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Abstract
Named Entity Recognition and Entity Linking systems usually require a rich and annotated dataset to be
trained and produce high-quality results, but the annotation process is time consuming and expensive,
especially when it needs the effort of domain experts, such as in the medical field. However, recent
developments in Natural Language Processing (NLP) allow us to easily use transformer language models
which have been pre-trained on a huge quantity of data (often coming from specialized domains), and
thus obtain high performance without excessive efforts. In this work, we outline our approach to NER
and EL tasks on Spanish clinical notes for the DisTEMIST track at the BioASQ 2022 challenge. Our results
demonstrate that the proposed methodology based on biomedical pre-trained language models turned
out the best for the NER task with a ∼ 3% higher 𝐹1 w.r.t. the second-best solution.
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1. Introduction

Biomedical Named Entity Recognition (NER) and Entity Linking (EL) are often the first and
essential steps in many text understanding applications [1], such as the construction and analysis
of structured knowledge bases (e.g. knowledge graphs) or conversational agents including
medical chatbots and research assistants.

NER aims at recognizing mentions of pre-defined entity types within unstructured text data,
while EL links them to concepts in a (usually) external knowledge base (e.g. UMLS [2], SNOMED
CT1). These two tasks are the subject of the DisTEMIST (DISease TExt Mining Shared Task) track
at the BioASQ 2022 challenge [3], which invites researchers, biomedical industry professionals,
NLP, and ontology experts to develop systems capable of indexing the content about diseases
within Spanish clinical notes. In this work, we describe the approach of our team (PICUSLab)
which allowed us to win the NER track with a ∼ 3% higher 𝐹1 measure w.r.t. the second-best
solution.
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The development of a biomedical text understanding system with high precision and recall is
a challenging task due to the fact that biomedical datasets are characterized by a large number
of synonyms, alternate spellings of entities, which are often referred to with non-standard
abbreviations, and polysemous words, i.e. words that can have different meanings based on their
context. For example, VHL may refer to the Von Hippel-Lindau disease or to the gene name
which causes the disease, based on the context in which it appears.

Initially, NER and EL systems were mainly dictionary- and rule-based [4], but they failed
dealing with unseen and polysemous words [5]. The availability of annotated datasets allowed
systems to evolve by means of deep learning techniques, such as Bidirectional Long-Short Term
Memory (BiLSTM) networks [6, 7] and Transformer architectures [8, 9]. However, due to the
above-mentioned problems related to biomedical corpora, directly applying state-of-the-art NLP
methodologies to biomedical text mining has limitations, since language models are trained
and tested mainly on datasets containing general domain texts (e.g. Wikipedia). Hence, recent
models proposed in biomedical text mining rely on adapted versions of pre-trained language
models [10, 11], even in low- and mid-resource languages [12, 13].

In this work, we describe our approach to the DisTEMIST track, which is based on embeddings
computed with a Spanish biomedical RoBERTa backbone network [13]. We use a simple
classification head (a linear layer with a softmax activation function) to produce an high-quality
NER system, and then apply a similarity-based EL process to entities retrieved in the NER step.
Our experimental results show the appropriateness of the methodology.

2. Tasks formulation

We start with a corpus of annotated sentences 𝒟 = {(x𝑖,y𝑖) ∈ 𝒳 × 𝒴}, where:

• 𝑖 ∈ {1, ..., 𝑁}, 𝑁 is the length of the dataset
• 𝒳 is the set of sentences
• x𝑖 is a sentence, which is defined as a sequence of tokens 𝑥𝑗 ∈ x𝑖, 𝑗 ∈ {1, . . . ,𝐻𝑖}, where
𝐻𝑖 is the sequence length

• 𝒴 is the set of labels. In our work, we will refer to the IOB2 annotation scheme [14], thus
𝒴 = {𝐵, 𝐼,𝑂}, where 𝐵 indicates the beginning, 𝐼 the inside and 𝑂 the outside of an
entity mention

• y𝑖 maps each token 𝑥𝑗 ∈ x𝑖 to its corresponding label 𝑦𝑗 .

Based on this corpus, the objective of a NER model is to assign the correct label in 𝒴 to each
token in an input sentence.

Given the set of entity mentions 𝑀 resulting from the NER step, and a knowledge base
containing a set of entities 𝐸, EL aims to map each entity mention 𝑚 ∈ 𝑀 to the most
appropriate concept 𝑒 ∈ 𝐸.

3. Materials

The DisTEMIST corpus was manually annotated by clinical experts following guidelines
containing rules for annotating diseases in Spanish clinical cases. Guidelines were created de
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Figure 1: Overview of our NER + EL solution for the DisTEMIST track. A biomedical Spanish pre-
trained Transformer backbone network is used to compute: (1) token embeddings to be classified by a
classification head (linear layer + softmax); (2) concept embeddings for each concept within the gazetteer
which will be used by the Linker to associate the nearest concept to an entity mention based on similarity
measures.

novo by clinical experts defined after several cycles of quality control and annotation consistency
analysis before annotating the entire dataset.

The training set for NER and EL consists of 750 and 584 annotated clinical cases, respectively.
However, every entity mention in the original DisTEMIST corpus has been linked to a Snomed-
CT, also when the exact concept is not present within the ontology (e.g. "Chorioretinal lacunae"
is normalized to "Chorioretinal disorder").

The DisTEMIST gazetteer contains main terms and synonyms from the relevant branches of
Snomed-CT for the grounding of disease mentions.

4. Methodology

Figure 1 shows an overview of the methodological flow of our solution for the DisTEMIST track.
A Transformer backbone network pre-trained with Spanish biomedical corpora has been used
in both NER and EL tasks. In the former case, it has been used to compute token embeddings
for a classification head with a linear layer and a softmax activation function; in the latter, it
computes concept embeddings for each concept within the gazetteer, which will be then used to
link an entity mention to the nearest concept based on a measure of similarity. In this section,
each module of our methodology will be extensively described.



4.1. Biomedical Transformer Backbone network

The Biomedical Transformer Backbone network used in this work has been pre-trained and
made publicly available by Carrino et al. [13]. It uses a RoBERTa [15] base model with 12
self-attention layers with masked language modeling as the pre-training objective. The dataset
used to pre-train the network consists in two corpora with different sizes and domains:

• Clinical corpus: it contains 91M tokens from more than 278K clinical documents (e.g.
discharge reports, clinical course notes).

• Biomedical corpus: it contains data from a variety of sources, such as medical crawlers,
PubMed2 and Scielo3 publications and patents. The entire corpus counts a total of 968M
words.

4.2. Named Entity Recognizer

The Transformer-based backbone network is used to extract an embedded representation of each
token 𝑥𝑗 in an input sample x, z = 𝑓𝜃𝐿𝑀

(𝑥𝑗), 𝜃𝐿𝑀 being the set of language model parameters.
Thereafter, a linear layer (a.k.a. classification head) with parameters 𝜃𝐿 = {W,b} project the
Transformer-based representation z into the label space, 𝑓𝜃𝐿(z) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(Wz+ b). The
model parameters are then optimized by minimizing cross-entropy:

ℒ𝐶𝐸 =
∑︁

(x,y)∈𝒟

𝐻∑︁
𝑖=1

𝐾𝐿
(︁
𝑦𝑖

⃒⃒⃒
𝑞(𝑦𝑖|𝑥𝑖)

)︁
, (1)

where 𝐾𝐿(𝑝|𝑞) is the Kullback-Leibler divergence between the two distributions 𝑝 and 𝑞, and 𝑞
is the prediction probability vector for each token:

𝑞(𝑦|𝑥) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(W · 𝑓𝜃𝑃𝐿𝑀
(𝑥) + b) (2)

4.3. Entity Linker

Inspired by Kraljevic et al. [16], our EL approach relies on a Concept Database (𝐶𝐷𝐵) component,
i.e. a table representing a concept dictionary. To this end, e used the gazetteer provided by
DisTEMIST track organizers. Even though not every concept within the gazetteer appears in
our training set, we decided to keep all the concepts due to the unpredictability of concepts
in the test set. Our linking approach is based on context similarity: we learn an embedded
representation for each concept and for new documents, when an entity mention is detected by
the NER model, its context is compared to the embedded representations of all the concepts in
the 𝐶𝐷𝐵 to choose the most appropriate one.

2https://pubmed.ncbi.nlm.nih.gov
3https://scielo.org
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Concept Embeddings

We learn concept embeddings in a supervised fashion. For each concept 𝑐 ∈ 𝐶𝐷𝐵, we perform
the steps described as follows to compute its concept embedding 𝑉 𝑐

𝑐𝑜𝑛𝑐𝑒𝑝𝑡:

1. Initialization: given the concept name 𝑐𝑛𝑎𝑚𝑒 and its description 𝑐𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 provided
with the gazetteer, we initialize 𝑉 𝑐

𝑐𝑜𝑛𝑐𝑒𝑝𝑡 with the embedding of the concatenation of the
two strings [𝑐𝑛𝑎𝑚𝑒, 𝑐𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛] computed with the Biomedical Transformer backbone
network.

2. Context embeddings: for each entity in the training set annotated with the concept 𝑐,
we compute its context embedding 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡 with the Biomedical Transformer backbone
network.

3. Update: for each entity in the training set annotated with the concept 𝑐, the concept
embedding 𝑉 𝑐

𝑐𝑜𝑛𝑐𝑒𝑝𝑡 is updated with the context embedding 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡. Specifically, the
update criterion is described by the following equation:

𝑉 𝑐
𝑐𝑜𝑛𝑐𝑒𝑝𝑡 = 𝑉 𝑐

𝑐𝑜𝑛𝑐𝑒𝑝𝑡 + 𝑙𝑟 · (1− 𝑠𝑖𝑚) · 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡, (3)

where:
• 𝑙𝑟 is the learning rate, computed as 𝑙𝑟 = 1

𝒩𝑐
, 𝒩𝑐 being the number of times the

concept appears during training.
• 𝑠𝑖𝑚 is the cosine similarity between 𝑉 𝑐

𝑐𝑜𝑛𝑐𝑒𝑝𝑡 and 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡,

𝑠𝑖𝑚 = 𝑚𝑎𝑥
(︁
0,

𝑉 𝑐
𝑐𝑜𝑛𝑐𝑒𝑝𝑡

‖𝑉 𝑐
𝑐𝑜𝑛𝑐𝑒𝑝𝑡‖

· 𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡

‖𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡‖

)︁
(4)

Linking

Given the entity mention recognized by the NER model, we compute its context embedding
𝑉𝑐𝑜𝑛𝑡𝑒𝑥𝑡 by means of the Biomedical Transformer backbone network. Then, we compute its
cosine similarity 𝑠𝑖𝑚 with all the concept embeddings 𝑉𝑐𝑜𝑛𝑐𝑒𝑝𝑡. We eventually link the entity
with the most similar concept.

5. Experiments

The performance of our proposed approaches for NER and EL has been evaluated by participating
to the DISease TExt Mining Shared Task (DisTEMIST) track within the BioASQ 2022 challenge.
In this section we show the performance results of our methodology on the final test set and
some preliminary experiments on the training corpus provided by the challenge organizers.

5.1. Experimental setup

Evaluation Metrics

Evaluation is done by comparing the automatically generated results to the results generated
by manual annotation of experts. The primary evaluation metric for both the NER and EL
sub-tracks will consist of micro-averaged precision (MiP), recall (MiR) and F1-scores (MiF1).



Configuration

Both the NER and EL models were implemented using the HuggingFace
Transformers library (v4.4.0) [17]. The biomedical Spanish Transformer back-
bone network has been downloaded from the HuggingFace model repository
(PlanTL-GOB-ES/roberta-base-biomedical-clinical-es). To deal with the limited
length of input samples, we consider each sentence in a clinical case as a separate input samples
for our models. In a preliminary phase to our submission, we studied the effects of various
hyperparameters and the generalization error of our models by splitting the original corpus
of clinical cases in three parts: (1) a training set (60% of the original corpus) used to train the
model, (2) a validation set (20% of the original corpus) to evaluate the effects of hyperparameters
and (3) a test set (20% of the original corpus) to evaluate the ability of our models to generalize
to unseen data. We fine-tune our models with a Google Colab environment, which provided us
a Tesla T4 GPU.

5.2. Results

NER hyperparameters and evaluation

We studied the effects of different hyperparameters on our validation set:

• learning rate: the initial learning rate for AdamW optimizer. Initialized to 5e-5.
• weight decay: the weight decay to apply to all layers except all bias and LayerNorm

weights in AdamW optimizer. Initialized to 0 (no weight decay applied)
• batch size: the batch size per device (e.g. CPU, GPU) for training. Initialized to 16.

For each experiment, we train the NER model for two epochs — at the end of the selection
process we will analyze the effects of an increased number of epochs. Our search for hyper-
parameters divides into two stages: in the first stage, we make hyperparameters vary in large
ranges with the aim to detect a smaller range where we will perform a grid search. All the
different configurations and associated performance results are listed in Table 1.

In the second stage, we perform a grid search based on a uniform distribution within the
following hyperparameters ranges (which have been chosen based on the results of the first
stage):

• learning rate: [7e-5, 8e-5]

• weight decay: [0.1, 0.2]

• batch size: 8

Given the best results from the grid search, we increased the number of training epochs with
an early stopping criterion, by stopping training when the performance on the validation set
does not increase for 5 consecutive epochs. The final preliminary results and the generalization
error are shown in Table 2.



Table 1
NER hyperparameter selection (first stage)

batch size learning rate weight decay MiP MiR MiF1

16 5e-5 0.0 0.7199 0.7759 0.7521

16 4e-5 0.0 0.7136 0.7677 0.7448

16 3e-5 0.0 0.7095 0.7749 0.7460

16 2e-5 0.0 0.6805 0.7672 0.7263

16 1e-5 0.0 0.6209 0.7175 0.6704

16 6e-5 0.0 0.7274 0.7836 0.7598

16 7e-5 0.0 0.7370 0.7822 0.7624

16 8e-5 0.0 0.7400 0.7836 0.7642
16 9e-5 0.0 0.7331 0.7827 0.7571

16 1e-4 0.0 0.7373 0.7754 0.7612

16 8e-5 0.1 0.7375 0.7885 0.7675

16 8e-5 0.2 0.7428 0.7865 0.7694
16 8e-5 0.3 0.7396 0.7846 0.7668

8 8e-5 0.2 0.7479 0.7865 0.7722

Table 2
Final preliminary NER results

epochs batch
size

learning
rate

weight
decay

MiP MiR MiF1

18 8 8.516e-5 0.1844 0.7814 0.8031 0.7921 best hyper-parameters

18 8 8.516e-5 0.1844 0.7738 0.7931 0.7833 internal test set error

EL evaluation

We evaluated results of our linking module with and without the gazetteer : challenge organizers
declared that it contains all the possibile links to all the entity mentions in the test set. However,
its size (113609 concepts) is much higher w.r.t. the number of concepts in our training set (2430
concepts). When a concept does not appear in the training set, its embedding is determined
by its name and description, which could result in many "noisy" concepts leading to wrong
linking results. Table 3 reports results on our "internal" test set (a 20% subset of the training
files provided for entity linking) obtained with and without the gazetteer, i.e. we considered
only concepts appearing at least one time in the training set. Since results are equivalent, we
decided to keep the gazetteer for our submission.



Table 3
Entity linking "internal" test set results with and without using the gazetteer.

System MiP MiR MiF1

With gazetteer 0.7374 0.7374 0.7374

Without gazetteer 0.7374 0.7374 0.7374

Table 4
Official results of BioASQ DisTEMIST NER task. We show our result, the second-best result and median
result (computed by considering just the best MiF1 score for each participant team).

System MiP MiR MiF1

Ours 0.7915 0.7629 0.7770
Second-best participant 0.7434 0.7483 0.7458

Median 0.7146 0.6736 0.6935

Table 5
Official results of BioASQ DisTEMIST linking task. We show our result, the best result and median result
(computed by considering just the best MiF1 score for each participant team).

System MiP MiR MiF1

Ours 0.2814 0.2748 0.2780

Best participant 0.6207 0.5196 0.5657
Median 0.4795 0.2292 0.3102

Leaderboard

Official results of the DisTEMIST track are reported in Table 4 (NER) and Table 5 (EL). Specifically,
we show (1) our results, (2) results from the best participant team (second-best in case of NER,
since our team is the first ranked), and (3) median results (computed by considering the best
submissions of each participant team). While the domain-specific pre-training of the backbone
network has been the key for a successful NER system, the EL solution seems to suffer from a
design flaw. We can indeed observe a big discrepancy between results on our internal test set
and the leaderboard, which may be caused by two main factors: (1) pipelined errors of NER and
EL predictions and (2) the inappropriateness of the size of the training set: the gazetteer size
(113609 concepts) suggests us that the leaderboard test set contains many concepts which are
not present in our training set (2430 concepts). However, our context-based EL methodology
computes embedded representations of concepts based on their occurrences in the training set,
and all the other concepts are represented with their description provided with the gazetteer,
which may be useless or even detrimental for similarity computation. Further investigations to
handle the above-described problems are thus needed.



6. Conclusion

In this paper we have presented a simple but strong baseline based in biomedical Spanish
language models. Specifically, we used a pre-trained biomedical Spanish transformer backbone
network to fine-tune a NER model and to perform EL with an embedding similarity-based
approach. Results on the official leaderboard of the DisTEMIST track at BioASQ 2022 challenge
show that our NER approach largely surpasses the other participant baselines, while the EL
approach has to be further investigated to improve its generalization ability over new clinical
cases.
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