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Abstract
We describe our system for the CLEF 2022 CheckThat! Lab Task 1 Subtasks A,B,C on check-worthiness

estimation, verifiable factual claims detection, and harmful tweet detection in both English and Turkish.

We used transformer-based models as well as an ELMo-based attention network. We experimented with

data pre-processing, data augmentation and adding linguistic features. The official evaluation ranked

our system 1
st

and 2
nd

for the Turkish data while we achieved average results for the English data.
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1. Introduction

The CheckThat! lab at CLEF [1, 2] aims at providing automated solutions that facilitate or

support fake news detection and related subtasks. Automated systems can provide the basis for

human fact checkers and may take over some of the more tedious tasks in dealing with an ever

increasing number of online disinformation. This paper gives an overview of team RUB-DFL’s

system for Task 1: Identifying Relevant Claims in Tweets [3]. Fact checking should only be

applied to claims (and not e.g. opinions or predictions about the future), so identifying claims

and an assessment of their relevance can be used to prioritize which claims to check.

Our team participated in three of the four subtasks, namely check-worthiness estimation,

claim detection, and harmful tweet detection, for both the English and Turkish data sets.

We conducted experiments with transformer-based models, data augmentation and linguistic

features, as well as ELMo embeddings and attention networks. Our system reached 1
st

place for

claim identification and check-worthiness estimation in Turkish and average results on English

data. For harmful tweet detection, we placed 9
th

on the English data and 2
nd

on the Turkish

data.
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2. Related Work

Disinformation detection has received significant attention in NLP in recent years. Many

systems, data sets and challenges take a holistic approach of so-called fake news detection

[4, 5, 6]. However, the CheckThat! lab has a different aim: Many of the challenges in the

previous years, as well as in 2022, have been looking at smaller, more manageable subtasks

of disinformation detection such as check-worthiness identification and detecting previously

fact-checked claims [7, 8]. In this manner, automated systems can play out their strengths in

pattern detection while receiving oversight from human fact checkers. Real-world NLP systems

can thus provide e.g. a list of check-worthy claims which can be used a starting point for

journalistic investigation.

Similar datasets to this challenge can be found in ClaimBuster [9] and ClaimsKG [10], as

well as in previous years’ CheckThat! labs [11, 12, 13]. While there was no task on claim

identification in the 2021 CheckThat! challenge, the winning systems on check-worthiness

estimation and detection of previously fact-checked claims in English Tweets were teams

NLP&IR@UNED [14] and team Aschern [15], respectively. Both used BERT models and team

Aschern additionally used TF-IDF and the re-ranking LambdaMART model. More information

on all the participating systems and the approaches they employed can be found in the official

overview papers published by the task organizers [7, 8].

3. Data and Pre-processing

The data for all three subtasks tackled by our team consisted of between 2891 and 4542 tweets.

Tweets were provided with binary labels corresponding to either check-worthiness (subtask 1a),

containing a claim (1b) or containing hateful speech (1c). Since there is considerable overlap

between the datasets – e.g. every check-worthy claim in subtask 1a is automatically a positive

example for a claim in subtask 1b – it is not particularly helpful to combine the datasets to

gain a larger basis for training models. However, for subtask 1a, we could utilize last year’s

CheckThat! data, which we did in section 5.

Simple data pre-processing steps were taken into consideration for the experiments in section

4.2. These include: changing all text to lower case, removing all URLs, twitter mentions,

punctuation that does is not part of an emoticon, and removing all remaining characters that

are not letters, numbers, white space, or #.

We also considered two very simple approaches to data augmentation: Adding additional

data from last year’s challenge, as mentioned above, as well as adding linguistic inquiry and

word counts (LIWC) [16]. For this step, we tokenized the tweet text and looked up each token in

the LIWC dictionary; a word list categorized by psycholinguistic and cognitive dimensions, such

as NegativeEmotion, Pronoun, or Health. For each token found in the LIWC dictionary,

the corresponding LIWC category was simply appended to the tweet text. The hope was to

push the classifier to pay greater attention to these psycholinguistic features, instead of relying

simply on the given text.



4. Experiments

4.1. Transformer-based models

Transformer-based models like BERT [17] have significantly improved the performance on a

wide range of NLP problems such as claim detection related tasks which are typically framed

as text classification problems. The BERT architecture follows masked language model (MLM)

and next sentence prediction (NSP) procedures. This structure allows the model to learn the

relationship between masked words and bidirectionally incoming text, to predict whether a

second sentence follows a first, and to examine sentence relationships in an advanced way. After

the release of BERT, other transformer-based pretrained language models have employed similar

approaches while refining aspects like model size, training speed and efficiency, multilingual

embeddings and more.

After analysing recent studies on benchmark datasets [18] for text classification tasks, we

decided to experiment with autoencoding pretrained language models (PLMs) which mostly

outperform autoregressive PLMs (e.g., OpenGBT) and earlier contextualized language models

(e.g., CNN and RNN based models). The following PLMs were chosen by considering criteria

such as domain compatibility, latency and capacity constraints: BERTweet [19] because it fits

the target domain of the task; XLM-R [20] to experiment with multilingual embedding spaces;

ConvBERT [21] and ELECTRA [22] as more computationally efficient models. For the Turkish

data, we also used the multilingual XLM-R model, but switched to the Turkish variants of the

other models: BERTurk1
, ConvBERTurk2

and the Turkish ELECTRA3
model.

Despite the significance of hyperparameter tuning, the growing parameter space and lack of

memory limit the tuning process to the chosen hyperparameters. We tuned hyperparameters

along with controlled experiments and used a fixed seed value used to ensure consistency. For

all experiments, weighted-average F1 scores are presented, considering the size of each class

and their contribution to the f-score. We used the rich and publicly available AI repository

Huggingface
4

for the PLMs.

English As seen in Table 1, all four models lead to comparable results, although ConvBERT

was slightly ahead for subtask 1a (check-worthiness of tweets) with an f-score of 0.839, while

BERTweet achieved the highest f-score on subtasks 1b (verifiable factual claims detection) at

0.814 and 1c (harmful tweet detection) at 0.895. However, all f-scores, with the exception of

XLM-R in subtask 1a, were within 0.03 points of each other. Such close results, combined

with different systems winning different, though related, tasks on very similar data prohibit

identifying a clearly superior approach. Further experimentation is needed to explore relevant

factors for the success of a particular model.

Turkish For the Turkish data, BERTurk provided the highest f-score for subtask 1a at 0.813, the

multilingual model XLM-R achieved the highest f-score on subtask 1b at 0.768 and ConvBERTurk

1

https://huggingface.co/dbmdz/bert-base-turkish-cased

2

https://huggingface.co/dbmdz/convbert-base-turkish-cased

3

https://huggingface.co/dbmdz/electra-base-turkish-cased-discriminator

4

https://huggingface.co/

https://huggingface.co/dbmdz/convbert-base-turkish-cased
https://huggingface.co/dbmdz/electra-base-turkish-cased-discriminator


Table 1
Transformer-based models without data pre-processing (English).

English accuracy precision recall f-score

Check-worthiness of tweets (EN)

BERTweet 0.824 0.823 0.824 0.823

XLM-R 0.807 0.788 0.807 0.790

ConvBERT 0.838 0.841 0.838 0.839

ELECTRA 0.826 0.815 0.826 0.818

Verifiable factual claims detection (EN)

BERTweet 0.816 0.814 0.816 0.814

XLM-R 0.809 0.807 0.809 0.806

ConvBERT 0.810 0.810 0.810 0.804

ELECTRA 0.828 0.826 0.828 0.826

Harmful tweet detection (EN)

BERTweet 0.907 0.889 0.907 0.895

XLM-R 0.910 0.828 0.910 0.867

ConvBERT 0.903 0.885 0.903 0.892

ELECTRA 0.910 0.828 0.910 0.867

Table 2
Transformer-based models without data pre-processing (Turkish).

Turkish accuracy precision recall f-score

Check-worthiness of tweets (TR)

BERTurk 0.820 0.808 0.820 0.813

XLM-R 0.833 0.803 0.833 0.805

ConvBERTurk 0.830 0.800 0.830 0.806

ELECTRA 0.827 0.795 0.827 0.801

Verifiable factual claims detection (TR)

BERTurk 0.782 0.777 0.782 0.772

XLM-R 0.777 0.771 0.777 0.768

ConvBERTurk 0.762 0.755 0.762 0.756

ELECTRA 0.770 0.764 0.770 0.764

Harmful tweet detection (TR)

BERTurk 0.781 0.773 0.782 0.776

XLM-R 0.736 0.675 0.736 0.630

ConvBERTurk 0.788 0.777 0.788 0.781

ELECTRA 0.760 0.743 0.761 0.748

took the lead in task 1c at 0.781 f-score, see Table 2. Again, the close field – only XLM-R in

subtask 1c deviated by more than 0.03 f-score from any of the other systems – provided little

insight into which system would perform best in general.



4.2. Transformer-based models with pre-processed data

To investigate the merits of data pre-processing described in section 3, we ran the same systems

again on the simpler, cleaner data. With fewer confusing factors such as Twitter mentions and

punctuation, the transformer-based models presumably encountered fewer situations they had

not seen in training. As can be seen in Table 3 and Table 4 we therefore achieved slightly higher

f-scores.

English ConvBERT increased in subtask 1a from 0.839 to 0.843, overtaking BERTweet (previ-

ously 0.814) with 0.817 in subtask 1b and achieving even numbers with BERTweet (previously

0.895) in subtask 1c where both increased to 0.906 f-score with the pre-processed data. XLM-R

and BERTweet were not strongly affected by the pre-processing (BERTweet performance shows

a slight decrease for subtask 1a and XLM-R for subtask 1b). ELECTRA, however, exhibited lower

scores for all subtasks, leading to the assumption that it managed to pick up on signals that

were removed by pre-processing.

Turkish Simple pre-processing lead to small increases in all three subtasks for the Turkish

data as well: In subtask 1a, the top system BERTurk increased from 0.813 to 0.822 f-score, for

subtask 1b, BERTurk overtook XLM-R (which decreased from 0.768 to 0.740) with an f-score of

0.788. In subtask 1c, ConvBERTurk increase from 0.781 to 0.781. All increases are fairly small

and some systems even decreased in performance. However, since the best models for each task

showed improvements, it seems that pre-processing also helps with the agglutinative structure

of the Turkish language.

Table 3
Transformer-based models with data pre-processing (English).

English accuracy precision recall f-score

Check-worthiness of tweets (EN)

BERTweet 0.819 0.821 0.819 0.820

XLM-R 0.820 0.784 0.820 0.793

ConvBERT 0.845 0.841 0.845 0.843

ELECTRA 0.775 0.601 0.775 0.677

Verifiable factual claims detection (EN)

BERTweet 0.819 0.817 0.819 0.816

XLM-R 0.799 0.797 0.799 0.795

ConvBERT 0.820 0.818 0.820 0.817

ELECTRA 0.787 0.784 0.787 0.784

Harmful tweet detection (EN)

BERTweet 0.914 0.902 0.914 0.906

XLM-R 0.910 0.828 0,910 0,867

ConvBERT 0.909 0.903 0.909 0.906

ELECTRA 0.910 0.828 0.910 0.867



Table 4
Transformer-based models with data pre-processing (Turkish).

accuracy precision recall f-score

Check-worthiness of tweets (TR)

BERTurk 0.828 0.818 0.827 0.822

XLM-R 0.833 0.798 0.833 0.792

ConvBERTurk 0.805 0.776 0.805 0.787

ELECTRA 0.817 0.780 0.817 0.789

Verifiable factual claims detection (TR)

BERTurk 0.794 0.789 0.794 0.788

XLM-R 0.755 0.747 0.755 0.740

ConvBERTurk 0.767 0.760 0.767 0.760

ELECTRA 0.721 0.710 0.721 0.711

Harmful tweet detection (TR)

BERTurk 0.774 0.759 0.774 0.762

XLM-R 0.736 0.542 0.736 0.625

ConvBERTurk 0.783 0.781 0.783 0.782

ELECTRA 0.773 0.769 0.773 0.771

4.3. Transformer-based models with data augmentation

In a first simple step, we focused on augmenting the data of subtask 1a (check-worthiness

estimation) with additional data from last year’s CheckThat! challenge; subtasks 1b and 1c

were different from last year. We first collected the tweets from the 2021 challenge, removed

all duplicates and negative examples (to balance the dataset more towards the positive, i.e.

check-worthy class). This left us with an additional 875 English and 237 Turkish tweets, which

we added to the training data.

As can be seen in Table 5, results varied based on the language of the data. For English, we

saw f-score increases from 0.839 to 0.854 (without pre-processing) and 0.843 to 0.853 for the

ConvBERT system, indicating that the additional data contained textual markers that could

be picked up by the transformer model. For Turkish, on the other hand, the performance of

the winning system BERTweet decreased from 0.813 to 0.805 without pre-processing. For the

pre-processed data, while BERTweet achieved 0.822 f-score on the non-augmented data, its

performance dropped to 0.797 when trained on the augmented data, reaching second place

behind ConvBERTurk with 0.805 f-score. It therefore seems that the Turkish systems may have

picked up specific markers of the 2022 data before that better solved the development set, but

may not have been actual markers of check-worthiness, leading to a reduced performance when

trained on additional data from 2021. Further discussion of the challenges of the Turkish dataset

can be found in the Error Analysis section below.

Our second approach to data augmentation was adding LIWC categories to tweets. This

was only possible for the English data, since we had no access to the Turkish version of LIWC.

Table 6 shows the best performing systems for each subtask on this augmented data. As can



Table 5
Transformer-based models, data augmentation with additional positive samples and pre-processing.

accuracy precision recall f-score

Check-worthiness of tweets (EN)
without data pre-processing

BERTweet 0.824 0.823 0.824 0.823

XLM-R 0.787 0.787 0.787 0.787

ConvBERT 0.855 0.853 0.855 0.854

ELECTRA 0.815 0.807 0.815 0.810

Check-worthiness of tweets (EN)
with data pre-processing

BERTweet 0.819 0.821 0.819 0.820

XLM-R 0.786 0.776 0.786 0.780

ConvBERT 0.854 0.852 0.854 0.853

ELECTRA 0.845 0.835 0.845 0.835

Check-worthiness of tweets (TR)
without data pre-processing

BERTurk 0.803 0.807 0.803 0.805

XLM-R 0.785 0.749 0.785 0.763

ConvBERTurk 0.802 0.788 0.802 0.794

ELECTRA 0.814 0.795 0.814 0.802

Check-worthiness of tweets (TR)
with data pre-processing

BERTurk 0.797 0.797 0.797 0.797

XLM-R 0.789 0.754 0.789 0.768

ConvBERTurk 0.804 0.805 0.805 0.805

ELECTRA 0.806 0.784 0.806 0.793

be seen, there was no increase in performance when compared to training on either the raw

or pre-processed data. Highest f-scores were 0.821 as opposed to 0.843 for subtask 1a, 0.771 as

opposed to 0.817 for subtask 1b, and 0.895 as opposed to 0.906 for subtask 1c.

One explanation is that transformer-based models are trained on natural text and artificially

appended LIWC categories are not something the model has seen in training. Such features may

be more helpful when integrated in an ensemble model where one part picks up on the LIWC

features and can then be combined with the transformers’ output. Due to time constraints, we

must leave this experiment for future work.

Table 6
Best-performing transformer-based models, data augmentation with LIWC categories.

accuracy precision recall f-score

Check-worthiness of tweets (EN) ConvBERT 0.826 0.818 0.826 0.821

Verifiable factual claims detection (EN) ELECTRA 0.774 0.770 0.774 0.771

Harmful tweet detection (EN) BERTweet 0.905 0.889 0.905 0.895



4.4. Transformer-based models with additional linguistic features

For this approach, we first calculated nine basic linguistic features as a baseline: word count,

character count, punctuation count, emoji count, contains emoji, contains non-Twitter URL,

number of LIWC categories, text complexity, and sentiment. For Turkish, only the first six

features were calculated. The features were concatenated with our transformer-based models

to see if adding simple linguistic markers would lead to improvements.

For the English data, we also calculated 239 additional linguistic features with the help

of the lingfeat library
5

which was originally used for readability assessment [23]. Due to

time constraints, we were not able to implement our own feature set specifically adapted for

claim detection and relied on this out-of-the-box solution for English. The 239 features include

semantic (e.g. Wikipedia knowledge), discourse (e.g. entity density), syntactic (e.g. part-of-

speech), lexico-semantic (e.g. type token ratio), as well as shallow traditional features (e.g.

average number of tokens). An overview of all features can be found in [23, p. 10672].

The transformer-based models capture different levels of semantic and syntactic knowledge by

use of multi-head attention layers. By concatenating the last four layers of our best performing

transformer-based model for each task, we aimed to obtain better representations. These 3072-

dimensional document embeddings were processed through a fully connected layer with 1024

hidden units and the ReLU activation function. A dropout regularization with a rate of 0.2

was then performed. The resulting hidden layer was incorporated with the 9-dimensional

and 239-dimensional external linguistic features separately for the English datasets and the 6-

dimensional numerical features for the Turkish datasets. The concatenated vectors were passed

to a fully connected layer with 128 hidden units and the ReLU activation function. Another

dropout regularization with a rate of 0.1 was applied to the hidden layer and predictions were

generated with a sigmoid activation function.

The results for both the baseline features and the whole range of linguistic features provided

by the lingfeat library can be found in Table 7. Like before, only the best performing models

are shown here. As can be seen, the performance was lower than our pure transformer-based

models trained on pre-processed data in Tables 3 and 4. What is more, the 239 linguistic features

for English lead to lower performance than the 9 simple features. Other experiments with a

logistic regression classifier on the linguistic features alone provided very low numbers that

barely beat a random baseline. From this we can gather that simply adding a large list of

linguistic features which are not necessarily adapted to the task at hand is not helpful. Instead,

the low performance of the linguistic features lead to a deterioration of the ensemble when

compared to the transformer models alone. However, with more fine-tuning and by identifying

linguistic features that are domain-specific, different fusion techniques could be explored in the

future.

5

https://github.com/brucewlee/lingfeat

https://github.com/brucewlee/lingfeat


Table 7
Best-performing transformer-based models merged with additional linguistic features.

accuracy precision recall f-score

9 basic ling. features
Check-worthiness of tweets (EN) ConvBERT 0.777 0.753 0.777 0.684

Verifiable factual claims detection (EN) ELECTRA 0.816 0.816 0.816 0.816

Harmful tweet detection (EN) BERTweet 0.910 0.828 0.910 0.867

6 basic ling. features
Check-worthiness of tweets (TR) BERTurk 0.835 0.806 0.835 0.809

Verifiable factual claims detection (TR) BERTurk 0.765 0.778 0.765 0.769

Harmful tweet detection (TR) ConvBERTurk 0.783 0.774 0.783 0.777

239 advanced ling. features
Check-worthiness of tweets (EN) ConvBERT 0.775 0.714 0.775 0.680

Verifiable factual claims detection (EN) ELECTRA 0.653 0.760 0.653 0.539

Harmful tweet detection (EN) BERTweet 0.903 0.827 0.903 0.864

4.5. ELMo embeddings, attention network and linguistic features

In a final round of experiments, we moved away from the transformer architecture and evaluated

the basic and advanced linguistic features in an ensemble of ELMo embeddings [see 24] in

an attention network. Pre-trained ELMo embeddings were processed along with the encoder,

a bidirectional RNN based model. We used a GRU rather than an LSTM model to decrease

parameters and prevent overfitting given the small size of our corpus. The models were trained

with a 500-dimensional bidirectional GRU token encoder. Then, an attention layer producing a

sequence vector with indicative tokens received the hidden states of the encoder layer. After

dropout regularization with a rate of 0.2, the attention layer’s output vectors were merged

with either the 9-dimensional or 239-dimensional external linguistic features separately. These

concatenated vectors were then fed to a fully connected layer with a ReLU activation function.

We also added dropout regularization with a rate of 0.1 to the hidden layer. Predictions were

created using the sigmoid activation function.

The results are shown in Table 8. As with the transformer models in section 4.2, the ELMo

embedding ensemble performed worse when compared to the transformer models trained on

pre-processed text. For the runs with 9 linguistic features, the subtask 1a f-score was 0.803

which would take 3rd place in direct comparison with the transformer models. In subtask 1b,

all transformer models beat the 0.7612 f-score of the ELMo ensemble, but in subtask 1c, the

0.881 f-score would place it in 3rd place behind the 0.906 of BERTweet and ConvBERT. When

compared to combining transformer models with linguistic features, the attention network with

ELMo embeddings performed much better, which may be based on the transformers picking

up more relevant linguistic features in their training process inherently, while the architecture

used in this chapter lends itself more easily to adding additional signals.

Again, the 239-dimensional linguistic features lead to lower performance. Since the features

are not task-specific for any of the three subtasks, they may simply provide too much noisy

data leading to lower performance in the systems.



Table 8
ELMo embeddings and attention network model merged with additional linguistics features

accuracy precision recall f-score

9 basic ling. features
Check-worthiness of tweets (EN) 0.814 0.800 0.814 0.803

Verifiable factual claims detection (EN) 0.767 0.763 0.767 0.7612

Harmful tweet detection (EN) 0.897 0.872 0.897 0.881

239 advanced ling. features
Check-worthiness of tweets (EN) 0.774 0.599 0.774 0.675

Verifiable factual claims detection (EN) 0.370 0.137 0.370 0.200

Harmful tweet detection (EN) 0.910 0.828 0.910 0,867

4.6. Official results on the test set

We submitted the best models in terms of f-score measure for subtasks 1a, 1b, and 1c in both

English and Turkish: For subtask 1a English ConvBert with additional data, for Turkish BERTurk

with data pre-processing. For subtask 1b English we chose ELECTRA, for Turkish BERTurk

with data pre-processing. For subtask 1c English BERTweet with data pre-processing, and for

Turkish ConvBert with data pre-processing were chosen.

Our systems reached average scores on the English data, placing 6
th

out of 13 teams in subtask

1a with an F1 score for the positive class of 0.525 (winning system: 0.698). In subtask 1b, we

placed 6
th

out of 9 systems with an F1 accuracy score of 0.709 (winning system: 0.761) and for

subtask 1c we placed 9
th

out of 11 teams with an F1 for the positive class of 0.273 (winning

system: 0.397).

On the Turkish data, we placed 1
st

in subtask 1a (F1 positive class: 0.212) and 1b (F1 accuracy:

0.801) and 2
nd

in subtask 1c (F1 positive class: 0.353, winning system: 0.366). While the scores

for task 1c were low across both languages, as well as in the Arabic, Bulgarian and Dutch data

sets, the extremely low numbers for task 1a (check-worthiness) in Turkish are an outlier. Here,

we were the only team that managed to surpass 0.2 F1 score. It seems that all systems overfit on

the training and development data and were not capable of identifying actual check-worthiness

markers that would translate to performing well on the test set.

5. Error Analysis

Due to the overall low evaluation scores on the test set of the check-worthiness subtask in

Turkish, we analyzed some of the incorrectly predicted results of our best model. Out of a total

of 67 misclassified tweets, there were 5 false negative and 62 false positive instances.

We checked the false negatives for clues to improve recall. In one example tweet, a well-

known Turkish person is mentioned with a mention tag. The tweet also contains the use of

the quotation sign and the last sentence ends with a question mark. It can be interpreted as

containing a claim, with the author exhibiting a skeptical distance from that claim. There were

also examples in which an exclamation mark was placed in two parentheses, signifying sarcastic

use, and suffixes were used to compare two opposite situations. We also found cases where the

masses were tried to be mobilized around a claim with the words of the address.



In the false positive samples, on the other hand, there was a large number of tweets which are

difficult to classify. In our manual re-evaluation, we found sentences that could be reclassified

as checkworthy claims. It can be seen that quotations which specify the source are frequently

used to strengthen statements that can be very dangerous, as in the following example:

(1) Prof. Serhat Fındık: Hindistan Covid i aşılamayı bırakıp, İvermectin’e geçerek yendi. Afrika
da aynı şekilde. İvermectin çok ucuz bir ilaçtır. Küresel ilaç şirketleri ucuz ilaçları sevmezler.
‘Prof. Serhat Fındık: India defeated Covid by stopping the vaccine and switching to Iver-

mectin, likewise in Africa. Ivermectin is a very inexpensive drug. Global pharmaceutical

companies do not like cheap drugs.’

The tweet in (1) is judged “non-checkworthy”, even though in our view it does contain several

checkworthy claims (mixed with opinions). The high rate of such gray area cases in the Turkish

test data could partially explain the extremely low scores across all systems submitted for this

task.

6. Conclusion and Future Work

We have described our system for the CLEF 2022 CheckThat! Lab Task 1. We tackled subtasks

1a, 1b and 1c on check-worthiness, claim detection, and harmful tweet detection, in both English

and Turkish. We experimented with four different transformer-based architectures as well as

an ELMo-based attention network ensemble. We also tried different methods of pre-processing,

data augmentation and included a number of linguistic features. We placed 6
th

, 6
th

and 9
th

for

the English data and 1
st

, 1
st

, and 2
nd

for Turkish for the three subtasks. During this trial-and-

error process, we realized that transformer based models already capture more comprehensive

linguistic features than those we included in the system.

In the future, we plan to investigate more adapted and task-specific linguistic features,

especially since transformer models rely on large amounts of training text which are not

available for the majority of the world’s languages. Additionally, we will examine what features

are most relevant for our problem for designing a more interpretable model.
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