
Extended Overview of ChEMU 2022 Evaluation
Campaign: Information Extraction in Chemical
Patents
Yuan Li1, Biaoyan Fang1, Jiayuan He1,4, Hiyori Yoshikawa1,5, Saber A. Akhondi2,
Christian Druckenbrodt3, Camilo Thorne3, Zubair Afzal2, Zenan Zhai1,
Kojiro Machi6, Masaharu Yoshioka6, Youngrok Jang7, Hosung Song7, Junho Lee8,
Gyeonghun Kim7, Yireun Kim7, Stanley Jungkyu Choi7, Honglak Lee7,
Kyunghoon Bae7, Darshini Mahendran9, Christina Tang9, Bridget McInnes9,
Timothy Baldwin1 and Karin Verspoor4,1

1The University of Melbourne, Australia
2Elsevier BV, Netherlands
3Elsevier Information Systems GmbH, Germany
4RMIT University, Australia
5Fujitsu Limited, Japan
6Hokkaido University, Japan
7LG AI Research, South Korea
8LG DISPLAY, South Korea
9Virginia Commonwealth University, United States

Abstract
In this paper, we provide an overview of the Cheminformatics Elsevier Melbourne University (ChEMU)
evaluation lab 2022, part of the Conference and Labs of the Evaluation Forum 2022 (CLEF 2022). The
ChEMU campaign focuses on information extraction tasks over chemical reactions in patents. The ChEMU
2020 lab provided two information extraction tasks, named entity recognition and event extraction. The
ChEMU 2021 lab introduced one more task, anaphora resolution. This year, we re-run all the three
tasks with new test data. Together, the tasks support comprehensive automatic chemical patent analysis.
Herein, we describe the resources created for these tasks and the evaluation methodology adopted. We
also provide a brief summary of the methods employed by participants of this lab and the results obtained
across 22 runs from 3 teams, finding that several submissions achieve better results than the baseline
methods prepared by the organizers.
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1. Introduction

The discovery of new chemical compounds is a key driver of the chemistry and pharmaceutical
industries. Patents serve as a critical source of information about new chemical compounds,
providing timely and comprehensive information about new chemical compounds [1, 2, 3].
Despite the significant commercial and research value of the information in patents, manual
effort is still the primary mechanism for extracting and organizing this information. This is
costly, considering the large volume of patents available [4, 5]. Development of automatic
natural language processing (NLP) systems for chemical patents, which aim to convert text
corpora into structured knowledge about chemical compounds, has become a focus of recent
research [6, 7].

The ChEMU campaign focuses on information extraction tasks over chemical reactions in
patents. The ChEMU2020 lab [8, 7] provided two information extraction tasks, named entity
recognition (NER) and event extraction (EE). The ChEMU 2021 lab [9, 10] introduced one more
task, anaphora resolution (AR). This year, we re-run all the three tasks with new test sets.
Together, the tasks support comprehensive automatic chemical patent analysis.

In collaboration with chemical domain experts, we have built upon the datasets used in
ChEMU 2020/2021 (1500 snippets) and prepared 500 snippets from selected chemical patents
that specifically target all three tasks. For the NER and the EE tasks, three chemical experts
were hired to manually annotate the corpus, labeling named entities and event steps in these
text segments. Two of them reviewed all text segments independently and the third annotator
acted as an adjudicator who resolved their disagreements and merged their annotations into
the final gold-standard corpus. For the AR task, two chemical experts, a PhD candidate and a
final year bachelor student in Chemistry were hired to annotate the same set of snippets. The
dataset was first annotated by the two annotators individually, and then their annotations were
compared and combined by an adjudicator.

The ChEMU2022 lab has received considerable interest, attracting 54 registrants. Specifically,
we received 8 runs from 3 teams in the NER task, 11 runs from 3 teams in the EE task, and 3
runs from 1 team in the AR task, respectively. Several submissions achieved exciting results,
with a few of them outperforming baseline models significantly.

The rest of the paper is structured as follows. We first discuss related work and shared tasks
in Section 2 and introduce the corpus we created for use in the lab in Section 3. Then we give
an overview of the tasks in Section 4 and detail the valuation framework of ChEMU in Section 5
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including the evaluation methods and baseline models. We present the evaluation results in
Section 7 and finally conclude this paper in Section 8.

2. Related Work

To assess and advance the natural language processing (NLP) techniques in the biochemical
domain, many shared tasks/labs have been organized, including n2c21, TREC2, BioCreative3,
BioNLP4, and CLEF workshops5. These shared tasks have covered a range of benchmark text
mining tasks: information retrieval, such as document retrieval (CLEF eHealth 2014 [11]) and text
classification (CoNLL 2010 [12]); word semantics, such as named entity recognition (BioCreative
II [13] Task 1) and mention normalization (BioCreative III [14, 15] Gene Normalization Task);
relation semantics, such as event extraction (GENIA Event Extraction [16]) and interaction
extraction (Drug-Drug Interaction [17]); and high-level applications, such as question answering
(Semantic QA [18]) and document summarization (Biomed-Summ [19]).

Nevertheless, most of these shared tasks/labs did not focus on the domain of chemical patents.
These shared tasks mainly focused on the text mining over biomedical texts (e.g., scientific
literature, such as PubMed abstracts) or clinical data (e.g., clinical health records). Text mining
techniques that are developed for biomedical or biochemical texts, such as scientific journals
and clinical records may not be effective for chemical patents. This is because their purpose is
distinct—chemical patents are written for protection of intellectual property related to chemical
compounds—and their content has different scope and characteristics, including variations in
linguistic structures. Thus, it is critical to develop text mining techniques that are tailored for
chemical patents.

Only two shared tasks have previously considered chemical patents. TREC 2009 [20] provided
a chemical information retrieval track for the tasks of ad hoc retrieval of chemical patents and
prior art search. However, this track differs significantly from the subtasks in our ChEMU lab: it
addresses document-level retrieval and relevance to queries instead of considering the detailed
content of each document. The ChemDNER-patents task [21] at the BioCreative V workshop
was the task that is most similar with ours. It aimed at detection of chemical compounds and
genes/proteins in patent text. However, the ChemDNER-patents task only considered entity
detection within patent abstracts while we consider data extracted from the full texts of patents.
Moreover, our definition of chemical compound entities is much richer as our label set defines
not only that a chemical or drug compound is mentioned, but also what its specific role is with
respect to the chemical reaction that it is related to in the description, e.g., starting material,
catalyst, or product.

The ChEMU labs also contribute new corpus on chemical text mining for the research
community6. Most existing benchmark datasets for biochemical text mining focus on biomedical
texts, i.e., texts that consider the interaction of chemicals with molecular biology or human

1https://n2c2.dbmi.hms.harvard.edu/
2https://trec.nist.gov/
3https://biocreative.bioinformatics.udel.edu/
4https://2019.bionlp-ost.org/
5https://sites.google.com/site/clefehealth/
6https://chemu.eng.unimelb.edu.au/
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disease. CHEMProt [22] consists of 1,820 PubMed7 abstracts with chemical-protein interactions,
DDI extraction 2013 corpus [17] is a collection of 792 texts selected from the DrugBank database8

and other 233 PubMed abstracts, and BC5CDR is a collection of 1,500 PubMed titles and abstracts
selected from the CTD-Pfizer corpus, just to give a few examples.

The number of public datasets that focus on the chemistry domain is limited. Further, several
existing chemical datasets are based on structured/semi-structured texts rather than free, natural
language, texts. For example, the ZINC 15 250k corpus9 is a collection of 250,000 molecules with
their Simplified Molecular Input Line Entry System (SMILES) strings. The Tox21 dataset contains
roughly 7,000 molecules and typical 120 characteristics, such as atomic number, aromicity, donor
status. There are two datasets that are constructed from free patent texts: (1) the dataset released
by the ChemDNER patents task and (2) the dataset created by Akhondi et al. [23]. However,
these two datasets only contain entity annotations. Our chemical reaction corpus is further
enriched by the relations between the annotated entities.

Despite the limited number of shared tasks on chemical patent mining, there is an increasing
interest in developing information extraction models for patents in general research communities
[24, 2, 25]. Various text mining techniques have been proposed for information extraction over
chemical patents [26], addressing fundamental NLP tasks, such as named entity recognition
and relation extraction [24, 27, 28, 29]. Early techniques for chemical text mining, such as
dictionary-based methods [30, 31, 28] and grammar-based methods [32, 33, 34], heavily rely
on expert knowledge in the chemical domain. Recently, machine learning-based techniques
have reported state-of-the-art effectiveness in chemical text mining [35, 29]. However, such
techniques require a large amount of annotated text data, which still remains limited. Thus,
ChEMU lab 2020 was hosted to provide an opportunity for NLP experts to develop information
extraction systems over chemical patents. The new ChEMU reaction corpus was also made
publicly available to all researchers as an important benchmark dataset for future research in
this domain [36].

3. The ChEMU Chemical Reaction Corpus

In this section, we explain how the dataset is created for our shared tasks. The complete
annotation guidelines are made available on our website10.

3.1. Data Selection

The ChEMU chemical reaction corpus was built with the aid of Elsevier Reaxys® database.11

Reaxys® is a rich information resource for chemical reactions, which contains detailed descrip-
tions of chemical reactions that are extracted via an “excerption” process, i.e., manual selection
of information from literature sources, such as patents and scientific publications.

7https://pubmed.ncbi.nlm.nih.gov/
8https://go.drugbank.com/
9https://github.com/aspuru-guzik-group/chemical_vae/tree/master/models/zinc

10http://chemu2022.eng.unimelb.edu.au/
11Reaxys® Copyright ©2022 Elsevier Life Sciences IP Limited except certain content provided by third parties.

Reaxys is a trademark of Elsevier Life Sciences IP Limited, used under license. https://www.reaxys.com
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[Step 4] Synthesis of N-((5-(hydrazinecarbonyl)pyridin-2-yl)methyl)-1-methyl-
N-phenylpiperidine-4-carboxamide Methyl 6-((1-methyl-N-phenylpiperidine-4-
carboxamido)methyl)nicotinate (0.120 g, 0.327 mmol), synthesized in step 3, and
hydrazine monohydrate (0.079 mL, 1.633 mmol) were dissolved in ethanol (10 mL) at
room temperature, and the solution was heated under reflux for 12 hours, and then
cooled to room temperature to terminate the reaction. The reaction mixture was
concentrated under reduced pressure to remove the solvent, and the concentrate was
purified by column chromatography (SiO2, 4 g cartridge; methanol/dichloromethane =
from 5% to 30%) and concentrated to give the title compound (0.115 g, 95.8%) as a foam
solid.

Figure 1: An example of one patent snippet in ChEMU chemical reaction corpus.

In ChEMU 2020, we selected 180 English patents from the European Patent Office and the
United States Patent and Trademark Office, for which information had been included in the
Reaxys database. From these patents, 1500 text segments were sampled from chemical reaction
descriptions pre-identified by expert domain annotators, available as a product of the process
used to populate information in Reaxys® . We refer to each text segment as a patent “snippet”
and use the two expressions interchangeably in the remainder of this paper. The 1500 snippets
were annotated for the named entity recognition (NER) and the event extraction (EE) tasks. In
ChEMU 2021, we annotated the same 1500 snippets for the anaphora resolution (AR) task. In
ChEMU 2022, we further collect 500 snippets from the selected patents and annotate them for
all three tasks.

We present an example of a patent snippet in Figure 1. This snippet describes the synthesis
of a particular chemical compound, N-((5-(hydrazinecarbonyl)pyridin-2-yl)methyl)-1-methyl-
N-phenylpiperidine-4-carboxamide. The synthesis process consists of an ordered sequence of
reaction steps:

1. dissolving the chemical compound synthesized in step 3 and hydrazine monohydrate in
ethanol;

2. heating the solution under reflux;
3. cooling the solution to room temperature;
4. concentrating the cooled mixture under reduced pressure;
5. purification of the concentrate by column chromatography;
6. concentration of the purified product to get the title compound.

Our shared tasks aim at extraction of chemical reactions from chemical patents, e.g., extracting
the above synthesis steps given the patent snippet in Figure 1. To achieve this goal, it is crucial
for us to first identify the entities that are involved in these reaction steps (e.g., hydrazine
monohydrate and ethanol) and then determine the relations between the involved entities (e.g.,
hydrazine monohydrate is dissolved in ethanol).

Furthermore, our shared tasks also aim at resolving the reference in the chemical reactions.
For example, the solution in the second step refers to the title compound (0.120 g, 0.327 mmol),



hydrazine monohydrate (0.079 mL, 1.633 mmol), and ethanol (10 mL).

3.2. Annotation Guidelines

3.2.1. NER Annotations

Four categories of entities are annotated over the corpus: (1) chemical compounds that are
involved in a chemical reaction; (2) conditions under which a chemical reaction is carried out;
(3) yields obtained for the final chemical product; and (4) example labels that are associated
with reaction specifications. Ten labels are further defined under the above four categories.
We define five different roles that a chemical compound can play within a chemical reaction,
corresponding to five labels under this category: STARTING MATERIAL, REAGENT CATALYST,
REACTION PRODUCT, SOLVENT, and OTHER COMPOUND. We also define two labels under
the category of conditions: TIME and TEMPERATURE; and two labels under the category of
yields: YIELD PERCENT and YIELD OTHER.

The definitions of all resultant labels are summarized as follows:

1. Reaction product: A substance that is formed during a chemical reaction.
2. Starting material: A substance that is consumed in the course of a chemical reaction

providing atoms to products.
3. Reagent catalyst: A compound added to a system to cause or help with a chemical reaction.

Compounds like catalysts, bases to remove protons or acids to add protons must be also
annotated with this tag.

4. Solvent: A chemical entity that dissolves a solute resulting in a solution.
5. Other compound: Other chemical compounds that are not the products, starting materials,

reagents, catalysts and solvents.
6. Example label: A label associated with a reaction specification.
7. Temperature: The temperature at which the reaction was carried out.
8. Time: The reaction time of the reaction.
9. Yield percent: Yield given in percent values.

10. Yield other : Yields provided in other units than %.

3.2.2. EE Annotations

A chemical reaction process is usually a sequence of steps, and these steps can be categorized
into two types: (1) reaction steps, i.e., the steps required to convert the starting materials to
the target reaction product; and (2) work-up steps, i.e., the manipulations required to purify or
isolate a chemical product. For example, in Figure 1, the step of heating the solution under reflux
for 12 hours is a reaction step while the step of cooling it to room temperature is a work-up
step.

We define two types of trigger words: WORKUP which refers to an event step where a
chemical compound is isolated/purified, and REACTION STEP which refers to an event step
that is involved in the conversion from a starting material to an end product. When labelling
event arguments, we adapt semantic argument role labels Arg1 and ArgM from the Proposition
Bank to label the relations between the trigger words and other arguments. Specifically, the



label Arg1 refers to the relation between an event trigger word and a chemical compound. Here,
Arg1 represents argument roles of being causally affected by another participant in the event.
ArgM represents adjunct roles with respect to an event, used to label the relation between a
trigger word and a temperature, time or yield entity. The definitions of trigger word types and
relation types are summarized as follows:

1. Workup: An event step which is a manipulation required to isolate and purify the product
of a chemical reaction.

2. Reaction step: An event within which starting materials are converted into the product.
3. Arg1: The relation between an event trigger word and a chemical compound.
4. ArgM: The relation between an event trigger word and a temperature, time, or yield

entity.

3.2.3. AR Annotations - Mentions

We aim to capture anaphora in chemical patents, with a focus on identifying chemical compounds
during the reaction process. Consistent with other anaphora corpora [37, 38, 39], only mentions
that are involved in referring relationships (as defined in Section 3.2.4) and related to chemical
compounds are annotated. The mention types that are considered for anaphora annotation are
listed below.

1. Chemical names: the formal name of chemical compounds.
2. Identifiers: identifiers or labels that uniquely represent chemical compounds which occur

earlier in the text.
3. Phrases and noun types: pronouns that refer to a previously mentioned chemical com-

pounds, e.g. they or it, and definite and indefinite noun phrases that refer to chemical
compounds, e.g. the solvent, the title compound, the mixture, and a white solid, a crude
product.

It should be noted that verbs (e.g. mix, purify, distil) and descriptions that refer to events (e.g.
the same process, step 5) are not annotated in this corpus.

Unlike many annotation schemes, our annotation allows discontinuous mentions. For exam-
ple, the underlined spans of the fragment 114 mg of 4-((4aS,7aS)-6-benzyloctahydro-1-pyrrolo[3,4-
b]pyridine-1-yl)-7H-pyrrolo[2,3-d]pyrimidine was obtained with a yield of about 99.1% are treated
as a single discontinuous mention. This introduces further complexity into the task and helps
to capture more comprehensive anaphora phenomena.

There are some differences in the definitions of entities for the NER task and the AR task.
For the NER task, entity annotations identify chemical compounds (i.e. REACTION_PRODUCT,
STARTING_MATERIAL, REAGENT_CATALYST, SOLVENT, and OTHER COMPOUND), re-
action conditions (i.e. TIME, TEMPERATURE), quantity information (i.e. YIELD_PERCENT,
YIELD_OTHER), and example labels (i.e. EXAMPLE_LABEL). There is overlap with our defi-
nition of mention for the labels relating to chemical compounds. However, in AR annotation,
chemical names are annotated along with additional quantity information, as we consider
this information to be an integral part of the chemical compound description. Furthermore,
the original entity annotations do not include generic expressions that corefer with chemical



compounds such as the mixture, the organic layer, or the filtrate, and neither do they include
equipment descriptions.

3.2.4. AR Annotations - Relation

Anaphora resolution subsumes both coreference and bridging. In the context of chemical
patents, we define four sub-types of bridging, incorporating generic and chemical knowledge.

1. Coreference: two expressions/mentions that refer to the same entity.
2. Bridging:

a) Transformed: two chemical compound entities that are initially based on the same
chemical components and have undergone possible changes through various condi-
tions (e.g., pH and temperature).

b) Reaction-associated: the relationship between a chemical compound and its immedi-
ate sources via a mixing process. The immediate sources do need to be reagents, but
they need to end up in the corresponding product. The source compounds retain
their original chemical structure.

c) Work-up: the relationship between chemical compounds that were used for isolation
or purification purposes, and their corresponding output products.

d) Contained: the association holding between chemical compounds and the related
equipment in which they are placed. The direction of the relation is from the related
equipment to the previous chemical compound.

A referring mention which cannot be interpreted on its own, or an indirect mention, is
called an anaphor, and the mention which it refers back to is called the antecedent. In relation
annotation, we preserve the direction of the anaphoric relation, from the anaphor to the
antecedent. Following similar assumptions in recent work, we restrict annotations to cases
where the antecedent appears earlier in the text than the anaphor.

3.3. Annotation Process

To facilitate the annotation process, a silver standard set was first prepared based on information
captured in the Elsevier Reaxys® database. The extracted records from Reaxys® are linked to
the IDs of their source patents. However, the precise locations of the key entity and relation
information in these records in source patents are needed to construct the gold-standard corpus.
The silver-standard dataset was prepared by automatically mapping elements of the records
in the Reaxys® database to the source patents from which the records were extracted. This
mapping process was performed by scanning patent texts and searching for excerpted entity
mentions.

For the NER and the EE tasks, three chemical experts were hired to prepare the gold standard
corpus. They manually reviewed all texts and pre-annotations in the silver-standard dataset
to add or correct precise locations of the relevant entities and relations in the texts, according
to annotation guidelines in Section 3.2.1. Two of the experts first independently reviewed and
updated the silver standard annotations. Then, a third chemical expert served as an adjudicator
who resolved their disagreements to produce the final gold-standard corpus. For the AR task,



Figure 2: Visualization of the annotations in the snippet in Figure 1 for the NER and the EE tasks.

one of the chemical experts who had annotated for the anaphora resolution task in ChEMU
2021 was hired to annotate the same set of snippets.

The annotation process was conducted using the BRAT annotation tool,12 which is an interac-
tive web-based tool for adding annotations to input texts. Continuing with the example snippet
shown in Figure 1, a visualization of the snippet after annotation is presented in Figure 2 for
the NER and the EE tasks, and Figure 3 for the AR task.

3.4. Data Partitions

We combine the training/development/test sets for ChEMU 2020/2021 (1500 snippets) and use it
as the training set for ChEMU 2022. The 500 new snippets that we annotated for ChEMU 2022
are used as the test set.

In ChEMU 2020 and 2021, the evaluation results of all submissions to the test set were only
available when the shared tasks ended. This year, we run all shared tasks in a Kaggle-style
where the test set (500 snippets) is randomly partitioned into two splits public/private with a
ratio of 30%/70%, and the participants will get immediate feedback on the public test set (150
snippets) after making a submission, while the evaluation results on the private test set (350
snippets) remain secret until the end of the shared tasks. Note that the participants are not
aware of the specific split of public and private test sets.

12https://brat.nlplab.org/



Figure 3: Visualization of the annotations in the snippet in Figure 1 for the AR task.

4. Task Definition

The three tasks, named entity recognition, event extraction, and anaphora resolution, are all
snippet-level tasks since they only consider entities or relations between them within a few
consecutive sentences. In our ChEMU corpus, every snippet has been annotated for all three
tasks, which opens the opportunity to explore multi-task learning since the input data is the
same for all three tasks, as illustrated in Table 1.

4.1. Task 1: Named entity recognition

In order to understand and extract a chemical reaction from natural language texts, the first
essential step is to identify the entities that are involved in the chemical reaction. The first task
aims to accomplish this step by identifying the ten types of entities described in Section 3.2.1.
The task requires the detection of the entity names in patent snippets and the assignment of
correct labels to the detected entities. For example, given a detected chemical compound, the
task requires the identification of both its text span and its specific type according to the role in
which it plays within a chemical reaction description.



Table 1
Illustration of three tasks performed on the same snippet (NER, EE, and AR).

Raw text The title compound was used without purification (1.180 g, 95.2%) as yellow solid.

NER

The title compound was used without purification (1.180 g, 95.2%) as yellow solid.
REACTION_PRODUCT: title compound
YIELD_OTHER: 1.180 g
YIELD_PERCENT: 95.2%

EE

The title compound was used without purification (1.180 g, 95.2%) as yellow solid.
REACTION_STEP: used → REACTION_PRODUCT: title compound
REACTION_STEP: used → YIELD_OTHER: 1.180 g
REACTION_STEP: used → YIELD_PERCENT: 95.2%

AR
The title compound was used without purification (1.180 g, 95.2%) as yellow solid.
COREFERENCE: yellow solid → The title compound (1.180 g, 95.2%)

4.2. Task 2: Event extraction

A chemical reaction usually consists of an ordered sequence of event steps that transforms a
starting product to an end product, such as the six reaction steps in the synthesis process of
the chemical compound described in the example in Figure 1. The event extraction task (Task
2) targets identifying these event steps. Similarly to conventional event extraction problems,
the EE task involves three subtasks: event trigger word detection, event typing and argument
prediction. First, it requires the detection of event trigger words and assignment of correct
labels for the trigger words. Second, it requires the determination of argument entities that are
associated with the trigger words, i.e., which entities identified in the NER task participate in
event or reaction steps. This is done by labelling the connections between event trigger words
and their arguments. Given an event trigger word 𝑒 and a set 𝑆 of arguments that participate in
𝑒, the EE task requires the creation of |𝑆| relation entries connecting 𝑒 to an argument entity in
𝑆. Here, |𝑆| represents the cardinality of the set 𝑆. Finally, this task requires the assignment of
correct relation type labels (Arg1 or ArgM) to each of the detected relations.

4.3. Task 3: Anaphora resolution

This task requires the resolution of anaphoric dependencies between expressions in chemical
patents. The participants are required to find five types of anaphoric relationships in chemical
patents, i.e. coreference, reaction-associated, work-up, contained, and transform.

Taking the text snippet in Figure 4 as an example, several anaphoric relationships can be
extracted from it. [The mixture]4 and [the mixture]3 refer to the same “mixture” and thus,
form a coreference relationship. The two expressions [The mixture]1 and [the mixture]2 are
initially based on the same chemical components but the property of [the mixture]2 changes
after the “stir” and “cool” action. Thus, the two expressions should be linked as “Transformed”.
The expression [The mixture]1 comes from mixing the chemical compounds prior to it, e.g.,
[water (4.9 ml)]. Thus, the two expressions are linked as “Reaction-associated”. The expression



[Acetic acid (9.8 ml)] and [water (4.9 ml)] were added to [the solution] in [a
flask]. [The mixture]1 was stirred for 3 hrs at 50°C and then cooled to 0°C . 2N-
sodium hydroxide aqueous solution was added to [the mixture]2 until the pH of [the
mixture]3 became 9. [The mixture]4 was extracted with [ethyl acetate] for 3 times.
[The combined organic layer] was washed with water and saturated aqueous sodium
chloride.

ID Relation type Anaphor Antecedent

AR1 Coreference [The mixture]4 [the mixture]3
AR2 Transformed [the mixture]2 [The mixture]1
AR3 Reaction_associated [The mixture]1 [water (4.9 ml)]
AR4 Work-up [The combined organic layer] [ethyl acetate]
AR5 Contained [a flask] [the solution]

Figure 4: Text snippet containing a chemical reaction, with its anaphoric relationships. The expressions
that are involved are highlighted in bold. In the cases where several expressions have identical text
form, subscripts are added according to their order of appearance.

[The combined organic layer] comes from the extraction of [ethyl acetate]. Thus, they are
linked as “Work-up”. Finally, the expression [the solution] is contained by the entity [a flask],
and the two are linked as “Contained”.

5. Evaluation Framework

5.1. Evaluation Methods

We use BRATEval13 to evaluate all the runs that we receive. Three metrics are used to evaluate
the performance of all the submissions: Precision, Recall, and 𝐹1 score. We use two difference
matching criteria, exact matching and relaxed matching (approximate matching), as in some
practical applications it also makes sense to understand if the model can identify the approximate
region of mentions.

Formally, let 𝐸 = (𝐸𝑇,𝐴,𝐵) denote an entity where 𝐸𝑇 is the type of 𝐸, 𝐴 and 𝐵 are the
beginning position (inclusive) and end position (exclusive) of the text span of 𝐸. Then two
entities 𝐸1 and 𝐸2 are exactly matched (𝐸1 = 𝐸2), if 𝐸𝑇1 = 𝐸𝑇2, 𝐴1 = 𝐴2, and 𝐵1 = 𝐵2.
While two entities 𝐸1 and 𝐸2 are approximately matched (𝐸1 ≈ 𝐸2) if 𝐸𝑇1 = 𝐸𝑇2, 𝐴2 < 𝐵1,
and 𝐴1 < 𝐵2, i.e. the two spans [𝐴1, 𝐵1) and [𝐴2, 𝐵2) overlaps.

Furthermore, let 𝑅 = (𝑅𝑇,𝐸𝑎𝑛𝑎, 𝐸𝑎𝑛𝑡) be a relation where 𝑅𝑇 is the type of 𝑅, 𝐸𝑎𝑛𝑎 the
anaphor of 𝑅, 𝐸𝑎𝑛𝑡 the antecedent of 𝑅. Then 𝑅1 and 𝑅2 are exactly matched (𝑅1 = 𝑅2) if
𝑅𝑇1 = 𝑅𝑇2, 𝐸𝑎𝑛𝑎

1 = 𝐸𝑎𝑛𝑎
2 , and 𝐸𝑎𝑛𝑡

1 = 𝐸𝑎𝑛𝑡
2 . While 𝑅1 and 𝑅2 are approximately matched

(𝑅1 ≈ 𝑅2) if 𝑅𝑇1 = 𝑅𝑇2, 𝐸𝑎𝑛𝑎
1 ≈ 𝐸𝑎𝑛𝑎

2 , and 𝐸𝑎𝑛𝑡
1 ≈ 𝐸𝑎𝑛𝑡

2 .
In summary, we require strict type match in both exact and relaxed matching, but are lenient

in span matching.
13https://bitbucket.org/nicta_biomed/brateval/src/master/

https://bitbucket.org/nicta_biomed/brateval/src/master/
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Figure 5: An example matching graph and two bipartite matching for it.

5.1.1. Exact Matching

With the above definitions, the metrics for exact matching can be easily calculated. The true
positives (TP) are exact matching pairs found in gold relations and predicted relations. Then false
positives (FP) are the predicted relations that don’t have a match, i.e. 𝐹𝑃 = #𝑝𝑟𝑒𝑑−𝑇𝑃 , where
#𝑝𝑟𝑒𝑑 is the number of predicted relations. Similarly, false negatives 𝐹𝑁 are the gold relations
that are not matched by any predicted relations, i.e. 𝐹𝑁 = #𝑔𝑜𝑙𝑑− 𝑇𝑃 where #𝑔𝑜𝑙𝑑 is the
number of gold relations. Finally Precision 𝑃 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑃 ), Recall 𝑅 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑁),
and 𝐹1 = 2/(1/𝑃 + 1/𝑅).

5.1.2. Relaxed Matching

Unlike exact matching, relaxed matching is not well-defined and metrics in this setting have
more than one way to calculate, therefore we need to clearly define all the metrics.

Let consider an example shown in Figure 5a where nodes {𝑃𝑖}5𝑖=1 are predicted relations,
{𝐺𝑖}5𝑖=1 are gold relations, and every edge between a 𝑃 node and a 𝐺 node means they are
approximately matched. At first glance, one may think that 𝐹𝑁 = 𝐹𝑃 = 0 because every gold
relation has at least a match and so does every predicted relation. However, it is impossible to
find 5 true positive pairs from this graph without using one node more than once. Therefore,
if 𝐹𝑁 = 𝐹𝑃 = 0, then 𝐹𝑁 + 𝑇𝑃 ̸= #𝑔𝑜𝑙𝑑 = 5 and 𝐹𝑃 + 𝑇𝑃 ̸= #𝑝𝑟𝑒𝑑 = 5, which is
inconsistent with the formulas in exact setting.

So, instead of defining 𝐹𝑁 as the number of gold relations that don’t have a match, we
just define 𝐹𝑁 = #𝑔𝑜𝑙𝑑− 𝑇𝑃 . Similarly 𝐹𝑃 is defined as #𝑝𝑟𝑒𝑑− 𝑇𝑃 . Then the problem
remained is how to calculate 𝑇𝑃 . Actually, finding true positive pairs can be considered as
bipartite matching. Figure 5b shows a matching with 𝑇𝑃 = 3 but is not optimal. Figure 5c
shows one possible maximum bipartite matching with 𝑇𝑃 = 4. Another optimal matching is
replacing edge 𝑃0 −𝐺0 with 𝑃0 −𝐺1.

In summary, we define 𝑇𝑃 as the maximum bipartite matching for the graph constructed by
all approximately matched pairs, then 𝐹𝑁 = #𝑔𝑜𝑙𝑑− 𝑇𝑃 and 𝐹𝑃 = #𝑝𝑟𝑒𝑑− 𝑇𝑃 , finally



Precision 𝑃 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑃 ), Recall 𝑅 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑁), and 𝐹1 = 2/(1/𝑃 +1/𝑅). This
has been implemented in the latest BRATEval.

5.2. Coreference Linkings in Anaphora Resolution Task

We consider two types of coreference linking, i.e. (1) surface coreference linking and (2) atomic
coreference linking, due to the existence of transitive coreference relationships. By transitive
coreference relationships we mean multi-hop coreference such as a link from an expression
T1 to T3 via an intermediate expression T2, viz., “T1→T2→T3”. Surface coreference linking
will restrict attention to one-hop relationships, viz., to: “T1→T2” and “T2→T3”. Whereas
atomic coreference linking will tackle coreference between an anaphoric expression and its first
antecedent, i.e. intermediate antecedents will be collapsed. Thus, these two links will be used
for the above example, “T1→T3” and “T2→T3”. Note that we only consider transitive linking
in coreference relationships.

Note that {T1→T2,T2→T3} infers {T1→T3,T2→T3}, but the reverse is not true. This leads
to a problem about how to score a prediction {T1→T3,T2→T3}, when the gold relation is
{T1→T2,T2→T3}. Both T1→T3 and T2→T3 are true, but some information is missing here.

Our solution is to first expand both the prediction set and gold set where all valid relations
that can be inferred will be generated and added to the set, and then to evaluate the two sets
normally. In the above example, the gold set will be expanded to {T1→T2,T2→T3,T1→T3}, and
then the result is 𝑇𝑃 = 2, 𝐹𝑁 = 1. Likewise, when evaluate {T1→T4,T2→T4,T3→T4} against
{T1→T2,T2→T3,T3→T4}, the gold set will be expanded into 6 relations, while the prediction set
won’t be expanded as no new relation can be inferred. So the evaluation result will be 𝑇𝑃 = 3,
𝐹𝑁 = 3. One may worry that if there is a chain of length 𝑛 then its expanded set will be in
𝑂(𝑛2), when 𝑛 is large, this local evaluation result will have too much influence on the overall
result. But we find in practice that coreference chains are relatively short, with 3 or 4 being the
most typical lengths, so it is unlikely to be a big issue.

5.3. Baselines

5.4. NER and EE Baseline

We use a joint model for recognizing named entities and classifying relations between them.
The model first processes the input snippet using a BERT model to obtain the contextualized
word representations. We adopt the BIO tagging schema for training the NER classifier which
classifies every word into entity tags. Then a list of identified entities is created based on the
output of the NER classifier. For each entity in the list, the contextualized word representations
are max pooled to obtain the representation for the entity. Then the model enumerates all
possible pairs of entities and provides them to a relation classifier which classifies every pair of
entities by concatenating the representations of both entities.

5.4.1. AR Baseline

Our baseline model adopts an end-to-end architecture for coreference resolution [41, 42], as
depicted in Figure 6. Following the methods presented in [40], we use GloVe embeddings and a



Figure 6: The architecture of our baseline model for Task 3: Anaphora Resolution. This figure is taken
from [40].

character-level CNN as input to a BiLSTM to obtain contextualized word representations. Then
all possible spans are enumerated and fed to a mention classifier which detects if the input is a
mention. Based on the same mention representations, pairs of mentions are fed to a coreference
classifier and a bridging classifier, where the coreference classifier does binary classification
and the bridging one classifies pairs into 4 bridging relation types and a special class for no
relation. Training is done jointly with all losses added together.

6. Overview of Participants’ Approaches

We received paper submissions from all the participating teams, i.e. the LG team, the HUKB
team, and the VCU team.

6.1. LG Team

The LG team developed context-aware NER and RE models based on the domain-specific
language model with pipeline approach. For the domain-specific language model, they post-
train the BiolinkBert[43] model with various chemical corpora and pre-processing methods,
then select the best performing model from domain-specific benchmark datasets consisting
of BLURB (Biomedical Language Understanding & Reasoning Benchmark)[44] and ChEMU
2020[7]. Based on this language model, they develop the NER model to predict both the entity
and trigger word, and the RE model to predict the relation between them. Among the pipeline
approach and the joint approach, they choose the pipeline approach because PURE[45] reports it
gets higher performance than the joint approach. For the NER model, they experiment with two
popular approaches, the sequence tagging approach[46, 47] and the span-based approach[45, 48].
Finally, they choose the sequence tagging approach that shows higher performance in the NER
task. For the RE model, they train the model to classify the relation types or no relation between
every pair of trigger word and entity in the snippet. Furthermore, they train both models using
inputs that contain multiple sentences rather than a single sentence so that the model can utilize
contextual information. For the ensemble, they train the best performing model with 10-fold
cross validation and then predict the results with soft-voting. Finally, they apply rule-based



post-processing to the prediction results. Their best public exact match f1 score of task 1a and
1b was 96.26 and 92.56, respectively, before the submission deadline. After that, they further
experimented with various post-processing and the improved final scores are 96.33 and 92.82

6.2. HUKB Team

The HUKB team participated in all three tasks. For the NER task, they used ChemBERT[49], a
pre-trained language model for chemistry-related documents, and a set of post-processing rules
that considers document-level context. First, ChemBERT predicted mentions using a sentence
as the input. Then, two post-processing methods were applied. They submitted a result and it
obtained an exact match F-score of 0.9412 and a relaxed match F-score of 0.9572.

For the EE task, they adopted a pipeline approach for relation extraction. In addition to named
entities detected by the NER task, they also used ChemBERT for event detection as the NER
task. After detecting those mentions, they also used ChemBERT for relation classification. In
this classification process, all candidate pairs in a sentence were classified and positive relations
were annotated by the system. They fine-tuned one ChemBERT model for ARG1 and a second
for ARGM relations. In the training stage, they used not only gold-standard entities but also
predicted events that were generated by five systems trained on 80% of the training set, similarly
to five-fold cross-validation. They submitted a result and it obtained an exact match F-score of
0.8868 and a relaxed match F-score of 0.9028. They also submitted a result after the evaluation
phase that corrected the sequence length of an input and the result obtained an exact match
F-score of 0.8865 and a relaxed match F-score of 0.9027.

For the AR task, they adopted a pipeline approach for relation extraction, where the candidates
of mentions are first detected and then relations between them are classified. In addition, they
used a set of post-processing rules that considers document-level context. For mention detection,
they fine-tuned one Chem-BERT model for coreference and a second for bridging relations.
They augmented the number of positive examples for coreference relations in the training set
by reusing sentences that contained one or more mentions five times because the number of
mentions in the training set for coreference was smaller than for other datasets used for mention
detection. For relation classification, Chem-BERT detected a relation for each pair of mentions
in two continuous sentences. They trained two models for coreference and bridging relations.
They applied two post-processing methods for each relations that consider document-level
context. Both of them used results in the NER task; for example, REACTION PRODUCT in the
NER task was used for the detection of corefenrence relations. They submitted three results: (1)
without post-processing rules, (2) with a post-processing rule for bridging relations and (3) with
post-processing rules both coreference and bridging relations. The third result obtained the
best performance that was an exact match F-score of 0.7085 and an F-score of 0.7893. They also
submitted a result after the evaluation phase that corrected the sequence length of an input and
the result obtained an exact match F-score of 0.8865 and a relaxed match F-score of 0.9027.

6.3. VCU Team

The VCU team participated in the NER and the EE tasks. For the NER task, they evaluated two
methods for identifying the experimental parameters and triggers. The first was a transformer-



based architecture and the second a bidirectional Long Short Term Memory (biLSTM) units, both
with a Conditional Random Field (CRF) output layer. The input to their biLSTM model were pre-
trained word embeddings[8] in combination with character embeddings. These embeddings are
concatenated and then passed through the network. The input to their transformer model used
Bidirectional Encoder Representations from Transformers (BERT)[46]. The BERT embeddings
are then passed to an additional transformer encoder layer and a CRF output layer which
predicts a sequence of labels corresponding to entity types. The results showed that our biLSTM
model obtained higher scores overall with a exact precision, recall and F1 score of 0.73, 0.81, and
0.77 respectively, and relaxed precision, recall and F1 score of 0.83, 0.92, and 0.87 respectively.

They treat the EE task as a binary classification task building a separate model for each trigger
word-entity type to determine whether a relationship exists between them. They first identify
the sentence where the trigger word-entity pair is located, then they replace the non-targeted
trigger word-entity pairs with ‘X’ from the input sentence except for the targeted trigger word-
entity pair. Here, BERT captures the contextual information within a sentence, whereas GCN
captures the global information. They use the BERT tokenizer for word tokenization, and then
they generate a vocabulary graph 𝐺 = (𝑉,𝐸) where the word nodes in the graph are denoted
by mapped integers. Next, the combined input of mapped word indices with the generated
graph embeddings is passed through BERT, and the final embedding representation is fed into a
fully connected layer for classification. This method obtained an overall with an exact precision,
recall and F1 score of 0.82, 0.68, and 0.75 respectively, and a relaxed precision, recall and F1
score of 0.88, 0.73, and 0.79 respectively.

7. Results and Discussions

A total of 54 participants registered on our submission website for the shared tasks. Among
them, we finally received 22 submissions from 3 teams on the test set. The 3 teams are LG AI
Research (LG), Hokkaido University (HUKB), and Virginia Commonwealth University (VCU).
In this section, we report their results along with the performance of our baseline systems.

7.1. Task 1: Named Entity Recognition

We report the overall performance of all runs in Table 2. The baseline achieves 0.9367 in F1-score
under exact-match. Four runs outperform the baseline in terms of F1-score under exact-match.
The best run was submitted by team LG AI Research, achieving a high F1-score of 0.9673. The
F1-scores for submissions from team VCU in relaxed match are 10%-15% higher than those in
exact-match. This difference between exact-match and relaxed-match may be related to the
long text spans of chemical compounds, which is one of the main challenges in NER tasks in
the domain of chemical documents.

7.2. Task 2: Event Extraction

The overall performance of all runs is summarized in Table 3 in terms of Precision, Recall, and
F1-score under both exact-match and relaxed-match. The rankings of different systems are



Table 2
Overall performance of all runs in Task 1 Named Entity Recognition on private test set. Here, P, R, and F
represents the Precision, Recall, and F1-score, respectively. For each metric, we highlight the best result
in bold. The results are ordered by their performance in terms of F1-score under exact-match.

Run
Exact-Match Relaxed-Match

P R F P R F

LG-run1 0.9663 0.9683 0.9673 0.9782 0.9803 0.9793
LG-run2 0.9627 0.9655 0.9641 0.9758 0.9787 0.9772
LG-run3 0.9628 0.9652 0.964 0.9758 0.9782 0.977
HUKB 0.9401 0.9422 0.9412 0.9561 0.9583 0.9572

Baseline 0.947 0.9267 0.9367 0.964 0.9432 0.9535

VCU-run1 0.7335 0.8072 0.7686 0.8345 0.9185 0.8745
VCU-run2 0.734 0.7501 0.742 0.8802 0.8996 0.8898
VCU-run3 0.695 0.7869 0.7381 0.7944 0.8994 0.8436
VCU-run4 0.7263 0.7501 0.738 0.8726 0.9012 0.8867

Table 3
Overall performance of all runs in Task 2 Event Extraction on private test set. Here, P, R, and F represents
the Precision, Recall, and F1-score, respectively. For each metric, we highlight the best result in bold.
The results are ordered by their performance in terms of F1-score under exact-match.

Run
Exact-Match Relaxed-Match

P R F P R F

LG-run1 0.9258 0.9141 0.9199 0.9403 0.9284 0.9343
LG-run2 0.9251 0.9147 0.9198 0.9416 0.9309 0.9362
LG-run3 0.9241 0.9129 0.9185 0.9403 0.929 0.9346
LG-run4 0.9234 0.9135 0.9184 0.9398 0.9298 0.9348
LG-run5 0.9258 0.907 0.9163 0.942 0.9229 0.9323

Baseline 0.9087 0.9089 0.9088 0.9244 0.9246 0.9245

HUKB 0.9058 0.8685 0.8868 0.9222 0.8842 0.9028
VCU-run1 0.8249 0.6831 0.7473 0.8771 0.7264 0.7946
VCU-run2 0.826 0.6776 0.7445 0.8775 0.7199 0.7909
VCU-run3 0.7533 0.6883 0.7193 0.8015 0.7323 0.7653
VCU-run4 0.64 0.6238 0.6318 0.703 0.6852 0.694
VCU-run5 0.2675 0.6263 0.3749 0.3075 0.7199 0.4309

almost fully consistent across all metrics. Our baseline obtains 0.9088 F1-score under exact-
match and the best run is from team LG AI Research which archieves 0.9199 F1-score under
exact-match. The performance gap between our baseline and the best run indicates the difficulty
of the event extraction task comparing to the NER task. We also notice that recall scores of
most runs are consistently lower than their precision scores, which may reveal that the task
of identifying a relation from a chemical patent is harder than the task of typing an identified
relation.



Table 4
Overall performance of all runs in Task 3 Anaphora Resolution on private test set. Here, P, R, and F
represents the Precision, Recall, and F1-score, respectively. For each metric, we highlight the best result
in bold. The results are ordered by their performance in terms of F1-score under exact-match.

Run
Exact-Match Relaxed-Match

P R F P R F

HUKB-run1 0.6876 0.7307 0.7085 0.766 0.814 0.7893
HUKB-run2 0.729 0.6838 0.7057 0.8107 0.7604 0.7848
HUKB-run3 0.7393 0.6616 0.6983 0.8222 0.7358 0.7766

Baseline 0.7418 0.6398 0.687 0.7867 0.6784 0.7286

7.3. Task 3: Anaphora Resolution

The evaluation results of all submission to the anaphora resolution task are shown in Table 4.
The first run from the Hokkaido University team achieves an F1-score of 0.7085 in exact-match,
outperforming our baseline which gets 0.687. The lead of the best run is even larger in relaxed
matching, with an F1-score of 0.7893, about 6 points higher than our baseline. This shows the
potential of the model built by the Hokkaido University team and indicates that the performance
in exact matching may be further boosted if the boundary errors of their model could be
corrected in a post-processing step. Our baseline has higher precision in the exact setting, which
indicates that our model is more conservative and could possibly be enhanced by making more
aggressive predictions to improve recall.

8. Conclusions

This paper presents a general overview of the activities and outcomes of the ChEMU 2022
evaluation lab. As the third instance of our ChEMU lab series, ChEMU 2022 targets three tasks
focusing on chemical reaction information extraction from chemical patents. The evaluation
result includes different approaches to tackling the shared task, with several submissions outper-
forming our baseline methods. We look forward to fruitful discussion and deeper understanding
of the methodological details of these submissions at the workshop.
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