
An Unorthodox Approach for Style Change
Detection
Notebook for PAN at CLEF 2022

Lukas Graner, Paul Ranly

Fraunhofer Institute for Secure Information Technology SIT, Rheinstraße 75, 64295 Darmstadt Germany
E-mail: {firstname}.{lastname}@sit.fraunhofer.de

Both authors have contributed equally

Abstract

The PAN shared tasks include tasks from a variety of disciplines, including authorship analysis, and
are held annually. Participants are able to compete with each other by proposing approaches for a task,
which are then compared and evaluated on a test dataset with predefined performance metrics. So far,
the test datasets have traditionally been withheld, so that participants may only train and optimize
approaches on the training and validation sets. In this year’s Style Change Detection task, the objective
of which is to locate author changes in multi-author text documents, PAN has also published the test set
built from publicly available Q&A platform posts, albeit without ground truth labels. In this paper, we
show that the ground truth of the test set can be recovered almost entirely by querying search engines
with paragraph excerpts from the test set, crawling the query results and parsing author information
of corresponding posts. We point out that this allows others to secretly tailor their approaches to the
recovered test labels and thus gain an unfair advantage. Furthermore, as part of an in-depth data analysis,
we address a variety of issues and finally suggest improvements for future Style Change Detection
tasks.

Keywords

Style Change Detection, Multi Author Detection, Half-blind Task, Crawling, Recovering Test Labels

1. Introduction

The PAN Shared Tasks were introduced over a decade ago and span a variety of topics such
as authorship analysis, computational ethics and plagiarism detection. One of these tasks is
Style Change Detection (SCD) as first introduced in 2017, where the goal is to find changes of
writing style inside a given document [1]. This task may help detecting documents or locate
sections inside documents written by different authors and possibly provide evidence in those
documents, among other use cases.

CLEF 2022 – Conference and Labs of the Evaluation Forum, September 5–9, Bologna, Italy
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

In practice, the PAN Shared Tasks provide different datasets, whose content is taken from publicly
available websites, such as the Stack Exchange network1. The tasks themselves comprise datasets
to design and train models on, as well as independent test sets for the purpose of evaluating these
models. We want to emphasize, that in the context of a shared task, it is important to withhold
the labeled ground-truth, based on which the solutions of all participants are ranked. Otherwise
submissions could simply output the correct results or be optimized on them, defeating the very
point of a shared task.

In this year’s SCD task [2], the test set was published along with the training and validation
data. Although the data from the test set was unlabeled, rendering the task "half-blind"[3], this
work shows how the labels can be recovered by crawling the websites to find corresponding
authors to each given problem. With this information a found truth can be extracted, which
differs only marginally from the ground truth.

A more thorough explanation of the datasets and their composition will be given in Section 2
along with background on how this year’s task setup can be taken advantage of. In Section 3
the methodology and details of our approach are described while its results are presented in
Section 4 as well as an in-depth analysis of the provided datasets. Lastly, Section 5 summarizes
our findings and suggests possible improvements for future tasks.

2. Background

The shared PAN 2022 SCD task poses three sub-tasks to solve, namely basic, advanced, and
real-world representing different scenarios. The specific tasks are as taken from the PAN
website2:

1. Style Change Basic (𝒯1): for a text written by two authors that contains a single style
change only, find the position of this change (i.e., cut the text into the two authors’ texts
on the paragraph-level),

2. Style Change Advanced (𝒯2): for a text written by two or more authors, find all positions
of writing style change (i.e., assign all paragraphs of the text uniquely to some author out
of the number of authors assumed for the multi-author document)

3. Style Change Real-World (𝒯3): for a text written by two or more authors, find all positions
of writing style change, where style changes now not only occur between paragraphs,
but at the sentence level.

For each of the sub-tasks a separate dataset is provided (𝒟1, 𝒟2 and 𝒟3, respectively), each
being split disjointed into 70% labeled training (𝒟train

*), 15% validation (𝒟valid
*) and 15% unlabeled

test data (𝒟test
*). Their intended uses are for training a model, optional (hyperparameter) tuning

and final evaluation of the model, respectively. The datasets contain a large number of SCD
problems, where each problem is structured as a list of text paragraphs (statistics are shown in
Table 2). For simplicity, we will also refer to sentences in 𝒯3 as paragraphs henceforth. Two

1 Stack Exchange: https://stackexchange.com/
2 PAN Style Change Detection Website: https://pan.webis.de/clef22/pan22-web/style-change-detection

https://stackexchange.com/
https://pan.webis.de/clef22/pan22-web/style-change-detection

consecutive paragraphs may be written by different authors, signifying a style change. For 𝒯1
and 𝒯3 the task is to predict for each pair of consecutive paragraphs, if a style change is present.
For 𝒯2 each paragraph has, furthermore, to be assigned uniquely to an author.

As stated in the task description all problems in the datasets were assembled from questions
and answers from the Q&A platform Stack Exchange, which comprises a variety of websites
dedicated to diverse topics3.

3. Methodology

Since all Stack Exchange websites are publicly accessible and indexed by common search
engines, a paragraph can be traced back to its originating post. In the following we describe our
straightforward approach for finding the source threads in the Stack Exchange network and
assigning an author to each paragraph. This approach can be applied to all sub-tasks equally,
followed by converting the author names into the output format of the respective sub-task. A
corresponding pseudocode is given in Algorithm 1.

3.1. Finding source threads

Upon manual inspection of the data, we discovered that for the majority of the problems in
the datasets, all their respective paragraphs originated from a single Stack Exchange thread.
Tracing back each paragraph independently would, therefore, lead to unnecessary search queries
yielding redundant results. Instead, we decided to cache the post contents of found threads, so
that, while iterating over the paragraphs, we only query a search engine when a paragraph is
not already present in the cache (cf. Algorithm 1 Line 5).

Furthermore, we discovered that a small portion of the original posts had been edited since the
creation of the datasets. An exact phrase search for an entire paragraph, whose originating post
has already been edited, would potentially yield no results4. To overcome this issue, we only
use a substring of the paragraph, specifically the first tokens that add up to 150 (or 100 and
further 75 if no results are yielded, cf. Algorithm 1 Line 6) characters.

Among a number of popular search engines we considered, we chose AOL Search5 and Yahoo
Search6, as we empirically found them best suited for our use case in terms of accuracy and
throughput. For each search query (cf. Algorithm 1, function querySearchEngine) we
randomly sample one engine out of the two and query it with the search string enclosed by
quotation marks »"«, indicating an exact phrase search.

The first resulting URL that is part of the Stack Exchange network is then requested, its HTML
content parsed, and finally the names of the post authors along with the corresponding text

3 Total list of Stack Exchange websites: https://data.stackexchange.com/
4 Whether old versions of edited posts are indexed depends on the given search engine, although we found that

this was rarely the case.
5 AOL Search: https://search.aol.com/
6 Yahoo Search: https://search.yahoo.com/

https://data.stackexchange.com/
https://search.aol.com/
https://search.yahoo.com/

1 # Finding source threads
2 cachedPosts = []
3 for problem in 𝒫 :
4 for paragraph in problem.paragraphs:
5 if not any(post.content.contains(paragraph) for post in cachedPosts):
6 for subLength in [150, 100, 75]:
7 queryResult = querySearchEngine(paragraph[:subLength])
8 if queryResult is not None:
9 for post in extractPostsFromStackExchangeURL(queryResult):

10 for editedPost in post.editedVersions:
11 cachedPosts.append(editedPost)
12 cachedPosts.append(post)
13

14 # Assigning authors
15 for problem in 𝒫 :
16 paragraphAuthors = []
17 for i, paragraph in enumerate(problem.paragraphs):
18 matchingPost = None
19 for post in cachedPosts:
20 if post.contains(paragraph):
21 matchingPost = post
22 if matchingPost is not None:
23 while len(paragraphAuthors) <= i:
24 paragraphAuthors.append(matchingPost.author)
25 cachedPosts.remove(matchingPost)
26 elif len(paragraphAuthors) > 0:
27 paragraphAuthors.append(paragraphAuthors[-1])
28 outputSolution(problem, paragraphAuthors)

Algorithm 1: Python inspired pseudocode to search for paragraphs, fill a cache holding all found
posts and finally assigning authors to each paragraph. Hereby, 𝒫 denotes the set of problems in
a given dataset, querySearchEngine is a function which queries a search engine with the given
text and returns the first URL of a Stack Exchange result or None if none was found. The function
extractPostsFromStackExchangeURL requests the HTML content, parses it and returns all posts
of the given Stack Exchange URL, where a returned post holds information about the content, author
name and previous edited versions of the post. outputSolution then finally converts the given list
of author names to the according output format of the sub-task and outputs the result.

contents extracted, including older versions if edited (cf. Algorithm 1, function extractPosts-
FromStackExchangeURL).

3.2. Assigning authors

Having populated the post cache, authors can now be assigned to each paragraph. This would
be a trivial task if for each paragraph there exists one and only one source post. However, there
are three issues we need to address:

1. Some paragraphs can not be found by any means. We suspect that the source post has
since been deleted, for example due to being flagged as spam or rudeness. An example is

the last paragraph in problem 12 of 𝒟test
2 :

"this program holds the left button down - Mouse Emulator [. . .]"

To one such paragraph we assign the found author of the previous paragraph in the
corresponding problem, or next paragraph, if said paragraph is the first one in the problem
(cf. Algorithm 1 Line 22-27).

2. A few paragraphs were present more than once in the cache but with varying authors.
These different authors either copied content from an external source (such as documen-
tation), one author adopted parts of another author’s post, or multiple authors authored
the same text purely by coincidence. Although our crawling algorithm would skip the
search for paragraphs already cached, it may still crawl said posts as a by-product in an
unrelated thread. An example is the 13th paragraph in problem 987 in 𝒟train

1 :

"Raspbian has 100MB of swap by default. You should change it to
2000MB in the configuration file. So you will have to find this
line:"

which can be found both in the Raspberry Pi Stack Exchange as well as Stack Overflow
in Spanish7. In such a case, it is not possible to unambiguously specify which post is
the original one, so we simply assign the author of the lastly found matching post (cf.
Algorithm 1 Line 19-21 and 24).

3. Although all paragraphs in the datasets represent disjoint posts, there are still paragraphs
present multiple times, even within a single problem. This reflects a more intricate
situation similar to the previous issue, as these paragraphs could not be considered a
by-product of the crawling. Such cases occur, for instance, when an answer responds to a
question while quoting the question. An example is problem 879 in 𝒟test

3 , whose third
and ninth paragraphs:

"What filesystem layout will give the best performance?"

are equal while their authors are different8. We also assign these paragraphs to the authors
of the lastly found matching post, although without considering a post multiple times (cf.
Algorithm 1 Line 19-21 and 24-25).

Once authors have been assigned to all sections, it is straightforward to output the solutions.
For 𝒯1 and 𝒯3, only binary outputs representing the style changes are required, which can be
easily generated by checking for inequality of the author names of each consecutive paragraphs.
For 𝒯2, each author name will be transformed to an identifier number in order of occurrence
starting at 1.

7 𝒟train
1 problem 987 paragraph 13 found both in https://raspberrypi.stackexchange.com/questions/44208 and

https://es.stackoverflow.com/questions/262860
8 𝒟test

3 problem 879 paragraph 3 and 9 found both in https://serverfault.com/questions/243920

https://raspberrypi.stackexchange.com/questions/44208
https://es.stackoverflow.com/questions/262860
https://serverfault.com/questions/243920

4. Experiments and Analysis

In the following, we present our results on the three tasks presented in Section 2. Further, we
will go through an analysis of the provided datasets and some challenges a SCD model might
face on them.

𝒯1 𝒯2 𝒯3

𝒟
tr

ai
n

*

Macro-F1 0.970 0.987 0.984

DER - 0.006 -
JER - 0.008 -

𝒟
va

lid
*

Macro-F1 0.958 0.990 0.985

DER - 0.006 -
JER - 0.008 -

𝒟
te

st
*

Macro-F1 0.993 0.986 0.993

DER - 0.004 -
JER - 0.004 -

Table 1
Final results of our submission on the respective train, validation and test sets of the three sub-tasks.

4.1. Results

Solutions of all tasks 𝒯1, 𝒯2 and 𝒯3 are evaluated using macro-averaged F1 (Macro-F1) as well as
for 𝒯2 additionally with Diarization Error Rate (DER) [4] and Jaccard Error Rate (JER) [5].

Table 1 shows the results of our approach for the test set evaluated by the TIRA research
architecture [3] and for the training and validation sets, which we evaluated based on the
provided ground truth labels. As can be observed, the results are consistently near-perfect
across all sub-tasks and datasets. The issues stated in Section 3.2, such as presumably deleted
source posts, prevent the approach to achieve actual perfect results (i.e., values of 1.0 for
Macro-F1 and 0.0 for DER and JER).

We would like to emphasize that we do not consider our approach as an appropriate submission
for the PAN shared tasks, since it effectively resembles an act of cheating. The purpose of
this approach and paper is not to compete against other participants, but to show that it is
possible (cf. Table 1) for any participant to uncover the true labels of the test sets with little
effort. Participants who do so may then (in addition to training a model on the training set)
optimize or manually finetune their model on test labels without disclosing this action, gaining
an unfair advantage over other participants, who do not. Moreover, this harms the research
community by potentially incorrectly suggesting that some approaches are preferable to others.
At this point the final evaluation result is then skewed and, thus, of no use.

4.2. Data

For each shared task, the type of the provided data affects the results, as different source data can
vary in complexity, size and significance among other factors. In this section, we will provide a
quantitative and qualitative insight into the datasets of the PAN 2022 SCD task.

4.2.1. Quantitative Analysis

We formulated different categories of potential challenges for SCD approaches (and for style
analysis in general), representing phrases and character strings that complicate the author
inference or add noise to the data. The categories are URLs, file paths, citations, code (such
as HTML, SQL, shell or LaTeX-commands) and non-English text. Furthermore, we inspected
individual paragraphs regarding formatting, punctuation quantity as well as the presence of
short paragraphs of less than 50 characters and duplicates.

Dataset
Category 𝒟1 𝒟2 𝒟3 Total

Pr
ob

le
m

s

Total 2,000 (100%) 10,000 (100%) 10,000 (100%) 22,000 (100%)
URL 336 (16.8%) 1,434 (14.3%) 2,127 (21.3%) 3,897 (17.7%)
File Path 33 (1.7%) 157 (1.6%) 151 (1.5%) 341 (1.6%)
Citation 183 (9.1%) 762 (7.6%) 1,847 (18.5%) 2,792 (12.7%)
Code 27 (1.4%) 57 (0.6%) 126 (1.3%) 210 (1.0%)
Non-English 49 (2.5%) 54 (0.5%) 401 (4.0%) 504 (2.3%)

Pa
ra

gr
ap

hs

Total 15,862 (100%) 75,153 (100%) 159,652 (100%) 250,667 (100%)
URL 450 (2.8%) 1,770 (2.4%) 3,016 (1.9%) 5,236 (2.1%)
File Path 40 (0.3%) 197 (0.3%) 214 (0.1%) 451 (0.2%)
Citation 315 (2.0%) 963 (1.3%) 2,554 (1.6%) 3,832 (1.5%)
Code 273 (1.7%) 160 (0.2%) 617 (0.4%) 1,050 (0.4%)
Non-English 281 (1.8%) 263 (0.3%) 1,667 (1.0%) 2,211 (0.9%)

Table 2
Absolute number of occurrences (and percentage with respect to the total) of different phrases present
in entire problems (upper block) and paragraphs (lower block).

As shown in Table 2, the different datasets contain varying amounts of phrases fitting in one
of the categories. The absolute counts for 𝒟1 are smaller as this dataset consists of only one
fifth of the problems in 𝒟2 or 𝒟3. We used a simple pattern search for URLs9 and citations10

and found a surprisingly high amount of each present in the problems. While URLs do not
contribute to an authors style at all, citations may in fact represent the style of another entity.
With up to 21% of problems and 2% of all paragraphs affected by at least one of these phrases,

9 Regex pattern to detect URLs:
https?://(www\.)?[-a-zA-Z0-9@:%._+~#=]+\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_+.~#?&/=]*)

10 Regex pattern to detect citations (simplified): (\x22.*?\x22|(?<=^|)\x27.*?\x27(?=[.,;:\s)]))

Note, that this is only a naive approach, since not all texts enclosed by quotation marks indicate a citation.
Furthermore, we only counted a citation if it covered more than 25% of the paragraph.

all three SCD tasks become more demanding. Moreover, we observed paragraphs that contain
multiple URLs and citations or even solely consist of those.

The proportion of code listings present in the data was more difficult to determine. Firstly we
also inlcuded HTML, SQL, LaTeX and shell commands. Secondly, we focused on formatted
listings, i.e. code snippets that were in the Stack Exchange format of four leading whitespaces
followed by the actual code. For this work we took neither code in plain text nor code snippets
encapsulated by text phrases into account, even though we occasionally found similar examples
in the data files.

In order to detect non-English texts in paragraphs we used the language detection tool langdetect11.
It should be noted here, that a small portion of nonhuman phrases (e.g. code listings and com-
mand line outputs) were also considered non-English, as they were assigned to languages such
as Swedish. This results in most of the detected non-English phrases being such nonhuman
code with only very few phrases originating from other languages. Nevertheless, this proposes
another difficulty, as participating models are forced to compare the writing style of texts in
different languages, not to mention analyzing nonhuman texts, such as URLs, file paths, logged
metadata or error reports. A more in-depth look on those will be given in the qualitative analysis
in the next section.

In general, as all datasets are taken from the same network, we assume that the allocation of
problems to datasets is somewhat arbitrary. Still it is worth mentioning that 𝒟3 contains more
problems with at least one URL, citation, code and non detectable English sentence compared
to 𝒟1 and 𝒟2, while the problems in 𝒟2 and 𝒟3 are of similar average size. As the paragraphs
in 𝒟3 are single sentences, they are much shorter (on average 114 characters per paragraph,
in contrast to 199 for 𝒟1 and 249 for 𝒟2), hence problems in 𝒟3 contain more paragraphs on
average. Table 2 shows that the quantity of challenging phrases in paragraphs are similar in all
datasets. Considering this and the short length of paragraphs in 𝒟3, 𝒯3 is thus more affected by
the phrase induced noise and consequently even more challenging than 𝒯1 and 𝒯2.

4.2.2. Qualitative Analysis

In this section we will discuss specifically selected excerpts of SCD problems, which are listed
and categorized in Table 3 along their alleged source URLs. As the datasets provided by the
shared task are taken from the publicly available Stack Exchange network, they are subject
to their individual authors. This leads to not only different writing styles of the network’s
members but also different formatting and best practices. The first two examples show duplicates
occurring in single problems. While in Example 1 the paragraph is present both in the question
and a response by another author, the excerpt found in Example 2 is a repetition of source
code from a single author. For both examples, along with direct citations as in Example 3 and
automated console outputs as in Example 4, a correct SCD prediction is intractable. In total, we
found 92 examples of duplicated texts over all datasets and on average more than one in eight

11 https://pypi.org/project/langdetect/

https://pypi.org/project/langdetect/

Problem Category Excerpt and Source Stack Exchange URL

1 𝒟test
3 -879

duplicate
(different
authors)

What filesystem layout will give the best performance? [. . .]
What filesystem layout will give the best performance?

Source: https://serverfault.com/questions/243920

2 𝒟test
3 -283

duplicate
(same
author)

def advance_to_first_non_white_space_on_line(view, pt):
def advance_to_first_non_white_space_on_line(view, pt):

Source: https://superuser.com/questions/9941833

3 𝒟train
1 -1111 citation

“Flame was a failure for the antivirus industry. We really
should have been able to do better. But we didn’t. We were out
of our league, in our own game.”

Source: https://superuser.com/questions/1356507

4 𝒟test
3 -1469

command
line
output

Setting up mysql-client-5.1 (5.1.37-1ubuntu5.1) ... [. . .]
Selecting previously deselected package mysql-server-5.1.

Source: https://serverfault.com/questions/114974

5 𝒟test
1 -109

german
text

Die folgenden teilweise installierten Pakete werden
konfiguriert:

Source: https://serverfault.com/questions/265372

6 𝒟train
1 -585

source
code

tempArray(2) = sourceSheet.Range("RF_INV_Axial").Value2
tempArray(3) = sourceSheet.Range("RF_INV_Major").Value2 [. . .]

Source: https://serverfault.com/questions/265372

7 𝒟train
2 -1692 URL only

https://physics.stackexchange.com/questions/80043/how-fast-does-
light-travel-through-a-fibre-optic-cable

Source: https://networkengineering.stackexchange.com/questions/16438

8 𝒟train
3 -1207 HTML

<div class="cont b-1">
<button class="padded" data-type="number">0</button>

Source: https://codereview.stackexchange.com/questions/100643

9 𝒟train
1 -1292 LaTeX

$$ \frac{\Gamma \vdash t : T}{\Gamma, x:A \vdash t : T}
\;\mathtt{W}$$

Source: https://cstheory.stackexchange.com/questions/41505

10 𝒟test
3 -1229

repeated
sequence

[Nul][Nul][Nul][Nul][Nul][Nul][Nul][Nul][Nul][Del][Del][Del]
[Blank][Blank][Blank][Blank][Blank][Blank][Blank][Blank][. . .]

Source: https://superuser.com/questions/369231

11 𝒟test
1 -16 table

format

a b ^a ab a+b ^a(a+b) ^(ab) a⊼b [. . .]
False False True False False False True True [. . .]

Source: https://codereview.stackexchange.com/questions/112446

12 𝒟train
2 -5790 table

format

+----------+-----------------------------+------+--------+-[. . .]
| 1576128 | database_name/#sql-4593_1e9 | 1 | 118 | [. . .]

Source: https://dba.stackexchange.com/questions/248723

Table 3
Example excerpts from problems on which challenges might arise for SCD approaches. For each prob-
lem, indicated as 𝒟-problem number, the alleged source URL, as well as a categorization for the under-
lying issue are given.

problems contained at least one citation12.

Example 5 shows a rare case of non-English text, namely an error report in German. While
this is one of few problems where we found text in non-English (even though it is machine

12 As we used a pattern search to filter the citations, paragraphs such as Example 8 in Table 3 might also be included
in this category. Though this does not represent a citation in the proper sense, we decided to include these kinds
of problems as they display further challenges to SCD.

https://serverfault.com/questions/243920
https://superuser.com/questions/9941833
https://superuser.com/questions/1356507
https://serverfault.com/questions/114974
https://serverfault.com/questions/265372
https://serverfault.com/questions/265372
https://networkengineering.stackexchange.com/questions/16438
https://codereview.stackexchange.com/questions/100643
https://cstheory.stackexchange.com/questions/41505
https://superuser.com/questions/369231
https://codereview.stackexchange.com/questions/112446
https://dba.stackexchange.com/questions/248723

generated text and thus not truly authored by the posts author), it becomes increasingly more
difficult as the German paragraphs are shuffled within the English answers, creating a bilingual
incoherent problem.

Examples 6 to 12 depict different types of nonhuman texts that could pose challenges for reliable
SCD. Represented in Example 6 is source code in plain text. Interestingly, the code listings
kept their order while the problems were shuffled and the typical Stack Exchange formatting
(multiples of four leading spaces indicating a code listing) remained the same. It could be argued
that coding style is another form of writing style and thus should remain in the data. However,
as it is written plainly in between paragraphs and even being shuffled along normal texts, a
significant gain in information is unlikely. Example 7 shows a whole paragraph consisting of a
single URL, which effectively represents pure noise, as it does not contain any style information
and can be posted by any author. Among all datasets, we found 1, 469 problems where at least
one paragraph exclusively consisted of an URL.

The text excerpt in Example 8 shows a short paragraph of only 38 characters (50 with leading
spaces) containing HTML. In Example 9 multiple LaTeX math commands are present.
The task of finding all code listings in the data is less trivial, hence we recognize the difficulty of
removing all code from the problem files. Still, with all the examples found as shown in Table 2,
some data cleaning would be advisable in order to properly execute SCD. Regarding the short
paragraphs, in total we found 235 paragraphs with less than 50 characters excluding leading
white spaces. Short paragraphs further increase the difficulty, as they offer less content to detect
style on. Moreover, we found that most of the short paragraphs could be omitted from the data
as they contained source code, machine outputs or generated logs.

Lastly, in our analysis we searched for repeated sequences and table-style-formatted content.
The repetition of words does not pose a challenge for SCD in general, but some examples
as the one shown in Example 10 can be effectively classified as noise. Similarly, the table
formatted content shown in Example 11 does not provide any information regarding writing
style. Without any notion that the underlying concept of the paragraphs is a table formatted
with spaces, it could be misinterpreted as a generic sequence of words without any deeper sense
to it. Furthermore, we want to note that each table row is a seperate paragraph and shuffled
in the problem. Finally, Example 12 shows an SQL table, where table borders are still present
and even shuffled between text paragraphs in the problem. Hence, some paragraphs have no
individual style, consisting solely of punctuation. In total we discovered 1, 180 paragraphs that
consist of more than 20% punctuation. A human author is unlikely to exceed this threshold,
especially considering statistics about average usage of punctuation [6]. Most of the examples
found can be assigned to one of the previously described categories, as e.g. logs and LaTeX
formulas contain a comparatively high amount of punctuation characters. However, other
results like the one shown in Example 12 indicate that there are also paragraphs present not
covered by any other category.

As shown in the analysis, the datasets proposed for the 2022 PAN SCD shared task show various
degrees of noisy data, ranging from minor formatting styles not necessarily attributable to spe-
cific authors, over different languages including programming languages up to machine outputs
absent of any writing style or even citations that in fact resemble style of other authors.

4.3. Task Definition

We would like to point out, that in this years shared task (contrary to previous competitions)
the definition and problem structure of the SCD sub-tasks 𝒯1 and 𝒯3 (and 𝒯2 only partly, since
it further requires assigning author identifiers) essentially resemble an Authorship Verification
(AV) Task: The set of viable locations where a style change may occur is given, since the
problems are structured as separated paragraphs. Furthermore, we found, that these paragraphs
have presumably been randomly shuffled, which makes their (semantic) order meaningless.
Thus, paragraphs do not depend on preceding ones in any way different than on subsequent
ones, as it would be the case in continuous text. Each pair of consecutive paragraphs is, therefore,
independent of each other (apart from the fact that they might originate from the same Stack
Exchange thread and that for 𝒯1, there can only be one style change inside one problem). The
objective of the tasks is to detect if a style change between two paragraphs of such a pair occurs
(or not), which then is equal to classifying if the two paragraphs were written by different
authors (or not), which again is the objective of AV. Further, all outputs of an SCD approach over
all dataset problems are flattened to a list and evaluated against the ground truth, which weighs
them all equally. Consequently, without making any intrinsic change to the data, the current 𝒯1
and 𝒯3 can be reformulated to AV tasks, not only from a technical standpoint (regarding the
approach or algorithm13), but also from a semantic one (regarding the structure and meaning of
the used texts). This raises the question of the role of SCD in this year’s competition, especially
when considering that AV is a dedicated shared task.

5. Conclusion

In this paper we describe a simple method to efficiently recover author labels for publicly
available Stack Exchange posts. Based on this and the preliminary availability of the test set,
albeit without labels, our submission achieves almost perfect test scores for this year’s PAN
Style Change Detection task, without performing actual style analysis. Naturally, this is not
in the spirit of the competition as such. Nevertheless, this work shows that any participant
can recover the test labels and secretly tune their approach based on these, gaining an unfair
advantage and skewing research results. Additionally, we present an in-depth analysis of the
available data and some issues we see with its compilation, such as individual data instances to
be classified that do not contain any stylistic information.

To address the stated issues for the future, we firstly propose to adapt the submission model
used in previous years, i.e., no test data on which submissions will be scored should be published
before the submission deadline. This prevents all participants from obtaining advantageous
information about the data that can potentially be abused. Second, to establish a genuine SCD
task that sufficiently separates itself from the other PAN shared task Authorship Verification, we
advice that text units (i.e. paragraphs or sentences in this years SCD task) are not arbitrarily
shuffled inside problems and instead preserve the semantic flow of the originating text. Staying

13 On a technical level, almost all authorship analysis tasks can interchangeably be transformed into each other,
whereby authorship verification may arguably be considered as the core branch or a "fundamental problem" [7].

with Stack Exchange: Posts that were partly edited by other authors could, for example, provide
an appropriate data foundation, as precise character positions of author information are accessi-
ble. Additionally, more flexible style change positions would enhance the focus on the style
change itself. In the 2017 PAN SCD task, the task was to find borders in a document where a
change in style can be noticed. This emphasis on varied style change possibilities could help
shaping more realistic scenarios, towards which 𝒯3 is already pointing.

Addressing issues in the given data, simple preprocessing can improve its quality in respect
to a style analysis task. Although textual content of the Stack Exchange network is generally
appropriate, one needs to keep in mind that expert communities not only use different writing
styles, but also different topic- and domain-related content, such as code listings, documentation
or citations. This is particularly critical if text units exclusively consist of such content. A first
step to tackle said issues, is to remove content of code cells in Stack Exchange posts and skip
any thread comprising clear citations of other authors or websites. For future SCD tasks this
will significantly lessen the probability of falsely attributing mixed authorships and the amount
of noise that is unrelated to writing style.

References
[1] J. Bevendorff, B. Chulvi, E. Fersini, A. Heini, M. Kestemont, K. Kredens, M. Mayerl, R. Ortega-

Bueno, P. Pezik, M. Potthast, F. Rangel, P. Rosso, E. Stamatatos, B. Stein, M. Wiegmann,
M. Wolska, E. Zangerle, Overview of PAN 2022: Authorship Verification, Profiling Irony and
Stereotype Spreaders, and Style Change Detection, in: A. Barron-Cedeno, G. D. S. Martino,
M. D. Esposti, F. Sebastiani, C. Macdonald, G. Pasi, A. Hanbury, M. Potthast, G. Faggioli,
N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction.
Proceedings of the Thirteenth International Conference of the CLEF Association (CLEF
2022), volume 13390 of Lecture Notes in Computer Science, Springer, 2022.

[2] E. Zangerle, M. Mayerl, M. Potthast, B. Stein, Overview of the Style Change Detection
Task at PAN 2022, in: CLEF 2022 Labs and Workshops, Notebook Papers, CEUR Workshop
Proceedings, 2022.

[3] M. Potthast, T. Gollub, M. Wiegmann, B. Stein, TIRA Integrated Research Architecture,
in: N. Ferro, C. Peters (Eds.), Information Retrieval Evaluation in a Changing World, The
Information Retrieval Series, Springer, Berlin Heidelberg New York, 2019. doi:10.1007/97
8-3-030-22948-1_5.

[4] The rich transcription spring 2003 (rt-03s) evaluation plan, http://www.itl.nist.gov/iad/mig
/tests/rt/2003-spring/docs/rt03-spring-eval-plan-v4.pdf/, 2003.

[5] N. Ryant, K. Church, C. Cieri, A. Cristia, J. Du, S. Ganapathy, M. Liberman, The second
dihard diarization challenge: Dataset, task, and baselines, arXiv preprint arXiv:1906.07839
(2019).

[6] V. Cook, Standard punctuation and the punctuation of the street, in: Essential Topics in
Applied Linguistics and Multilingualism, Springer, 2014, pp. 267–290.

[7] M. Koppel, J. Schler, S. Argamon, Y. Winter, The “fundamental problem” of authorship
attribution, English Studies 93 (2012) 284–291.

http://dx.doi.org/10.1007/978-3-030-22948-1_5
http://dx.doi.org/10.1007/978-3-030-22948-1_5
http://www.itl.nist.gov/iad/mig/tests/rt/2003-spring/docs/rt03-spring-eval-plan-v4.pdf/
http://www.itl.nist.gov/iad/mig/tests/rt/2003-spring/docs/rt03-spring-eval-plan-v4.pdf/

	1 Introduction
	2 Background
	3 Methodology
	3.1 Finding source threads
	3.2 Assigning authors

	4 Experiments and Analysis
	4.1 Results
	4.2 Data
	4.2.1 Quantitative Analysis
	4.2.2 Qualitative Analysis

	4.3 Task Definition

	5 Conclusion

