
Touché - Task 1 - Team Korg:
Finding pairs of argumentative sentences using
embeddings
Notebook for the Touché Lab on Argument Retrieval at CLEF 2022

Cuong Vo Ta1, Florian Reiner1, Immanuel von Detten1 and Fabian Stöhr1

1Leipzig University, Augustusplatz 10 Leipzig 04109 Germany https://www.uni-leipzig.de/
Text Mining and Retrieval Group TEMIR, Leipzig University, Leipzig Germany https:// temir.org/

Abstract
This notebook outlines the experiments and results for Task 1 of the Touché Lab on Argument Retrieval at
CLEF 2022 by Team Korg. ElasticSearch serves as our baseline to index the args.me corpus, extended by
preprocessing steps of filtering, stemming, a custom stop-word list and WordNet-based synonyms to
enrich documents. We approach the problem of finding coherent pairs of argumentative sentences by
using and comparing two embedding methods, namely Doc2Vec and Sentence BERT for semantic search.
In our first iteration, we use a custom-trained model for Doc2Vec and the out-of-the-box functionality of
SBERT for semantic search. To refine the retrieval of meaningful sentence pairs, we incorporate the text
generation functionality of GPT-2 to generate prompts as an input for the sentence embeddings. After
evaluating those approaches with the Normalized Discounted Cumulative Gain and using an annotated
dataset of Touché 2021, we identify Doc2Vec without text generation and a revised algorithm to match
sentence pairs as our best performing approach for retrieval of argumentative sentences.
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1. Introduction

Today, an ever-increasing pace of news coverage can be observed, while opinions regarding
controversial topics are becoming more polarized. It is important to be exposed to different
views in order to form your own opinion. While it is possible to search the World Wide Web
for virtually every topic, it can be quite difficult to find arguments with relevant sources,
which portray different point of views. Understanding the reasoning behind two opposing
points of views can be facilitated by information retrieval systems. Wachsmuth et al. [1] built
an argument search engine which relies on a openly accessible index of nearly 300k web
scraped arguments from different debate portals. The Touché Lab revolves around information
retrieval for the arguments of the args.me corpus [2]. This years Touché Task 1 [3], held at
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the annual CLEF conference [4], is about retrieving a pro and a con argument from the cor-
pus and forming strong argumentative sentence pairs for each of them. Our team name is "Korg".

In this paper we outline the pipeline for our argument retrieval system and the two different
models of sentence embeddings we use to fulfill the task. Our argument retrieval model is
based on the outcome of the last year’s Touché 2021 [5], more precisely on the results of Team
Elrond. Following their approach, we use ElasticSearch for our index and retrieval with the
DirichletLM similarity, described in Section 3.1 [6]. In order to find a pair of fitting sentences
for the retrieved result, we compare two semantic search approaches. In Section 4.2 we identify
Doc2Vec [7] and Sentence-BERT (SBERT) [8] as promising models using sentence embedding.
We find a relevant sentence and match it with another sentence to form a coherent pair by
embedding the sentences and computing the cosine similarity of the two sentences.

Sentence embeddings are designed to find sentences with the highest similarity, therefore we
have to counteract the problem of retrieving sentences with identical meaning. Therefore we
develop a second approach in Section 4.3 with the text generation function from GPT-2 [9]. In
this approach, we take the first retrieved sentence and give it to GPT-2 as an opening text (called
prompt). Then the model generates a subsequent text output which gets passed to Doc2Vec and
SBERT. With that, these models find a similar sentence in their embeddings to the generated
output and form a sentence pair with the first sentence. In Section 5 we evaluate our different
experiments and decide on which pipeline we use for our submission for this years Touché lab.

2. Related Work

The system described in this paper is intended to run on the TIRA platform [10, 11]. TIRA is an
online platform where researches can upload and evaluate their proposed solutions for shared
tasks. Shared tasks are an increasingly popular form of solving open problems in academia.
Shared tasks are often conducted in the scope of conferences, especially in the field of natural
language processing or machine learning1. The organizers usually contribute large datasets
which can be used by the teams of researchers to tackle diverse problems. For the shared task
of the Touché Lab, TIRA ensures that all solutions are running with the same data and produce
reproducible results.

With web search engines it can be harder to get an overview about different opinions on
a topic than to get the answer for a clearly stated question [12]. The field of computational
argumentation deals with this and other problems by mining arguments from unstructured
text and computational representation of arguments. It is essential for improving search results
involving arguments [13] [14]. There are also approaches to create a World Wide Argument Web
based on structured arguments in an Argument Interchange Format (AIF) [15]. In this paper we
focus on the results of previous teams participating in the Touché Lab, especially of Task 1 of
last years shared task [5]. The task was to retrieve arguments for “controversial questions from
a focused collection of debates to support opinion formation on topics of social importance” [5].

1for examples of shared tasks on international conferences, see https://www.statmt.org/wmt21/, https://pan.
webis.de/clef19/pan19-web/ and https://alt.qcri.org/semeval2019/index.php?id=tasks

https://www.statmt.org/wmt21/
https://pan.webis.de/clef19/pan19-web/
https://pan.webis.de/clef19/pan19-web/
https://alt.qcri.org/semeval2019/index.php?id=tasks


This years task is extending on this and asks the participating teams to additionally retrieve a
pair of argumentative sentences for positive and negative stances of an argument. Solutions
from Touché 2021 covered a wide range of approaches and performance for the task. To retrieve
arguments, the retrieval model based on DirichletLM proved to perform better than other
models [16]. Multiple teams worked on evaluating the impact of preprocessing by means of
query expansion, word stemming and WordNet-based synonyms. The approaches involved
different teams choosing semantic search as a method to retrieve relevant results. Preprocessing
proved to be a important step to increase relevance and quality of the search results. Semantic
search delivered mixed results, which were influenced by the choice of model and training data.

To compare sentences from arguments for the sentence pair retrieval two technologies are
used in this paper: Sentence BERT (SBERT) [8] and Doc2Vec [7]. SBERT is a modification of
the BERT network, a neural network designed for natural language processing (NLP) tasks
like language modeling and next sentence prediction [17]. SBERT has a better performance on
sentence-pair regression tasks and can for example be used to find similar sentence pairs in
a huge collection of sentences. Doc2Vec is based on Word2Vec, a neural network with word
embeddings in vector space, where vectors are representing words. The embedding is designed
to solve problems like calculating the similarity of words. This is usually done by measuring the
cosine similarity of the respective vectors [18, 19]. Doc2Vec extends the vector representation
from words to documents of arbitrary size.

The generative pre-trained transformer (GPT-2) is a language model developed by OpenAI
2 which uses a deep neural network to perform several text-related tasks like translation or
text summarization [9]. In this paper GPT-2 is used to generate follow-up sentences based on
sentences from arguments.

3. Methodological Approach

In the following section, the methods we use will be described briefly. To provide context, we
introduce our pipeline and present the concept of semantic search and sentence embeddings. We
rely on these concepts to match sentences which should represent an argument in its entirety
and should form a coherent pair at the same time. Then, we will cover the technologies we use
in detail: ElasticSearch, Doc2Vec, SBERT and GPT-2.

3.1. Indexing

We use ElasticSearch to create an index of all arguments from the args.me corpus. In order
to improve the out-of-the-box functionality of ElasticSearch we implement a preprocessing
pipeline before building the index. For optimal results, we follow the approach from group
Elrond from Touché 2021. They performed well in relevance and quality scores, and were
placed among the best in both categories. They used a combination of several preprocessing
steps, which are: filters, namely Asciifolding and Lowercase, and stemming with the Krovetz
algorithm [5, 20]. Then we add an additional step and remove stop words with a custom stop

2https://openai.com/

https://openai.com/


word list. As the last step in our pipeline we follow the approach of Team Elrond again and
enrich our documents with WordNet-based synonyms [21, 5].

3.2. Retrieval

To retrieve arguments based on the given query, we also use ElasticSearch. We use the LM
Dirichlet similarity to score matching documents because previous contributions from Touché
which used ElasticSearch reported best results with LM Dirichlet similarity [22, 5, 23]. Figure
1 provides an overview of the pipeline of our retrieval system up to this point: The args.me
corpus serves as a base for indexing and we search for relevant arguments using ElasticSearch.
We use the top results as a starting point to find sentences which form a coherent pair. For this,
we experiment with different methods which we introduce in the following sections.

Figure 1: The setup of the retrieval system to retrieve relevant arguments up to a point where
an initial sentence can be used to find a pair of argumentative sentences.

3.3. Semantic Search

Semantic search describes the process of finding meaning in a text. This meaning could refer
to different parts of the search process, like understanding the query, the data or representing
knowledge in a suitable way for retrieval [24]. So instead of the more traditional search engines
which try to find documents based on lexical matches, semantic search can also find synonyms
[25].



Figure 2: A schematic illustration of a vector space in two dimensions. The query of a search,
marked as the orange dot, is embedded and relevant documents are closer than

irrelevant documents. Figure adapted from [25]

The basic idea is that known data is embedded into a vector space, as seen in Figure 2. A text
of arbitrary length is represented in the vector space. In the same way, a search query can be
embedded into the same vector space and a vector can be inferred for the new data. It is possible
to find the closest entry by calculating the euclidean distance between arbitrary vectors. This
entry should then have a high semantic overlap with the query [25]. We use semantic search
to compare the sentences we want to pair with the goal to find the most similar sentences.
Next, we describe the two methods we used to retrieve sentence pairs: Doc2Vec and Sentence
BERT. The two methods are based on the aforementioned concept of embedding documents of
different length, in our case sentences, into a vector space and finding documents which are
similar in their semantics.

3.3.1. Doc2Vec

Doc2Vec is an unsupervised machine learning model that represents documents by a dense
vector. It was first introduced in 2014 from Mikolov and Le and builds upon Word2Vec [26, 7].
Word2Vec assumes that words can be embedded into the vector space and the resulting vectors
can be used to measure semantic similarity. This understanding of semantic similarity or
meaning is based on the bag-of-word model. Doc2Vec aims to overcome the major weaknesses
of bag-of-word models: Assuming a sentence can be represented by their respective bag of
words implies that the meaning is independent from the word order. Therefore, when using
Word2Vec, the word ordering within the respective document is lost. Additionally, the context
and semantics of the words are usually ignored and semantic features of sentences like negation
or irony or cannot be taken into account [26]. To retrieve argumentative sentences for positive
and negative stances, it is needed to represent this context. Using Word2Vec leads to a scenario
where different sentences could have the same representation as long as those sentences contain
the same words.

To solve this issue and take the context of the sentence as well as the word order into account,
Mikilov and Le add a new vector to a document of variable length. The document vectors serve
as information about the context of a word when using the embedding. It is combined with
the respective word vectors of the document by averaging or concatenating. The Paragraph id,



as seen in Figure 3, serves as a representation of the context for the paragraph or document,
respectively.

Figure 3: Doc2Vec’s framework for learning paragraph vectors. The Paragraph id represents
the context of a paragraph and is used as additional information to calculate

embeddings for single words. Figure adapted from [26]

This document vector D is then used for the training of the word vectors W and holds
the document representation. The authors report improvement for information retrieval and
classification over other methods based on word embeddings and bigram embeddings alone.
We choose Doc2Vec to retrieve coherent sentence pairs because the meaning of documents of
variable length, in our case sentences, is represented and takes the sentence as a whole into
account instead of every word, independent from the context. Therefore the similarity score
produced by Doc2Vec promises to result in sentences which are similar in meaning rather than
semantic similarity only.

3.3.2. Sentence BERT

BERT is a language representation model that was first introduced in 2018. For creating this
language model, BERT uses deep bidirectional representations from unlabeled text. Bidirectional
indicates that the model predicts a word based on what words it precedes and follows. With
this approach, BERT managed to achieve success on several state-of-the-art tasks. This includes
tasks like question answering and language inference [8].

For semantic similarity search, on the other hand, BERT is not so well suited. This is due
to BERTs architecture, which comes with a high computational overhead. To overcome this
bottleneck, Sentence-BERT (SBERT) was introduced in 2019 [25]. SBERT is a modification of
the existing pretrained BERT network, which allows us “to derive semantically meaningful
sentence embeddings” [25]. This is achieved by adding a pooling operation to the output of BERT
and results in a fixed sized sentence embedding. Furthermore, siamese and triplet networks
are created to fine-tune BERT and ensure that the produced embeddings are “semantically
meaningful and can be compared with cosine-similarity” [27, 25].

SBERT is easily accessible over a python framework, which is based on PyTorch and Trans-
formers [28, 29]. The framework allows the use of different pretrained models to train sentence



embeddings on over 100 languages [25]. The model we use (all-MiniLM-L12-v2) is based on
Microsoft’s MiniLM and finetuned on more than 1 billion sentence pairs [30, 25]. The authors
describe it as a general purpose model. This was a reason for us to not fine-tune the model any
further for the training of our sentence embeddings.

3.4. GPT-2

GPT-2 is the abbreviation for Generative Pre-trained Transformer 2 which is an unsupervised
transformer language model created by OpenAI in 2019. It is most used to translate texts,
answer questions, summarize passages and to generate text output [31]. OpenAI web scraped
45 million outbound links from the social media platform Reddit to gather training data for the
GPT-2 model. In order to assess the quality of a shared URL they used links which had at least 3
upvotes from the community. The final corpus consists of slightly over 8 million documents for
a total of 40 GB of text [9]. The architecture of GPT-2 is based on Transformer [29]. OpenAI
released four different model sizes of GPT-2 for free use which are compared in Table 1 [9].

Name Parameters Layers 𝑑𝑚𝑜𝑑𝑒𝑙

SMALL 117M 12 768
MEDIUM 345M 24 1024

LARGE 762M 36 1280
EXTRA LARGE 1542M 48 1600

Table 1
Architecture hyperparameters for the publicly available four model sizes of GPT-2 [9]

We use GTP-2 to generate follow-up sentences for the initially retrieved sentences from
the corpus with the goal of finding more coherent sentence pairs. This leads to the pipeline
displayed in Figure 4, where we use the generated sentence from GTP-2 as input to retrieve a
similar sentence with Doc2Vec and SBERT.

Figure 4: Continuation of the pipeline including text generation to find a fitting second
argument.



4. Experiments

In the following sections we describe our approach in more detail and explain our experiments.
We outline the pipeline for our retrieval system, as well as the setup and preprocessing steps.
This includes a detailed description of the data we rely on and our steps to create an index.
ElasticSearch serves as a baseline for indexing and retrieval of arguments. Then we describe
our process of developing our pipeline with Doc2Vec, SBERT and text generation with GPT-2
from a prototype to a more refined system for retrieving argumentative sentences. In the next
section we evaluate the results of the different approaches.

4.1. Setup: Dataset, Indexing and Argument Retrieval

For our experiments, we used the args.me corpus [2]. This corpus consists of 387 606 arguments.
Each argument consists of an id, conclusion, premises (modeled as stance and text), context and
sentences (modeled as sourceTitle, sourceId, nextArgumentInSourceId, sourceUrl, discussionTitle,
previousArgumentInSourceId, acquisitionTime). The arguments were crawled from four different
platforms, namely: Debatewise, IDebate.org, Debatepeia and Debate.org.
As described in Section 3.1 and 3.2, we use ElasticSearch for indexing and argument retrieval.
We work with the configuration used by Team Elrond from the previous Touché task 1 [5].
With this setup we can query ElasticSearch to retrieve relevant arguments. Next, we present
our approaches to pair fitting sentences.

4.2. Approach 1: Semantic Search using Doc2Vec and a matching algorithm

With this approach, the conclusion and each sentence of a retrieved argument is embedded by
Doc2Vec. The Doc2Vec model was trained on the corpus of args.me [2]. We choose one sentence
as a document in the context of Doc2Vec and train the model on all sentences of the corpus. We
preprocess the sentences with two filters: First, we remove all sentences with less than three
words, because they carry very little to no meaning. Then, we remove all sentences containing
a hyperlink, because in most cases these sentences refer to a source to support their argument,
but carry no meaning in themselves. For matching two sentences, we first experiment with a
naive approach to look for the most similar sentence to the conclusion in the whole corpus. The
conclusion is inferred as a vector in our Doc2Vec model and the most similar sentence from the
corpus is located by computing the cosine similarity of the inferred vector. The quality of the
matches is varying immensely and the two sentences only supported each other in a few cases,
because the sentences from the whole corpus are retrieved and are often seemingly similar,
but covering very different topics. Therefore we only look for matching sentences within the
sentences of an argument.

To get the most meaningful sentences and to ensure the sentences are forming a coherent pair,
we develop the following matching algorithm: All sentences of an argument are matched with
each other and the cosine similarity of the respective vectors is calculated. Then, we calculate
the cosine similarity for each sentence to the conclusion. Here, our reasoning to compare each
sentence to the conclusion is the following: We assume the conclusion carries the summarized
meaning of the argument, therefore we want to retrieve sentences which are most similar to the



conclusion and carry the most meaning or the most important part of the argument, respectively.
In a last step, we average the distance between the two sentences and the distance of each of
the two sentences to the conclusion. Then the sentence pair with the highest averaged cosine
similarity forms our top argumentative sentence pair.

4.3. Approach 2: Text-Generation

As an alternative approach we use GPT-2’s text generation functionality to find a second
sentence. We use the sentence from the results of ElasticSearch as input for GPT-2. It generates
a subsequent text output. This output is used as input for semantic search in our Doc2Vec and
SBERT models. In the end the most similar sentence to the generated output will be matched
with the initial sentence and form a sentence pair. The idea is that GPT-2 can generate a sentence
which is a coherent follow-up to the first sentence and that our two models can find the most
similar sentence to the generated one.

Just using the first argument as an opening text (referred to as prompt) leads to mixed quality
of the generated texts. In order to stabilize the quality we follow the approach of Akiki and
Potthast from the Touché Lab 2020 [23]. They used the text generation functionality for a query
expansion to achieve better retrieval results. By embedding the query in an argumentative
structure, as seen in Table 2, they steered the language model into a output which resembles a
opinion more closely than a simple statement [32]. To represent arguments for the same topic,
but with opposing stances, they created positive, negative and neutral prompts as shown in
Table 2. This stabilizes the text generation and leads to results which carry a stronger pro or
con sentiment. Using the same prompts as Akiki and Potthast, we insert the conclusion from
the respective argument into the outlined argumentative structure seen in Table 2 and use the
modified prompt as input for GPT-2.

Stance Prompt

Positive
- What do you think? <argument>
- Yes because ..
- What do you think? <argument>
- The answer is yes ...

Negative
- What do you think? <argument>
- No because ...
- What do you think? <argument>
- The answer is no ...

Neutral
- What do you think? <argument>
- I don’t know ...
- What do you think? <argument>
- Not sure ...

Table 2
Prompts for different stances to get a variety of argumentative output. The pattern of a question, the
argument and an affirmative or dissenting beginning of a sentence lead to texts which closer to opinions
in an arguments than factual statements.



Further the choice of the decoding method of GTP-2, which decodes the representation from
the model into text, and their respective parameters are important for the outcome of the text
output. These methods decide how incoherent, repetitive or generic the generated text is by
examining which token could follow another token [33]. For our purpose we used the following
three sampling methods for decoding as they provided the best output:

Temperature Sampling With this approach, a probability distribution is shaped through
temperature [34]. The parameter 𝑡 ∈ [0, 1) steers the distribution towards high probability
tokens or low probability tokens. A low value improves the generation quality but decreases
the diversity of the output. A high value regularizes the generation by making the model less
certain of its top choices [32, 35]. We used a temperature of 1.4.

Top-K Sampling In this sampling method, the neural language model distribution gets
truncated to a set of size 𝑘 of most likely tokens. These tokens will then be filtered and the
probability mass is redistributed among those 𝑘 next tokens [35, 36]. We chose a 𝑘 of 75.

Nucleus Sampling Nucleus sampling is a stochastic decoding method. Like top-𝑘 sampling,
this method is also truncating the language model distribution. It chooses from the smallest
possible set of words whose cumulative probability exceeds the probability 𝑝. The rest of the
tokens get discarded afterwards. It is also called top-𝑝 sampling [35]. We set the probability to
𝑝 = 0, 6.

With these 3 decoding strategies and the six prompts we generate 18 text outputs with a
length of 75 tokens for each passed argument. In order to figure out which generated output
would fit best to the passed argument, we compute the cosine similarity for each sentence
with the first argument. Some cosine similarity scores are quite high because GPT-2 was just
repeating the passed argument in it’s output (Table 3). Therefore we set a threshold to remove
sentences which were too similar to the prompt. Among the remaining generated sentences,
the best one is passed to Doc2Vec and BERT for semantic search.

With this approach we encounter the problem that we always have a conclusion as part of
the sentence pair and that some conclusions are quite short, therefore carrying little meaning.
To counteract this, we implement the following step in our pipeline:

Doc2vec The results of ElasticSearch, the most relevant arguments to a query, are passed
on to Doc2Vec. For each sentence of the argument, GPT-2 generates a subsequent text output.
Afterwards we compute the cosine similarity of each text output with each sentence of the
respective argument and use the most similar sentence pair.

SBERT The conclusion of the best argument retrieved by ElasticSearch is used as input for
SBERT. The language model embeds the conclusion and retrieves the five sentences with the
highest semantic similarity. For each of these sentences, GPT-2 generates a subsequent text
output. These text outputs are again passed on to SBERT which searches similar sentences. The



Generated Output Score
What do you think? We need more sex education in schools. No because

that’s what the kids do. We need more sex education in schools.
Do you agree with the idea that we should have sex education in schools?
No. We should have sex education in schools.
Do you agree with the idea that we should have sex education in schools? 0.8109

What do you think? We need more sex education in schools. I don’t know

what to say. I think that sex education is just not enough.
If you don’t get it right, it’s not going to work. I think that if we are really
concerned about the sex education system, we need to have a national sex
education program, where all ... 0.7838

What do you think? We need more sex education in schools. Not sure

ive seen any evidence that sex education is helping to reduce sexual violence. 0.7396

Table 3
This table displays an example of the top three out of 18 sentences ordered by the cosine similarity to
the query “sex education in schools”. The expanded query is italic and everything following is generated
by GPT-2.

result of SBERT are then matched with the first argument and the most similar sentence pair
form the desired argumentative sentence pair.

5. Evaluation And Discussion

We use a a two-step approach for our own evaluation of the results of our retrieval system. In
the first step we evaluate the results of the argument retrieval and in a second step we evaluate
the sentence pairs generated from the results of the argument retrieval. This ensures that the
sentence pairs are generated out of a well evaluated baseline of argument retrieval. We use
the mean Normalized Discounted Cumulative Gain (NDCG) to measure the quality for both
steps over several topics [37]. This measure is also used to compare the different approaches for
the Touché 2021 tasks for argument retrieval [5]. So we are also able to compare our results of
the argument retrieval to the results of the previous results of Touché 2021. We also evaluate
the system in the context of this years Touché Lab. The results from the TIRA platform will be
discussed at the end of this section.

5.1. Argument retrieval evaluation

We use a dataset with graded results for 50 example topics for the evaluation of the results
from the argument retrieval. The dataset was also used for the relevance judgments for the
Touché 2021 task 1 [38]. The entries in this dataset contain a topic id, the argument id and a
grade which indicates how relevant a argument is for a topic. The grades can have the values -2
non-argument (spam) and from 0 (not relevant) to 3 (highly relevant).



In Table 4 the results for different approaches on argument retrieval are displayed. The base-
line retrieval uses the fields conclusion, premises.text and sentences.sent_text from the argument
corpus with the weight of one for each field and LMDirichlet as retrieval model [6]. For the
optimized baseline approach the weights of the fields which are used for retrieval are optimized
(in a range from zero to three) with a bayesian optimizer[39]. The measure of the optimization
is the Mean NDCG value as described before. The expanded index approach is the one which is
described in Section 3.1. In the optimized expanded index approach the weights for the search
fields are also optimized with a bayesian optimizer and in the heavily optimized expanded
approach the optimization is made with more iterations but as described in Table 4 the NDCG
values are staying the same.

Compared to the Touché 2021 task 1 approaches with the best relevance scores (Elrond with
a NDCG@5 value of 0.720 and Pippin Took with a NDCG@5 value of 0.705) the optimized
expanded index approach (The expanded index approach from section 3.1 with optimized
weigths of the search fields) scores slightly better.

Method Mean NDCG Mean NDCG@5
Baseline 0.8385 0.6754
Baseline, optimized 0.8559 0.7116
Expanded Index 0.8506 0.7166
Expanded Index, optimized 0.8624 0.7417
Expanded Index, heavily optimized 0.8624 0.7417

Table 4
The Mean NDCG and NDCG@5 values for different approaches on argument retrieval

5.2. Sentence pair evaluation

For the evaluation of the retrieved sentence pairs the evaluation data has to be created manually.
Therefore a dataset similar to the dataset for the argument retrieval evaluation is created based
on the retrieved sentence pairs for a topic. Then the results are reviewed by hand and are graded
by the relevance to the topic and how good the sentences fit together in an argumentative way.
To keep the effort within an acceptable range the evaluation is made for ten top results of each
of ten topics.

As shown in Table 5 the Doc2Vec method without text generation from GPT-2 returns the best
results for the sentence pair retrieval. The baseline approach uses random pairs of sentences of
the first ten results. It is striking that the Bert approach performs even worse than the random
pairs approach.



Method Mean NDCG Mean NDCG@5
Random Pairs 0.1775 0.1121
Doc2Vec 0.5572 0.3644
Doc2Vec + GPT-2 text generation 0.3235 0.2283
Bert + GPT-2 text generation 0.05 0.05

Table 5
The Mean NDCG and NDCG@5 values for different approaches of sentence pair retrieval

5.3. Final evaluation on TIRA

In the previous section, the results of the teams own evaluation were described. The retrieval of
sentence pairs is also evaluated in the context of Touché 2022 [3]. For this, we are provided with
the TIRA platform [11]. Researchers can submit their solution for shared tasks and evaluate
the results on TIRA. We choose the configuration which performed best in our own evaluation,
that is Doc2Vec without GTP-2 text generation. The evaluation results for our submitted run,
named korg9000, can be seen in Table 6.

Category Mean NDCG@5 CI95 Low CI95 High
Relevance Evaluation 0.252 0.187 0.318
Quality Evaluation 0.453 0.384 0.529
Coherence Evaluation 0.168 0.117 0.223

Table 6
The evaluation results for the run on the TIRA platform by category

Our retrieval system performed poorly both in comparison to our own evaluation and to
the results of the other participants of the shared task. The Mean NDCG@5 for relevance is
0.252, compared to the best performing run from Team Porthos with a Mean NDCG@5 of 0.742.
The Mean NDCG@5 for quality is 0.453. The best performing team in this category is Daario
Naharis with a Mean NDCG@5 of 0.913. For the coherence evaluation, our run scores a Mean
NDCG@5 of 0.168, while the best performing team, again Daario Naharis, has a score of 0.458.

5.4. Discussion of the final results

The approach of our experiments outlined in this paper is to compare different types of semantic
search. Within our own evaluation, we were able to compare the retrieved sentence pairs
of Doc2Vec and SBERT. The results were mixed in both cases. This can be attributed to the
differences between the two methods: While it was easy to train the Doc2Vec model ourselves,
the model was not designed to work with short sentences, but with paragraphs in mind. For
SBERT, it was outside of the scope of this notebook to customize the training, which could have
led to the poor results. We use the same pipeline to generate the input for the semantic search,
but we could have benefited from a step-wise evaluation of each step of the pipeline. Furthermore
more runs on the TIRA platform with different configurations would have been helpful to test



out our approaches. Then the strengths and weaknesses of the respective approaches could
have been better analysed and combined.

6. Conclusion

To solve Touché task 1, we developed a system to find pairs of argumentative sentences for
positive and negative stances towards an arguement. We worked with the args.me corpus
and two different approaches: Doc2Vec and Sentence BERT, and combining both of them with
GPT-2, finally reembedding the resulting sentences. For the retrieval of arguments we use
ElasticSearch. In the end we compare and evaluate our results with the NDCG and Mean NDCG.

We show the differences in how the sentences are paired have a great impact on the overall
results of the retrieval system. The Doc2Vec approach delivers acceptable results after reworking
the sentence pairing algorithm to only use sentences from the respective argument. Furthermore
using text generation to improve the input for the sentence embedding models does not provide
better results by default. On the contrary, the results for Doc2Vec are better without the
additional step of generating a more elaborate prompt. The quality of the sentence pairs
depends on the quality of the generated sentences from GPT-2. Using GPT-2 in this context
needs more fine-tuning to reduce the randomness in the generated texts. This could be a
starting point for further improvements as it is possible to use GPT-2 to generate more than
one sentence and check if one of those sentences fits better. This is contrasted by the negative
impact on performance by the sentence generation, which slows down the entire pipeline.
Doc2Vec without additional text generation delivers the best performance in the context of our
own evaluation.

Unfortunately, Sentence BERT performs really poorly in our experiments. The SBERT
approach in combination with the text generation using GPT-2 has a significant lower Mean
NDCG/Mean NDCG@5 score in the evaluation than the baseline approach with random sentence
pairs. The poor results could stem from not further fine-tuning SBERT or not choosing the right
model for this task. The algorithm to match the two desired sentences needs to be revised to
produce better results. There is more room for further improvements of our pipeline, like other
steps in preprocessing, using part of speech tags or trying to find a subject object relationship
between argumentative sentence pairs to get a better understanding of the context of a sentence.
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