CEUR-WS.org/Vol-3180/paper—-243.pdf

HULAT-UC3M at SimpleText@ CLEF-2022: Scientific
text simplification using BART

Adrian Rubio!, Paloma Martinez’

"Universidad Carlos IIl de Madrid, Computer Science and Engineering Department, Av de la Universidad, 30, 28911,
Leganés, Madrid, Spain

Abstract

This paper describes the proposed system developed by HULAT-UC3M research group from Universidad
Carlos III de Madrid to solve Task 3 of SimpleText@CLEF-2022 on scientific text simplification. We
present an abstractive approach implemented with BART. BART is a sequence-to-sequence model trained
as a denoising autoencoder. In order to fulfill this specific task proposed, it has been fine-tuned to simplify
text passages provided by the task organizers. The proposed system obtained a loss value of 1.232 , a
SARI value of 47.83, and a rouge L value of 0.615 on the validation set.

Keywords

Scientific text simplification, Summarization, Deep Learning, BART

1. Introduction

Science is becoming harder to understand to non-scientists. With the ever increasing use of
jargon, long sentences and scientific terms research papers are hermetic to the average person.
Moreover it is also paramount to make texts more accessible to people with reading disabilities.
Simplifying text is a process that involves reducing the complexity of the text to make it more
accessible, while at the same time maintaining the information it holds. Moreover, because the
high volume of scientific literature there is also a great interest on developing tools capable of
summarizing such papers, so that they allow to process more data in less time.

Summarizing text is an essential process in text simplification together with lexical and sen-
tence simplification. Text summarization techniques were implemented to perform the proposed
text simplification task. Currently there are two main approaches for text summarization, which
are the extractive approach and abstractive approach [1, 2].

The extractive method involves tokenizing the text into sentences and ranking them using a
variety of different methods. The sentences regarded as more relevant or that encapsulate more
meaning of the text are ranked higher than those that don’t. These sentences are later bundled
up together to form the summarization. No new sentences are generated, therefore the main
idea behind this approach is to reduce the text to the sentences that carry the most meaning.

The abstractive approach is more complex and more computationally intensive than extractive
approach, however it is the only approach that can provide cohesion and it is more similar to
human-like text summarization. Human-like text summarization involves reading the whole

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5-8, 2022, Bologna, Italy

£ 100405991 @alumnos.uc3m.es (A. Rubio); pmf@inf.uc3m.es (P. Martinez)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
#==1 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:100405991@alumnos.uc3m.es
mailto:pmf@inf.uc3m.es
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

text, grow ones understanding of the text, and then rewrite the text in such a way that it is more
understandable than the original text. Computers do not have such knowledge or language
capability, therefore this makes abstractive text summarization a very difficult and non-trivial
task. However this approach yields better results as it manages to understand the meaning of
the text, thus adding more cohesion and context to the simplifications produced [3]. This is the
approach followed in the HULAT-UC3M system.

2. Dataset

The fine-tunning process of the model was carried out using the dataset provided by the
organization. The dataset provided is divided into two sets [4]. Firstly there is the training set,
which consists of scientific passages with their corresponding simplified passage. The source
passage and the simplified passage are provided in two different CSV files. The first file contains
the source passage, identified with an ID, a document ID which provides information on the
origin of the passage, and a query text which can be interpreted as the topic of the passage. The
query text is identified with an ID as well. The second file contains the simplified version of
the passage, identified with its ID as well. In total there are 647 entries in the training set. The
other part consists of the test set, which has the same attributes as the first file of the training
dataset, but includes 116742 entries. The training set was used to fine-tune the model to the
task, whereas the test set was used to generate the simplified passages which were evaluated.

3. Resources

To develop this system, a Python 3.8 notebook was utilized in Google Colaboratory, as it provides
a sufficient amount of GPU to build the system. A pre-trained BART model from HuggingFace
[5] was used. The model has been pre-trained using the CNN/Daily Mail dataset. Several
libraries were necessary for the adequate development of the system. Pandas, in its current
version 1.4.2, is a versatile library used to process data. PyTorch 1.11, Transformers 4.19.2 and
Blurr 1.0.0 were necessary to use in order to being able to fine-tune the system.

4. Methods and system description

4.1. Data pre-processing

As the training data was provided in two different files, it was necessary to combine them into
one file which then could be used for training the model. Furthermore, a key aspect of the
data is the query text; it is paramount to include this information in the training set, as it was
thought that it would improve the results. However this had to be included somehow in the
source passage, as for training it was required that the entries be composed of three attributes:
source identification, source passage and simplified passage.

In terms of how to include the query into the source passage, there are several options:

+ Option 0: Not including the query.

« Option 1: Add the query at the end of the passage: source passage + query text.

« Option 2: Include the query separated from the source passage by " related to": source
passage + "related to" + query text.

« Option 3: Include the query separated from the source passage by "related to ": source
passage + ", related to" + query text.

Data was generated using all the options described to later experiment and observe which
yields the best results. From the first data file, shown as File 1 in Figure 1, we extracted the
values of sentence id, source sentence and query text into a dataframe. Then depending on the
option it was necessary to add text to the data (for example options 2 and 3), this was done
with a simple concatenating operation. Up next we perform the aggregate operation to join
source sentence and query text into source sentence. The dataframe is redefined to being just
the sentence id and source sentence. From the other data file, shown as File 2 in Figure 1, we
extracted sentence id and simplified sentence into another dataframe. Both dataframes are
joined using the sentence id as key into a single dataframe. This dataframe is later converted to
a easy to work CSV file, which consists of three attributes. The sentence id, which identifies the
sentence, the source sentence itself and the simplified sentence. This format was used as it is
handy to work with the data in this way, using the pre-trained model which will be explained
up next.

Final training
data file

Combine new ’

source snt and
simplified snt

for every id

/Semence i% /"e"" souree 'Sentence i% /Slr::‘!:lhed/

$obtain $obtain

File 2
Delate [Concatenate]
punctuation text

(options 2
mark and 3)

A

/ source snt ; / Query text ;

Obtain Obtain Tohtain

File 1

Figure 1: Architecture of data pre-processing

4.2. Deep Learning Model

This model implements a pre-trained BART architecture from Huggingface. As explained
in the original paper [5], BART is a sequence-to-sequence model trained as a denoising au-
toencoder. The main component of BART are transformers, as BART stands for Bidirectional

AutoRegressive Transformers. A transformer is a sequence-to-sequence component based in a
encoder-decoder architecture. This means that BART that can be fine-tuned for Conditional
Text Generation, which in essence takes a text sequence and produces a text sequence as an
output [6]. BART was chosen as it is one of the current state-of-the-art techniques in NLP.
It is a model which is particularly effective when fine-tunned for text generation, as it has
demonstrated to excel the results of other models in text summarization tasks [5] and text
simplification task [7].

On the supervised training phase the training data set was used to fine-tune the model. The
inputs to the model are the source sentence and the simplified sentence, they are in a dataframe
format. Computers don’t understand sentences, therefore the first step is to tokenize each
sentence, and obtain the embeddings of the inputs to the transformers.

With word embeddings, the aim is to map every word in the sentence to a point in space
where similar words in meaning are physically closer to each other. The space in which they
are present is called an embedding space. In this case the pre-trained model used incorporates a
pre-trained embedding space [5]. This embedding space maps each word in the sentence to a
vector. Furthermore it is important to represent the location of the word within the sentence, as
the location of a word in the sentence may result in different meanings, this is where positional
encoders are used. It is a vector that has information on the distances between words in the
sentence [8, 9]. After passing a word through word embedding and applying positional encoding
we obtain the word vectors that have positional information, i.e. context. The architecture
for this specific model is detailed in Figure 2. With a transformer encoder there is no need to
pass each word individually through the input embedding, all words of the sentence are passed
simultaneously and determine the word embeddings simultaneously. This process is applied to
the source and simplified sentence, thus obtaining the embedded text (source sentence) and
target (simplified sentence), which are passed to the next transformer layer.

Dataframe row(snt id is Source snt Simplified snt
not necessary)
T(S T(Simplified
Tokenization layer [CLS] (S?::)rce [SEP] [CLS] (sn':) [SEP]
Word embedding | E(ICLS]) E(T(s:"'"ce E(ISEP]) E([CLS)) E(r(i'n"t‘)‘)’"f'ed E(ISEP])
layer snt))
Pos_itional R([CLS]) R(T(Source R(SEP]) R(CLS]) R(T(Simplified R(SEP))
encoding layer snt)) snt)) v
([J (l J
I 2 v
Text Target
Encoder Decoder

Figure 2: Embedding architecture of the system

5. Experimenting and results

Firstly several experiments were carried out to see which of the data processing options yields
better results. Table 1 shows that adding the query information into the training data yields
better results. The difference between the losses of Option 0 and Option 1 is substantial. Having
acknowledged this, we can observe that introducing this information in a way that would be
equivalent to natural language (Option 3), generates better the best results among the described
options.

Table 1
Metrics obtained using the different options described (two epochs using training dataset).

Option Train loss | Valid loss | Rouge 1 | Rouge 2 | Rouge L
Option 0 291 2.15 0.655 0.51 0.625
Option 1 1.24 1.417 0.652 0.5 0.619
Option 2 1.179 1.346 0.652 0.5 0.62
Option 3 1.137 1.231 0.659 0.494 0.615

Once the text is transformed to input sequences, it can then be used to fine-tune the system
for the task. As described in section 2, the training data consists of the sentences and their
respective simplifications. The training dataset is further split into training (80%) and validation
(20%). The objective of fine-tunning with this data is to create a model capable of generating
the most similar simplifications to the simplifications provided. To achieve this purpose several
experiments were carried out modifying the value of the hyperparameters in order to obtain
the best metrics.

The Blurr library provides a built-in method which slowly ramps-up the value for the learning
rate in a log-linear way [10]. The loss is recorded for every iteration. In Figure 3, the values
are plotted in order to find the best value for the learning rate. This process is very handy if
the model is being developed in a Python Notebook. One cell can be dedicated to find the best
learning rate, and the following cell performs the fine-tuning after having obtained the value of
the previous cell. Because of this resource there was no need to experiment with the value of
the learning rate ourselves. The experimenting was performed modifying the values of other
hyperparameters, namely batch size, number of epochs and the length of the output.

300 minimum
steep
2754 ® alley

® dide

1077 10° 10 10 1073
Leaming Rate

Figure 3: Loss value for a given learning rate

Table 2
Values tested and optimal value for each hyperparameter.

Hyperparameter Range Optimal
Batch size [1,2,3,4,5] 2
Epochs [1,2,3,4,5] 2
Max length and Min length | [(10,30)(15,30)(10,40)(10,50)] | (10,50)

As table 2 shows, when it comes to the adequacy of the hyperparameters, it was observed
that the optimal number of epochs is 2, as with more epochs the model started overfitting to
the training data, the loss value on validation incremented at the same time as the loss value on
training decreased.

Regarding the batch size, smaller sizes are beneficial for two main reasons. Firstly smaller
batch sizes are noisy, offering a regularizing effect and lower generalization error; secondly
it makes it easier to fit one batch worth of training data in memory. This is paramount since
resources on Google Colab are limited, namely GPU RAM size.

As for the minimum and maximum length of the output simplification, this was more of a
eyeballing task. In several experiments it was observed that the output did not have sufficient
length to adequately simplify larger passages, thus the decision was made to set the maximum
length to 50 words.

The metrics obtained with the optimal hyperparameters shown in table 3:

Table 3

Obtained metrics with optimal hyperparameters.
Validation loss | Rouge 1 | Rouge 2 | Rouge L | SARI | Precision | Recall F1
1.231 0.659 0.494 0.615 47.83 0.938 0.94 0.938

After the model had been fine-tunned, the test data file was used to generate the simplifications
of the passages.

6. Conclusions

Developing this kind of models is no easy task. Throughout the development process there
has been some setbacks and dead ends. Nevertheless the developed model fulfills the task
competently. The generated simplified passages have obtained a desired evaluation in the
validation set and an direct inspection of several of the simplified passages shows that the
passages generated have grammatical correctness and adequately simplify the original sentences.
Moreover the hypothesis that adding the query text as a topic marker would improve the results
was validated.

However there were some options which could not be implemented or explored due to time
constraints. Namely it was devised to use another external set of data to further the scope and
variety of the training data. Some sources that could be used are Simply Wikipedia, Turk corpus
or Asset corpus. Further work may be carried out with regard to this.

Acknowledgments

This work has been supported by the Madrid Government (Comunidad de Madrid-Spain)
under the Multiannual Agreement with UC3M in the line of Excellence of University Profes-
sors (EPUC3M17) and by the Research Program of the Ministry of Science and Innovation -
Government of Spain (ACCESS2MEET project-PID2020-116527RB-100).

References

(1]

(9]

[10]

M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, K. Kochut, Text
summarization techniques: a brief survey, arXiv preprint arXiv:1707.02268 (2017).

F. Chiusiano, Two minutes nlp — quick intro to text simplification,
https://medium.com/nlplanet/two-minutes-nlp-quick-intro-to-text-simplification-
f5f9d7beda3c (2021).

P. Sikka, V. Mago, A survey on text simplification, arXiv preprint arXiv:2008.08612 (2020).
L. Ermakova, P. Bellot, J. Kamps, D. Nurbakova, I. Ovchinnikova, E. SanJuan, E. Mathurin,
S. Aratjo, R. Hannachi, S. Huet, N. Poinsu, Automatic simplification of scientific texts:
Simpletext lab at clef-2022, in: M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog,
K. Norvaag, V. Setty (Eds.), Advances in Information Retrieval, Springer International
Publishing, Cham, 2022, pp. 364-373.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, L. Zettle-
moyer, Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension, arXiv preprint arXiv:1910.13461 (2019).

A.Bajaj, P. Dangati, K. Krishna, P. A. Kumar, R. Uppaal, B. Windsor, E. Brenner, D. Dotterrer,
R. Das, A. McCallum, Long document summarization in a low resource setting using
pretrained language models, arXiv preprint arXiv:2103.00751 (2021).

L. Martin, A. Fan, E. de la Clergerie, A. Bordes, B. Sagot, Muss: multilingual unsupervised
sentence simplification by mining paraphrases, arXiv preprint arXiv:2005.00352 (2020).
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polo-
sukhin, Attention is all you need, Advances in neural information processing systems 30
(2017).

J. Alammar, The illustrated transformer, https://jalammar.github.io/illustrated-transformer/
(2018).

L. N. Smith, A disciplined approach to neural network hyper-parameters: Part 1-learning
rate, batch size, momentum, and weight decay, arXiv preprint arXiv:1803.09820 (2018).

Online Resources

The

source code is accessible via

« https://github.com/Adrubio12/text-simplification

https://github.com/Adrubio12/text-simplification

	1 Introduction
	2 Dataset
	3 Resources
	4 Methods and system description
	4.1 Data pre-processing
	4.2 Deep Learning Model

	5 Experimenting and results
	6 Conclusions

