions. For example,
it is very common that most or all images of a particular snake species may come from a few
countries, or even a single country, which inspires us to combine geographic information with
fine-grained classification. However, there are currently few studies on snake-related datasets.
This motivates us to explore the combination of each module of the deep neural network and
model fusion effect for snake fine-grained recognition method.

To solve the problem of snake fine-grained recognition, we use an exploratory data analysis of
the SnakeCLEF 2022 dataset and process the characteristics of the dataset such as imbalance and
fine-grained accordingly. We apply state-of-the-art (SOTA) data augment methods to expand
the dataset, and use Convolutional Neural Network (CNN) and Transformer[5] models with a
large number of parameters as the backbone network to extract image features. In addition, we
use various loss functions and attention mechanisms to deal with indistinguishable features and
data imbalance, respectively. We found a weak improvement in the macro 𝐹1 score of snake
recognition results using Focal Loss and Seesaw Loss, although this takes more time.

The contribution of this paper are summarized as follows:

• We test the performance of different backbone networks based on CNN (EfficientNets[6, 7])
and transformer (Swin-L[8], BEiT-L[9]) on snake classification tasks.

• We use different data augment methods and loss functions on the snake classification
task and find a effective combination.

• We give appropriate weights to different models for model integration and achieve macro
𝐹1-score of 78.27% on the public leaderboard and 71.82% on the private leaderboard of
the SnakeCLEF 2022.

2. Related work

2.1. Fine-grained classification

Existing fine-grained classification methods can be divided into visual-only classification meth-
ods and multimodal classification methods. The former relies entirely on visual information to
solve the problem of fine-grained classification, while the latter tries to use multimodal data to
build a joint representation that merges multimodal information to facilitate fine-grained recog-
nition. Fine-grained classification methods that rely solely on vision can be broadly classified
into two categories: localization methods [10] and feature encoding methods [11].

Early work [12] used partial annotations as supervision to make the network notice subtle
differences between certain species and suffer from their expensive annotations. RA-CNN [13]
was proposed to amplify subtle regions to recursively learn to distinguish region attention



and region-based feature representations at multiple scales in a mutually reinforcing manner.
NTSNet [14] proposed a self-supervised mechanism to efficiently localize information regions.

Feature encoding methods are dedicated to enriching feature representation capabilities
to improve the performance of fine-grained classification. CAP [15] designed context-aware
attention pools to capture subtle changes in images. TransFG [16] proposed a part selection
module that applies a visual transformer to select discriminative image patches.MetaFormer[17]
suggests pooling layer is an alternate to self-attention. Compared with localization methods,
feature encoding methods are difficult to clearly distinguish the distinguishing regions between
different species.

To distinguish these challenging visual categories, additional information, i.e., geographic lo-
cation, attributes, and textual descriptions, can be helpfully utilized. Geo-Aware [18] introduced
geographic information prior to fine-grained classification and systematically examined various
previous approaches using geographic information, including post-processing, whitelisting, and
feature modulation. Presence-only [19] also introduced a spatio-temporal prior to the network,
which was shown to be effective in improving the final classification performance. CVL [20]
proposed a two-branch network in which one branch learns visual features and the other branch
learns textual features, and finally combines these two parts to obtain the final latent semantic
representation. All the above methods were designed for specific prior information and cannot
be flexibly adapted to different auxiliary information.

2.2. Snake identification

The SnakeCLEF dataset is a well-known snake identification dataset, and many teams continue
to explore further based on this dataset. BME-TMIT[21] use a two-stage approach for subject
detection and image classification, and augmented the classification’s macro 𝐹1 score with
location information. CMP[22] used residual convolutional neural networks of different sizes,
and combined the original and improved cross-entropy to improve the classification performance.
In addition, the use of voting for fusion further improved the accuracy on the Snake dataset.
FHDO-BCSG[23] combined the current SOTA CNNs and Transformers, and performed model
fusion to obtain excellent score on the SnakeCLEF 2021 challenge.

3. Methodology

As shown in Figure 1, we use various data augment methods on the data, and then train four
models : Swin-L[8], EfficientNet-B7[6], EfficientNet-L2[7], and BEiT-L[9]. Finally, we fuse the
features extracted from each model to obtain the final classification results.

3.1. Dataset

For SnakeCLEF 2022 Chenllage, the dataset is based on 187,129 snake observations with 318,532
photographs belonging to 1,572 snake species and observed in 208 countries. The photographs
originated from the online biodiversity platform – iNaturalist. In fact, for the trainset, there are
a total of 270,251 images from 158,698 snake observations belonging to 1,572 snake species and
observed in 207 countries.



Figure 1: Our method for snake classification: firstly, we use data augment methods to pre-process
the data, then the processed data is used to train different backbone networks, and finally the features
extracted from each model are fused to obtain the final classification results.

In addition to the image data information, the challenge also provides metadata, including
information on whether snake species are endemic and where snakes are observed. However,
despite some exploration and attempts, we still have not found an effective method to improve
the accuracy of snake identification using metadata.

3.2. Data Augment

We do not experiment with subtle data augment combinations on the SnakeCLEF 2022 dataset,
but use NAS-based (Neural Architecture Search) or improved data augment methods, namely
AutoAugment[24], RandAugment[25], and TrivialAugment[26].

AutoAugment. AutoAugment is a simple search-based data augment method. The main
idea of which is to create a search space of data augment strategies and evaluate the quality of a
particular strategy directly on some datasets. In the experiments of AutoAugment, the authors
design a search space where each strategy consists of many substrategies, and in each batch a
substrategy is chosen randomly for each image. The substrategies contain two operations, each
of which is an image processing method, such as translation, rotation or clipping, and for each
operation there is a set of probabilities and magnitudes to characterize the nature of the use
of this operation. Using a search algorithm, search for the best policy that enables the neural
network to achieve the highest validation set accuracy on the target dataset. AutoAugment
achieves the same performance as the semi-supervised approach without using any unlabeled
data. Finally, the strategies learned from one dataset can be directly transferred to other similar
datasets and perform equally well. For example, the strategy learned in ImageNet can achieve
state-of-the-art accuracy on the fine-grained visual classification dataset Stanford Cars without
fine-tuning the pre-trained model with new data.

RandAugment. RandAugment investigates a data augment strategy based on NAS method
search, which provides a significant improvement in search cost compared to earlier NAS
search data augment strategies. NAS-method-based data augment strategies (e.g., AA and
other methods) suffer from two major drawbacks. First, they use separate search phases, thus
increasing the complexity of training and greatly increasing the consumption of computational
resources. In addition, since the search phases are separate, these methods cannot adjust the



regularization strength according to the model or dataset size. That is, we usually train small
models by training them on small datasets and then apply them to train large models. The
proposal of RandAugment (later referred to as RA) solves these two problems by significantly
reducing the search space and allowing training directly on the target task without a proxy task,
and by tailoring the regularization strength of data augment to different datasets and models.

TrivialAugment. The TrivialAugment data augment strategy originates from the NAS
approach and outperforms NAS, implementing SOTA’s data augment strategy in a simpler way.
Although the approach of data augment using NAS method for automatic search is effective,
the limitation lies in the need to trade-off the search efficiency and the performance of data
augmentation. To solve this problem, TrivialAugment data augment strategy (later referred
to as TA) is proposed. Compared with previous data augment strategies, TA is parameter-free
and uses only one data augment method per image, so its search cost is almost free compared
to AA and even RA, and it achieves SOTA results. TA uses the same data augment method as
RandAugment. Specifically, data augment is defined as consisting of a data augment function a
and the corresponding intensity value m (some data augment functions do not use intensity
values). For each image, TA samples a data augmentation function and an intensity value
uniformly, and then returns the augmented image. In addition, while previous methods tend to
overlay multiple data augment methods, TA only uses a single data augment method for each
image. Using such an approach, the TA-augmented dataset can be viewed as a single image
augmented separately using all data augment methods, and then uniformly sampled from it.

3.3. Image feature extraction backbones

Backbone is crucial for feature extraction of SnakeCLEF 2022 dataset. Different backbones
have different learning ability for features and different focus on the dataset, and the choice
of different models can bring us richer data features. In this challenge, we use the following
models.

3.3.1. Swin Transformer

There are two main challenges in the application of Transformer to the image field. Visual entities
are highly variable, and the visual Transformer performance may not be very good in different
scenes. With many pixel points, Transformer’s global self-attention-based computation leads
to a large computational effort. To address these two problems, Swin Transformer proposes
a Transformer with a hierarchical design that includes a sliding window operation, which
consists of a non-overlapping local window and an overlapping cross-window. Restricting the
attention computation to a single window can introduce the localization of CNNs convolution
operations on the one hand and save computation on the other. The overall architecture of
Swin Transformer is hierarchical, with four stages, each of which reduces the resolution of the
input feature map and expands the perceptual field layer by layer like CNNs. There are several
places where it is handled differently than ViT[27]. ViT will position-encode the embedding on
the input, while Swin-T is here as an option. Swin-T does a relative position encoding when
calculating Attention. ViT will add a learnable parameter separately as a token for classification,
while Swin-T directly averages and outputs classification, which is somewhat similar to the



final global average of CNN. pooling layer. On the ImageNet22K[28] dataset, the accuracy rate
of Swin Transformer can reach an astonishing 86.4%, which is one of the current SOTA models.

3.3.2. EfficientNet

The traditional practice of model scaling is to arbitrarily increase the depth or width of the CNNs,
or to use a larger input image resolution for training and evaluation. While these approaches
do improve accuracy, they typically require long periods of manual tuning and still often yield
sub-optimal performance. A new approach to model scaling is to use a simple and efficient
composite coefficient to scale CNNs in a more structured way. Unlike traditional methods
that arbitrarily scale network dimensions such as width, depth, and resolution, EfficientNets
uniformly scales network dimensions with a fixed set of scale scaling factors. By using this
novel scaling method and AutoML (Auto Machine Learning) techniques, the authors call this
model EfficientNets, which is up to 10 times more efficient (smaller and faster). To understand
the effect of network scaling, the authors systematically studied the effect of scaling different
dimensions on the model. While scaling individual dimensions can improve model performance,
the authors observe that balancing all dimensions of the network based on available resources
can maximize overall performance. In addition, the effectiveness of model scaling relies heavily
on the baseline network. To further improve performance, the authors also develop a new
baseline network that optimizes accuracy and efficiency by performing neural structure search
using the AutoML MNAS framework. The final architecture uses moving inverse bottleneck
convolution (MBConv).

3.3.3. Bidirectional Encoder representation from Image Transformer

Following the development of BERT[29] in the field of natural language processing. proposed a
masked image modeling task to pretrain visual Transformers. Specifically, in our pre-training,
each image has two views, namely image patches (e.g. 16×16 pixels) and visual tokens (i.e.
discrete tokens). They first "tokenize" the original image into visual tokens. Then randomly
mask some image patches and feed them into the backbone Transformer. The goal of pretraining
is to recover original visual tokens from corrupted image patches. After pretraining BEiT, they
directly fine-tune model parameters on downstream tasks by appending task layers on the
pretrained encoder. Experimental results on image classification and semantic segmentation
show that the model achieves better results than previous pre-training methods. For example,
base-size BEiT achieves 83.2% top-1 accuracy on ImageNet-1K[28], significantly outperforming
DeiT[30] (81.8%) trained from scratch under the same settings. Furthermore, large-size BEiT
achieves 86.3% accuracy using only ImageNet-1K, even better than ViT-L[27] (85.2%) with
supervised pretraining on ImageNet-22K.

3.4. Loss function

For the task of snake classification, the Loss function we use is a cross-entropy loss function like
the work for training. In addition, we use Focal Loss[31] and Seesaw Loss[32] to mitigate the
problem of long-tailed distribution of the dataset. Where Focal Loss uses a modulating factor
to the cross-entropy loss to reduce the loss contribution from easy examples and elevate the



importance of hard examples, Seesaw Loss achieves a relative balance of positive and negative
sample gradients by dynamically reducing the weight of the excessive negative sample gradients
imposed by the head category on the tail category.

3.5. Fine-grained classification strategy to improve 𝐹1 score

We use the fine-grained classification method of PIM[33] to help us with the task of snake
classification. PIM is an excellent method for fine-grained classification that automatically finds
the most discriminative regions and uses local features to provide features that are more helpful
for classification. PIM is a plug-in module, so it can be integrated into very many common
CNN-based or Transformer-based network backbone, such as Swin Transformer, EfficientNet,
etc. The plugin module can output pixel-level feature maps and fuse filtered features to enhance
fine-grained visual classification. It can be briefly explained by selecting appropriate output
feature maps from the backbone’s blocks to input to a weakly supervised selector to filter
out regions with strong discriminative power or regions with little relevance to classification,
and finally fusing the features from the selector’s output with a combiner to obtain prediction
results.

4. Experiments

Firstly, we train various well-known architectures such as EfficientNet-B7, EfficientNet-L2,
Swin-L, and BEiT-L on the CNN and Transformer families respectively. Furthermore, we use
data augment methods to improve the performance of the model. Finally, the models of various
different architectures are integrated.

4.1. Setup

In this section, we describe the complete training and evaluation procedure, including the
training strategy, image augment, and testing procedures. At first, the dataset is split 9:1
between training and validation to select backbones. All architectures are initialized with
publicly available pretrained checkpoints and the same policies are trained using the PyTorch
framework in a Tesla A100 Tensor Core GPU. All neural networks are optimized using stochastic
gradient descent with momentum set to 0.9. The starting learning rate (LR) is set to 0.01 and
is further reduced by a specific adaptive learning rate planning strategy and the multi-step
adjustment strategy is used when training on the full dataset. In order to speed up the efficiency
of the model, the batch size is determined according to the memory consumption, which
is between 4 and 128. For training, in addition to the conventional data augment methods,
we also adopt a more advanced automatic augment technology. More specifically, we use
random horizontal flip with 50% probability, random vertical flip with 50% probability, random
adjustment crop with 0.8 - 1.0 scale, random brightness/contrast adjustment with 40% probability.
All images are resized to the desired network input size: in the CNN performance experiments,
the input size is 600 × 600. For Swin Transformer, the input size is 384 × 384, while on BEiT, it
is 512 × 512.



In the process of training the model, we replace various loss functions for evaluation. In
addition, data augmentation is introduced to fine-tune the training of the data based on the
full amount of very unbalanced dataset used for training in the first phase, hoping to improve
the accuracy and robustness of the model. Finally, model ensemble is applied, which is fused
separately from the result layer and the feature layer.

4.2. Metrics

According to the requirements of the competition, the evaluation metrics we use is the macro
𝐹1 score, which is not affected by the class frequency and is more suitable for the long-tailed
class distribution observed in nature. Interestingly, despite the high performance requirements
for overall classification in nature-related applications, most existing benchmarks only use
accuracy as a scoring criterion. Given that the dataset is highly imbalanced and has long-tailed
distributions, the learning process may ignore the least present species. Furthermore, using
𝐹𝑚
1 score allows to easily assign a cost value to each label’s two error types and measure more

task-related performance. For example, mistaking venomous snake species for non-venomous
snake species is a more serious problem when it comes to snake identification. Define 𝐹𝑚

1 score
as the mean of all 𝐹1 scores:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(1)

𝐹𝑆
1 =

2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(2)

𝐹𝑚
1 =

1

𝑁

𝑁∑︁
𝑆=1

𝐹𝑆
1 (3)

where 𝑁 represents the number of classes and 𝑆 is the species index.Final Macro 𝐹1 score is
calculated by computing the 𝐹1 score for each species as the harmonic mean of the species
Precision and the Recall .

4.3. Results

In this section, we compare the performance of well-known CNN-based models and Transformer-
based models on the macro 𝐹1 score. Additionally, we calculate the highest macro 𝐹1 score of
the single model on the dataset. Finally, the best results are obtained using model integration.

The impact of different data augments. In order to reduce the impact of long-tail dis-
tribution and fine-grained on identification, we use different data augmentation methods on
the Swin-L, such as AutoAugment, RandAugmet, TrivialAugment. The results can be seen in
Table 1. The results show that the combination of RandAugment and Swin-L works best.

Fine-grained classification strategy. The attention mechanism PIM is introduced to solve
part of the problem of Fine-grained classification. As shown in Table 2, we can see a significant
improvement over the original baseline. It is worth noting that we do not use the full data
set, but divide the training set and the validation set according to 9:1 for training, and conduct
online evaluation on the test set of the challenge. However, it takes more than twice as long



Table 1
The effect of different data augments (on public leaderboard)

Augment method 𝐹𝑚
1 score Score fluctuation

Swin-L 68.14% -
Swin-L + AutoAugment 68.29% +0.15%
Swin-L + RandAugment 68.44% +0.3%
Swin-L + TrivialAugment 68.33% +0.19%

Table 2
The effect of PIM module (training on 90% trainset, on public leaderboard)

method 𝐹𝑚
1 score Score fluctuation

Swin-L 62.38% -
Swin-L + PIM 63.8% +1.42%

Table 3
The effect of different loss function (training on 90% trainset, on public leaderboard)

loss function 𝐹𝑚
1 score Score fluctuation

EfficientNet-B7 + CE Loss 68.14% -
EfficientNet-B7 + Seesaw Loss 68.64% +0.5%
EfficientNet-B7 + Focal Loss 68.89% +0.75%

to train a model with PIM module than to train only backbone. Due to our limited computing
resources, there is no way to train all the backbones with PIM module. We believe that if we
train all the models with PIM and then do model integration, we can improve our performance
greatly.

The impact of different loss function. In addition, the influence of different loss functions
on the model accuracy is also tested. As shown in Table 3, while training on 90% trainset, Focal
Loss performs better in fine-grained classification.

The effect of different backbones. As shown in Table 4, we use different backbone training
on the full dataset of this challenge, adopt a high-performing data augment approach, replace
the loss function with Focal Loss to obtain the results of the online testset evaluation. It is a
pity that we do not use PIM because it requires a lot of computing resources and time. It can
be seen that EfficientNet-L2 has the best performance, the performance of BEiT-L is only a
little worse than that of EfficientNet-L2. From the comparison of the number of parameters,
it seems that the model with more parameters works better for CNN-based architecture and
transformer-based architecture. Of course, it needs more experiments to prove this.

Model Integration and Challenge Score. We fuse the softmax layers of each model in
turn in different proportions according to the macro 𝐹1 score order of each model, and use the
parameters of the last layer to infer the category of that image. The fusion weights of each of
these models are carefully tuned by us, and the final macro 𝐹1 score is shown in Table 5. We
achieve a result of 71.82% on the public leaderboard (20% of the test data) and a score of 78.22%



Table 4
The effect of different backbones

Backbone Parameter 𝐹𝑚
1 score (Public) 𝐹𝑚

1 score (Private)

Swin-L 197M 68.14% 61.7%
Efficientnet-B7 66M 71.79% 64.99%
BEiT-L 306M 74.77% 67.61%
EfficientNet-L2 480M 75.77% 69.6%

Table 5
Effect of Model Integration

Backbone weight 𝐹𝑚
1 score(Public) 𝐹𝑚

1 score(Private)

EfficientNet-L2 1 75.77% 69.6%
EfficientNet-L2 + BEiT-L 6:4 77.58% 71.76%
EfficientNet-L2 + BEiT-L + EfficientNet-B7 6:4:6 78.22% 71.93%
EfficientNet-L2 + BEiT-L + EfficientNet-B7 + Swin-L 6:4:6:0.1 78.27% 71.82%

Table 6
The final score

leaderboard 𝐹𝑚
1 score rank

Public 78.27% 6
Private 71.82% 7

on the private leaderboard (approximately 80% of the test data). Surprisingly, from the private
leaderboard, the result without Swin-L is slightly higher, reaching 71.93%.

In the end, as shown in Table 6, we rank 6th on the public leaderboard and 7th on the private
leaderboard.

5. Conclusions

This paper proposes a model integration approach for fine-grained classification of SnakeCLEF
2022 dataset. Since this dataset has the characteristics of fine-grained and long-tailed distribution.
We finally train four models, EfficientNet-L2, BEiT-L, EfficientNet-B7 and Swin-L. We find that
for CNN-based or transformer-based models, models with a larger number of parameters work
better. Then we fuse the features extracted from each model by the model integration method
and obtain a significant improvement in performance. Finally, after adjusting the weights, we
achieve macro 𝐹1 score of 71.82% on private leaderboard and macro 𝐹1 score of 78.27% on the
public leaderboard. A noteworthy conclusion is that model integration is only better when
single models perform similarly. If a model’s macro 𝐹1 score much lower than other models
(like Swin-L), the improvement it can bring is limited and may even reduce our original macro
𝐹1 score. A foreseeable result is that the final macro 𝐹1 score can be improved if we continue
to add suitable backbones for model integration.
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