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Abstract

This paper describes our results for the three tasks at ChEMU 2022: Task 1a (named entity recognition),
Task 1b (event extraction), and Task 1c (anaphora resolution). We adopted a hybrid approach using
deep learning models and a small set of post-processing rules for these tasks. For Tasks 1b and 1c, we
adopted a pipeline approach for relation extraction, which combined mention detection with relation
classification. In addition, we proposed post-processing methods for Task 1c that considered the results
of Task 1a. Our system obtained an exact match F-score of 0.9412 and a relaxed match F-score of 0.9572
for Task 1a, an exact match F-score of 0.8865 and a relaxed match F-score of 0.9027 for Task 1b, and
an exact match F-score of 0.7232 and an F-score of 0.8053 for Task 1c for each test set (private score).
Although our approaches tried to consider the document-level context and relationships between the
tasks, limitations remained.
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1. Introduction

The automated extraction of the chemical-reaction information in patents plays an important
role in collecting chemical-reaction information in reaction databases for use by synthetic
chemists. Chemical patents contain important information about new chemical discoveries
because any new chemical compounds are usually published via patents [1]. With the number
of patents increasing rapidly, manually collecting the information written in patents not only
takes time and cost but also requires expertise in the subject matter of the patents.

Since 2020, the Cheminformatics Elsevier Melbourne University (ChEMU) laboratory has
identified several tasks related to information extraction from chemical patents, including
expression-level information extraction [2, 3] and document-level information [4, 5]. For 2022,
the ChEMU laboratory is providing five tasks for ChEMU 2022 [6].

In recent years, deep learning has been recognized as a promising approach to informa-
tion extraction from chemical literature. For example, pre-trained language models such as
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BioBERT [7] and ChemBERT [8] have shown high performance in information-extraction
tasks. Moreover, the best systems in previous ChEMU tasks all employed deep-learning-based
approaches, together with a small amount of rule-based post-processing [9, 10]. In addition,
both of these systems used a pipeline approach for relation extraction tasks [11, 12], such as the
event extraction and anaphora resolution tasks.

This paper describes our results for the three tasks at ChEMU 2022: Task 1a (named entity
recognition, NER), Task 1b (event extraction, EE) and Task 1c (anaphora resolution, AR). We
employed hybrid approaches that used deep learning models and a small set of post-processing
rules. In addition, we propose post-processing methods for Task 1c that considered the results
of Task 1a.

2. Task Description

Prediction systems for the three tasks must solve two general tasks: the identification of the
spans of entities and the labels (mention detection), together with the identification of relations
between the spans (relation classification).

Task 1a, (i.e., NER), is a mention detection task that identifies one of the 10 entity types of labels.
The set of labels contains these compounds (STARTING_MATERIAL, REAGENT_CATALYST,
REACTION_PRODUCT, SOLVENT, OTHER_COMPOUND), conditions (TIME, TEMPERATURE),
yields (YIELD_PERCENT, YIELD_OTHER), and a relation label (EXAMPLE_LABEL).

Task 1b, (i.e., EE), is a task that involves both mention detection and relation extraction. The
mention detection task identifies events that have a relationship with entities in Task 1a and
identifies relations between the events and the entities. Almost all events involve a label that
is either REACTION_STEP or WORK_UP and some events involve both labels. The relation
extraction task identifies relations between the events and compounds, which are annotated
with ARG1, and relations between the events and conditions or yield are annotated with ARGM.

Task 1c, (i.e., AR), involves both mention detection and relation extraction tasks. The mention
detection task identifies an antecedent as ENTITY and the anaphor as a label that represents their
relationship. The relation extraction task identifies relations between antecedents and anaphors
as a coreference relation (COREFERENCE) and four bridging relations (TRANSFORMED, RE-
ACTION_ASSOCIATED, WORK_UP, and CONTAINED).

3. Methods

We developed systems for mention detection and relation classification tasks that used Chem-
BERT [8], a pre-trained language model for chemistry-related documents. This approach was
similar to those of the best systems adopted in previous tasks [11, 12]. Figure 1 shows our
pipeline method. First, we split a snippet into sentences by using ChemDataExtractor [13].
Then, ChemBERT predicted the labels for mentions/relations. post-processing methods were
adopted for mention detection in Task 1a and relation detection in Task 1c, with the aim of
addressing the document-level context.

We fine-tuned ChemBERT for Task 1a. In addition, we fine-tuned multiple ChemBERTSs for
Tasks 1b and 1c because these tasks are more complex than Task 1a. Table 1 shows the set of
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Figure 1: Overview of our pipeline method

target labels for the three tasks involving mention detection and relation classification.

Table 1
Set of target labels for the three tasks involving mention detection and relation classification

Mention detection Relation classification
Task 1a | Named entity -

Named entity (Task 1a) ARG1

Event ARGM

Candidate for coreference | Coreference
Candidate for bridging Bridging

Task 1b

Task 1c

3.1. Mention Detection

For Task 1a, we trained a ChemBERT model and constructed a set of post-processing rules.
First, ChemBERT was fine-tuned on the training set, excluding snippets that had overlap-
ping mentions. A snippet was split into sentences by using ChemDataFExtractor [13] and
the sentences were split by a simple regex rule that used a particular tool' by default. Then,
IOB2 labels were assigned to the tokens. We used a linear classifier to predict the label of
each tokens and the input for it was the output of the first sub-token [14]. Second, two post-
processing methods were applied. Because compounds in a heading section, which contains
the product of the snippet (REACTION_PRODUCT) and/or the final product of the multistep
reaction (OTHER_COMPOUND), cannot be distinguished without context, a post-processing
method is required. The rule adopted is that if EXAMPLE_LABEL exists in a snippet, then
the REACTION_PRODUCT that appears before the last EXAMPLE_LABEL is annotated with
OTHER_COMPOUND. Then, if OTHER_ COMPOUND appears in a heading and the same string
appears as a REACTION_PRODUCT after the last source compound (STARTING_MATERIAL,
REAGENT_CATALYST, or SOLVENT), then the entity is labeled as a REACTION_PRODUCT.

For Task 1b, we used the method in Task 1a for named entity recognition and trained a
ChemBERT model for the detection of events in the same manner as for Task 1a.

For Task 1c, we trained one ChemBERT model for coreference and a second for bridging
relations. The reason why we split the relations is because their mentions are partly different
from each other. Therefore, we aimed to suppress false-positive relations caused by false-positive

'https://github.com/spyysalo/standoff2conll
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mentions from the other ones. In these models, single-label mention detection was performed
and the relation labels were given in the relation classification step. Sentences were tokenized
in the same manner as for Task 1a, with B, I, O and D labels from BIOHD [15] being used for
tagging because Task 1c contains discontinuous mentions. When overlapping mentions were
tokenized, we used the longer entities and discarded the shorter ones. Because the number
of mentions in the training set for coreference was smaller than for other datasets used for
mention detection, we augmented the number of positive examples in the training set by reusing
sentences that contained one or more mentions five times.

3.2. Relation Classification

For Task 1b, we trained a one ChemBERT model for ARG1 relations and a second for ARGM
relations. The input to the relation classification was a sentence with the candidate pair for
a relation between an event enclosed by [E1] and [/E1] tokens and a target enclosed by [E2]
and [/E2] tokens. The output was a binary classification result indicating whether the pair
has a relation or not. All candidate pairs in a sentence were classified and positive relations
were annotated by the system. For example, if two events and three targets are included in a
sentence, the number of candidate pairs would be six. This approach is similar to the Melax
Tech system [11], which performed best in the ChEMU 2020 task [9]. This approach was also
discussed in a general framework [16]. In the training stage, we used not only gold-standard
entities but also predicted events that were generated by five systems trained on 80% of the
training set, similarly to five-fold cross-validation.

For Task 1c, we trained one ChemBERT model for coreference and a second for bridging
relations. The input to the relation classification was a pair of sentences representing a candidate
pair for a relation between an anaphor enclosed by [E1] and [/E1] tokens and an antecedent
enclosed by [E2] and [/E2]. The reason for using a pair of sentences, different from Task 1b, was
that relations in Task 1c were often across sentences. If a mention was discontinuous, the first
block of the mention was enclosed. The output was the label of the relation or a NO_RELATION
label.

We applied two post-processing methods for Task 1c because relations that involve more
than two sentences were included in the snippets. First, for coreference relations, when RE-
ACTION_PRODUCT appeared multiple times in a snippet and the sentence-level distance of
the mentions was more than two, which means it cannot be found by ChemBERT, we assign a
COREFERENCE relation. Second, for bridging relations, when a candidate for an antecedent
did not have any anaphors, we searched for antecedent candidates for the anaphor by finding
words that started with “the” and were an anaphor for another antecedent. The candidate for
the anaphor that was closest to the antecedent was then selected as the anaphor. If the an-
tecedent contained STARTING MATERIAL, REAGENT CATALYST or SOLVENT, the relation
was annotated with REACTION_ASSOCIATED. Otherwise, the relation was annotated with a
label that was the same as the already annotated anaphor after the antecedent.

In addition to the above methods, we used a post-processing tool distributed by the task
organizer?, which generates a coreference between A and C when coreferences between A and
B and between B and C already exist.

*https://raw.githubusercontent.com/yuan-li/chemu2021/master/apply-transitive-closure.py



3.3. Experimental Settings

We used ChemBERT v3.0 [8] for the mention detection and relation classification models.
ChemBERT was implemented by using AllenNLP [17] and HuggingFace Transformers [18].
We used the AdamW optimizer [19] and cross entropy loss for optimization. The models were
trained on the training set for the task and evaluated on the development set and both public
and private test sets. Hyperparameter values were set as follows: max sequence length=384
(covering all sequences contained in the training and development sets), batch size=16, learning
rate=1e-5, and patience=7. Because the relation classification in Task 1c accepts a pair of
sentences as its input, a maximum sequence length of 512 was used for this task. The validation
metric for early stopping of mention detection in the development set was the F-score. For
relation classification, it was the validation loss.

The performances of the various systems were evaluated with respect to both exact and
relaxed matching for precision, recall, and F-score.

4. Main Results

We submitted a system with post-processing for Task 1a before the deadline and a system
without post-processing after the deadline. Table 2 shows our results for Task 1a on the private
set. Our system obtained an exact match F-score of 0.9412 and a relaxed match F-score of 0.9572.
Table 3 shows our results for the private set in detail.

Table 2
Results for Task 1a on the private set. Here, P represents precision, R represents recall, and F represents
F-score

Exact Relaxed
P R F P R F
ChemBERT (late) | 0.9327 0.9349 0.9338 | 0.9481 0.9503 0.9492
ChemBERT + PP 0.9401 09422 09412 | 09561 0.9583 0.9572

Relation

We submitted one system for Task 1b before the deadline. We also submitted a corrected
version after the deadline, having found an error related to the sequence length of the input
to the system. Table 4 shows our results for Task 1b on the private set. The corrected system
obtained an exact match F-score of 0.8865 and a relaxed match F-score of 0.9027. Table 5 shows
our results for the private set in detail.

We submitted three systems for Task 1c before the deadline. We also submitted a corrected
version after the deadline, having found an error related to the sequence length of the input
to the system. Table 6 shows our results for Task 1c on the private set. The corrected system
obtained an exact match F-score of 0.7232 and a relaxed match F-score of 0.8053. Table 7 shows
our results on the private set in detail.



Table 3

Detailed results for Task 1a on the private set, as predicted by the post-processing version of the system

Entity Exact Relaxed
P R F P R F
EXAMPLE_LABEL 09714 09913 0.9812 | 0.9714 0.9913 0.9812
OTHER_COMPOUND 0.9498 0.9486 0.9492 | 0.9637 0.9625 0.9631
REACTION_PRODUCT | 0.9112 0.9034 0.9073 | 0.9433 0.9352 0.9392
REAGENT_CATALYST 0.8529 0.9050 0.8782 | 0.8721 0.9253 0.8979
SOLVENT 0.9284 0.9666 0.9471 | 0.9284 0.9666 0.9471
STARTING_MATERIAL | 0.8997 0.8594 0.8791 | 0.9353 0.8934 0.9138
TEMPERATURE 0.9802 0.9770 0.9786 | 0.9901 0.9869 0.9885
TIME 0.9673 09741 0.9707 | 09883 0.9953 0.9918
YIELD_OTHER 0.9853 09711 0.9782 | 0.9902 0.9759 0.9830
YIELD_PERCENT 0.9750 0.9943 0.9846 | 0.9778 0.9972 0.9874
All 0.9401 0.9422 0.9412 | 09561 0.9583 0.9572
Table 4
Results for Task 1b on the private set
Relation Exact Relaxed
p R F p R F
ChemBERT 0.9058 0.8685 0.8868 | 0.9222 0.8842 0.9028
ChemBERT Corrected (late) | 0.9054 0.8684 0.8865 | 0.9220 0.8842 0.9027

5. Discussion

Selecting “the best model” of the various models in training was difficult. Table 8 shows the
F-scores on the development and private sets. We used models that showed the best F-score on
the development set for mention detection and the best validation loss for relation classification;
therefore, it is not surprising that F-scores on the development sets were better than those for
the private sets. In particular, the result for Task 1c (greater than 0.09) represented a large gap.
An explanation for this larger gap could be that the predictions by the models were unstable
because Task 1c was more difficult than the other tasks. Therefore, we must reconsider training
methods when seeking a better model.

In Task 1b, all relations whose recalls were zero had fewer than five gold-standard examples
(Table 5). It is quite difficult for our machine learning framework to identify such relations with
a small amount of examples.

Although our system showed good results for Tasks 1a and 1b, we found errors caused
by a lack of document-level information. Figure 2 shows a confusion matrix for Task 1a.
Because the role of a compound depends on a reaction, it is difficult to identify the la-
bel of compounds without document-level information. Examples included errors among
STARTING_MATERIAL, REAGENT_CATALYST, and SOLVENT and errors between REAC-
TION_PRODUCT and OTHER_COMPOUND. In addition, errors between a compound for a
reaction (REAGENT_CATALYST, SOLVENT, STARTING_MATERIAL) and one for a work-up



Table 5

*

Detailed results for Task 1b on the private set, as predicted by the corrected system. * represents
relations that had fewer than five gold-standard examples
Relation Exact Relaxed
P R F P R F

ARG1|REACTION_STEP|OTHER_COMPOUND | 0.4756 0.5342 0.5032 | 0.5000 0.5616 0.5290
ARG1|REACTION_STEP|REACTION_PRODUCT | 0.8731 0.8561 0.8645 | 0.9179 0.9000 0.9089
ARG1|REACTION_STEP|REAGENT_CATALYST | 0.8399 0.8744 0.8568 | 0.8590 0.8904 0.8744
ARG1|REACTION_STEP|SOLVENT 0.8929 0.8883 0.8906 | 0.8596 0.8950 0.8770
ARG1|REACTION_STEP|STARTING_MATERIAL | 0.8832 0.8043 0.8419 | 0.9036 0.8228 0.8613
ARG1|WORKUP|OTHER_COMPOUND 0.9455 0.9052 0.9249 | 0.9627 0.9217 0.9418
*ARG1|WORKUP|REACTION_PRODUCT 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
*ARG1|WORKUP|REAGENT_CATALYST 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
*ARG1|WORKUP|SOLVENT 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
*ARG1|WORKUP|STARTING_MATERIAL 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
ARGM|REACTION_STEP|TEMPERATURE 0.9262 0.8750 0.8999 | 0.9328 0.8811 0.9062
ARGM|REACTION_STEP|TIME 0.8976 0.9024 0.9000 | 0.9213 0.9261 0.9237
ARGM|REACTION_STEP|YIELD_OTHER 0.9845 0.9315 0.9573 | 0.9871 0.9340 0.9598
ARGM|REACTION_STEP|YIELD_PERCENT 0.9671 0.9229 0.9444 | 0.9701 0.9257 0.9474
ARGM|WORKUP|TEMPERATURE 0.9063 0.6541 0.7598 | 0.9271 0.6692 0.7773
ARGM|WORKUP|TIME 0.7895 0.4054 0.5357 | 0.7895 0.4054 0.5357
*ARGM|WORKUPI|YIELD_OTHER 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
*ARGM|WORKUP|YIELD_PERCENT 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
All 0.9054 0.8684 0.8865 | 0.9220 0.8842 0.9027

Table 6

Results for Task 1c on the private set. PPgg represents post-processing for bridging relations and

PPc R represents post-processing for coreference relations.

Relation Exact Relaxed

P R F P R F
ChemBERT 0.7393 0.6616 0.6983 | 0.8222 0.7358 0.7766
ChemBERT + PPgpgr 0.7290 0.6838 0.7057 | 0.8107 0.7604 0.7848
ChemBERT + PPggr + PPcR 0.6876  0.7307 0.7085 | 0.7660 0.8140 0.7893
ChemBERT + PPggr + PPcR Corrected (late) | 0.7144 0.7322 0.7232 | 0.7955 0.8153 0.8053

(OTHER_COMPOUND) were found because distinguishing between them from just one sen-
tence was sometimes difficult. Errors between REACTION_STEP and WORK_UP for Task 1b
were also found to be caused by the same difficulty.

However, adopting a post-processing method for Task 1a mitigated the errors between
REACTION_PRODUCT and OTHER_COMPOUND (Table 2). The post-processing methods
employed in Task 1c were also useful in mitigating these errors (Table 6). However, we should
note that using these methods adversely affected the precision. For example, our post-processing
method for coreference generated false relations when false positive REACTION_PRODUCT
existed. Therefore, we must be careful when using post-processing methods.



Table 7
Results for Task 1c on the private set, as predicted by the corrected system

Relation Exact Relaxed
P R F P R F

COREFERENCE 0.4896 0.4882 0.4889 | 0.5975 0.5958 0.5967
CONTAINED 0.5054 0.6267 0.5595 | 0.7312 0.9067 0.8095
REACTION_ASSOCIATED | 0.7368 0.7974 0.7659 | 0.8094 0.8760 0.8414
TRANSFORMED 0.7310 0.7576 0.7440 | 0.7368 0.7636 0.7500
WORK_UP 0.8219 0.8230 0.8224 | 0.8940 0.8952 0.8946
All 0.7144 0.7322 0.7232 | 0.7955 0.8153 0.8053

Table 8
Comparison of F-scores between development and private sets
Exact Relaxed
Task . .
Development Private | Development Private

Task 1a 0.9548 0.9412 0.9677 0.9535
Task 1b 0.9179 0.8865 0.9294 0.9027
Task 1c 0.8168 0.7232 0.8773 0.8053

With the aim of improving our systems, we tried to consider the relationships between the
tasks in some preliminary experiments. For example, we tried to construct post-processing
rules for named entity mentions in Task 1a by on the results for Task 1b. However, these rules
did not improve the results because it was difficult to determine which prediction (named entity
or event) was correct. In addition, we tried to use the relationships not only in the forward
direction (i.e., Task 1a to Task 1c), but also in the backward direction (Task 1c to Task 1a).
However, improving the performance in the backward direction was also difficult because the
performance of the later task was lower than in the earlier task. Despite these difficulties, the
post-processing methods for Task 1c that considered the results for Task 1a did improve our
system’s performance. Therefore, we must conduct a more detailed analysis of the relationships
between the tasks if we are to improve our systems via this approach.

Table 9 shows the results for mention detection in Task 1c on the development set. First, the
detection of coreference mentions was difficult compared to identifying bridging relations. The
reasons were that coreference mentions had only a small number of mentions in the training
data and sometimes required inter-sentence information to extract antecedents. The significance
of the data augmentation was not clear. Therefore, we must reconsider the ratios used for
positive mentions.

Several errors were caused by failures in sentence splitting. For example, START-
ING_MATERIAL “Ex. 18A” caused a split into two sentences by the ChemDataExtractor sentence
splitter because of the “” in “Ex. 18A”. A solution to this problem would involve applying a set
of rules involving dependency parsing and trigger words.
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Figure 2: Normalized confusion matrix for Task 1a. Values less than 0.001 are not shown

Table 9
Results for mention detection in Task 1c on the development set
Relation Exact Relaxed
P R F P R F
Coreference 0.8099 0.8085 0.8092 | 0.8746 0.8730 0.8738
Coreference with data augmentation | 0.7982 0.8316 0.8145 | 0.8567 0.8926 0.8743
Bridging 0.9090 0.9415 0.9250 | 0.9542 0.9884 0.9710

6. Conclusion

This paper has reported our results for the three tasks at ChEMU 2022. We proposed hybrid
methods that used ChemBERT and a small set of post-processing rules for these tasks. We
employed a pipeline approach for Tasks 1b and 1c that combined mention detection and relation
classification. Because we used only one or two sentences as the input to ChemBERT, this
lack of document-level information suppressed the performance of the system. Although we
confirmed that adopting a set of post-processing rules was effective in considering document-
level information, we also confirmed that the set of rules we used was insufficient. In addition,
although we tried to use relationships between the tasks to improve performance, it was difficult
to construct rules that did achieve improvements. Therefore, we must conduct more detailed



analyses about the relationships between the tasks.
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