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Abstract
The first shared task of CLEF eRisk 2022 proposes to investigate how gambling addiction can be detected
from texts posted by users on the social platforms. It is an interesting proposal because the connection
between language and mental health is studied for many years, and interesting NLP insights could be
revealed in this case. Any finding can be used in the early treatment of a mental disease, avoiding the
chances of developing a serious condition. Our approach to this task includes both standard Machine
Learning and Deep Learning solutions applied to the provided dataset. We then modified the dataset in
different ways in order to find better correlations.
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1. Introduction

If early signs of any pathological behaviour would be transparent to us, most of the suffering
caused by diseases can be minimized. Any preventive intervention is beneficial to the over-
all health of an individual. Pathological gambling affects the quality of life of anyone who
excessively engages in casino/sports betting and video games activities.

2. Related work

The current task is a continuation of the previous year’s T1 task. The training data is composed
of all 2021’s T1 test users. In 2021 no training data was provided to the participants and they
needed to search online sources and to create a training data set from scratch.

Reddit is a social platform that allows researchers to use the public data it hosts for academic
purposes. The work of Bucur et al. [1], the last year’s participating BLUE team, included a
training data set constructed from the r/GamblingAddiction and r/problemgambling subreddits
as positive examples. The number of negative examples was chosen to match the number of
posts in the positive class and it was gathered from various users active on other subreddits.
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The authors fine-tuned a pre-trained BERT classifier with an AdamW optimizer having a
learning rate of 0.0002. In predicting the positive class, they used an aggressive threshold of
0.99 and 0.98 on the output probability to decide if the user is at risk of developing a gambling
addiction. The purpose of this high threshold is to minimize false positives, ensuring a decision
will be made only if a post contains any addiction indicators.

The results they obtained had a high recall score with a low precision score and low F1 score.
They concluded that the problem of predicting the early signs of gambling addiction is far from
being solved and further research is strongly needed.

The work of Maupone et al.[2], the last year’s participating RELAI team, also included creat-
ing a data set from scratch using social media posts for both training and making predictions.
They used two authorship attribution approaches that assess whether a test users belongs to
two different sets of gambling users.

The first set of gambling users was constructed from testimonials published on the Gambler’s
Help site 1. The second set was constructed based on questionnaires found on websites such
as Gamblers Anonymous Montreal 2.

The Embedding Topic Model (ETM) presented in the article written by Dieng et al. [3] was
the authors’ model selection for extracting the topics present in their training corpus. ETM is
a model that combines traditional topic models such as Latent Dirichlet Allocation (LDA) with
word embeddings (word2vec).

RELAI team’s results were similar to the BLUE team’s results, obtaining a high recall score,
but a low precision score and F1 score, further enforcing the need for additional NLP research
in this mental health area.

3. Dataset

The dataset consists of multiple XML files containing the user posts, timestamps for each post
and the title of the post. In order to use the data in a meaningful manner, we extracted the user
posts using three different methods:

1. Combining all the posts into a single text file. The number of files is equal to the number
of users.

2. Each user posts is saved in file, seen as an individual sample which inherits the label
from the user. This results in a great number of individual files and each file of various
length.

3. Chunking the user posts into fixed size lengths and create multiple entries for the minor-
ity class. This is detailed in subsection 3.1.

3.1. Chunking

In order to balance the disparity of the two classes, one method we have implemented was to
split the users into sub users using a chunking algorithm. Due to the fact that collecting all
posts of a user in a single file wasn’t feasible because the length of the posts would vary greatly,

1https://gamblershelp.com.au/
2http://gamontreal.ca/



we decided to split the texts into fixed sizes, defined asMax Len. For users with label 1, we also
split the whole text into chunks of Max Len but the starting point of the next chunk is defined
by a Chunk Delay. Meaning that 𝑈 𝑆𝐸𝑅 𝑌_1 would retain text from 𝑈 𝑆𝐸𝑅 𝑌_0. We did this in
order to capture more information about gambling addiction. At the end of the processing we
ended up with 22k positive examples and 44k negative examples. A visual representation of
the algorithm can be seen in Figure 1.

4. Machine learning approach

The Machine Learning approach included the following text normalization techniques applied
to the subjects’ posts: lowercasing, whitespace removal, URL removal, word tokenization, stop-
words removal, punctuation removal and word stemming.

After processing the provided XML files, the resulting training dataset had an unbalanced
number of examples for each of the two classes we needed to make predictions (0=NOT AD-
DICTED, 1=ADDICTED). It contained 2184 examples with label 0 and 164 examples with la-
bel 1. We also used a stratified 5-fold cross-validation to try to reduce the class imbalance
in the train/validation splits. For feature extraction we used the Bag-of-Words (BOW) and
Term Frequency-Inverse Document Frequency (TF-IDF) models with additional properties for
extracting relevant features such as removing the rare words (min_df=0.2) or frequent words
(max_df=0.8), constructing 2-grams and 3-grams.

In the first run of the MLmodels, we used the unbalanced dataset with no other modification
made to the distribution of the examples across the two classes. The best results we obtained
for this unbalanced dataset are presented in Table 1.

We observed that the scores are too high, and we were skeptic about these results. One
reason for such high scores could be the unbalanced nature of the dataset. We also observed
that training the models with 2-grams and 3-grams brought down the overall performance in
all cases. Also, in some cases, dropping the most frequent words or the rare words improved
the results.

Next, we explored other ways of constructing and balancing the training dataset. We ex-
tracted from the collection of posts with label 1 each post in individual data points labeled
with 1. From the collection of posts with label 0 we formed chunks of 20 posts in individual
examples. The total examples were 54840 with label 1 and 52989 with label 0, resulting in a
more balanced dataset. After the second run of the ML models, the results we obtained for this
version of the training dataset are presented in Table 2.

We observed that the new results were similar to the results from the first run, they were
also too high. Next, we decided to further modify the training dataset to include for the neg-
ative examples (labeled with 0) only the first 25 posts, stored individually (not chunked). We
discarded the remaining negative posts from the collection. This approach resulted in a train-
ing dataset balanced differently, with the same number of 54840 for positive examples and a
total of 52723 posts for the negative examples.

After the third run of the ML models, the results we obtained were lower than the first two
runs and are presented in Table 3.

We concluded that this third run may not be entirely accurate because it discarded a big part



Table 1
Best results for the ML approach in the first run, on the unbalanced dataset.

ML + feature extractor Precision Recall F1
LinearSVC + TF-IDF (min_df=0.2) 0.99 0.83 0.9
LogisticRegression + BOW (max_df=0.8) 0.87 0.87 0.87
RandomForest + BOW (min_df=0.2) 1.00 0.46 0.63
KNeighbors + BOW (max_df=0.8) 0.96 0.73 0.83
DecisionTree + TF-IDF 0.9 0.91 0.91

Table 2
Best results for the ML approach in the second run, on the balanced dataset.

ML + feature extractor Precision Recall F1
LinearSVC + TF-IDF 0.86 0.89 0.88
LogisticRegression + BOW 0.87 0.96 0.91
RandomForest + TF-IDF 0.91 0.89 0.9
KNeighbors + BOW 0.63 0.87 0.73
DecisionTree + TF-IDF 0.9 0.91 0.91

Table 3
Best results for the ML approach in the third run, on the balanced dataset with discarded posts.

ML + feature extractor Precision Recall F1
LinearSVC + TF-IDF 0.78 0.66 0.71
LogisticRegression + TF-IDF 0.79 0.66 0.72
KNeighbors + BOW 0.67 0.55 0.60
DecisionTree + TF-IDF 0.7 0.65 0.68

of the posts from the 0 labeled collection of posts and information was lost. The problem with
the unbalanced dataset needs to be addressed in a different manner and to find new ways of
augmenting the positive examples or to collect new examples altogether.

5. Deep learning approach

For the final implementation of the system, a single deep learning model was used. We started
by implementing transformer based systems, with a focus on pretrained BERT based models
such as BERT-uncased [4] RoBERTa [5] and ALBERT [6]. Unfortunately, these models were
too powerful for the available hardware and it proved to be a real challenge to transfer learning
(e.g. the training time for a single epoch for a RoBERTA based model was around 1 hour and
for a BERT model was around 3 hours). Due to this issue, we have decided to implement the
simple transformer that is very similar to the one presented in the Transformer paper[7].



6. Results

When using deep learning models, the best outcome was obtained by a model containing a
hidden dimension of 128 of the linear projection, an embedding size of 64 tokens, and four
attention heads. The model achieved an F1 Score of 88.8% and a loss of 0.218 after training
for 56 epochs. One significant observation is that all the models used a single transformer
block. One significant finding is that when more than one transformer block was used, the
score dropped to 0%.

7. Conclusions

In conclusion, the problem of assessing the risk of a user for developing a gambling addiction
is in strong need for further research. The particularities of the dataset need to be addressed
individually, like the high occurrences of web links, emoji symbols or misspelled words. Also,
the problem could benefit from collecting new positive data points in order to reduce the data
imbalance. Further research could be directed towards including other points of interest, and
not only relying on pure text, such as frequency of posting and time of day with respect to the
timezone of the user.
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A. Machine Learning Experiments

We present additional ML experiments with different values for feature extraction.

Table 4
Additional results for the ML approach in the second run, on the balanced dataset.

ML + feature extractor Precision Recall F1
LinearSVC + BOW 0.83 0.92 0.87
LinearSVC + BOW (min_df=0.2) 0.75 0.93 0.83
LinearSVC + BOW (max_df=0.8) 0.83 0.92 0.87
LinearSVC + BOW (n_gram=2) 0.95 0.95 0.82
LinearSVC + BOW (n_gram=3) 0.58 1.00 0.74
LinearSVC + TF-IDF 0.86 0.89 0.88
LinearSVC + TF-IDF (min_df=0.2) 0.77 0.78 0.77
LinearSVC + TF-IDF (max_df=0.8) 86 0.89 0.88
LinearSVC + TF-IDF (n_gram=2) 0.85 0.87 0.86
LinearSVC + TF-IDF (n_gram=3) 0.76 0.91 0.83
LogisticRegression + BOW 0.87 0.96 0.91
LogisticRegression + BOW (min_df=0.2) 0.76 0.91 0.83
LogisticRegression + BOW (max_df=0.8) 0.87 0.96 0.91
LogisticRegression + BOW (n_gram=2) 0.81 0.98 0.89
LogisticRegression + BOW (n_gram=3) 0.61 1.0 0.75
LogisticRegression + TF-IDF 0.87 0.92 0.89
LogisticRegression + TF-IDF (min_df=0.2) 0.78 0.78 0.78
LogisticRegression + TF-IDF (max_df=0.8) 0.87 0.92 0.89
LogisticRegression + TF-IDF (n_gram=2) 0.83 0.9 0.86
LogisticRegression + TF-IDF (n_gram=3) 0.71 0.95 0.81
RandomForest + BOW 0.89 0.89 0.89
RandomForest + BOW (min_df=0.2) 0.77 0.89 0.82
RandomForest + BOW (max_df=0.8) 0.89 0.89 0.89
RandomForest + BOW (n_gram=2) 0.99 0.41 0.58
RandomForest + BOW (n_gram=3) 0.6 0.02 0.05
RandomForest + TF-IDF 0.91 0.89 0.9
RandomForest + TF-IDF (min_df=0.2) 0.77 0.88 0.82
RandomForest + TF-IDF (max_df=0.8) 0.91 0.89 0.9
KNeighbors + BOW 0.63 0.87 0.73
DecisionTree + BOW 0.84 0.85 0.85
DecisionTree + BOW (min_df=0.2) 0.73 0.87 0.8
DecisionTree + BOW (max_df=0.8) 0.87 0.87 0.87
DecisionTree + TF-IDF 0.9 0.91 0.91
DecisionTree + TF-IDF (min_df=0.2) 0.73 0.88 0.8
DecisionTree + TF-IDF (max_df=0.8) 0.9 0.83 0.86



Table 5
Additional results for the ML approach in the third run, on the balanced dataset with discarded posts.

ML + feature extractor Precision Recall F1
LinearSVC + BOW 0.78 0.62 0.69
LinearSVC + BOW (max_df=0.8) 0.78 0.62 0.69
LinearSVC + BOW (n_gram=2) 0.77 0.47 0.58
LinearSVC + BOW (n_gram=3) 0.86 0.12 0.21
LinearSVC + TF-IDF 0.78 0.66 0.71
LinearSVC + TF-IDF (max_df=0.8) 0.78 0.66 0.71
LinearSVC + TF-IDF (n_gram=2) 0.77 0.54 0.64
LinearSVC + TF-IDF (n_gram=3) 0.82 0.26 0.39
LogisticRegression + BOW 0.8 0.62 0.7
LogisticRegression + BOW (max_df=0.8) 0.8 0.62 0.7
LogisticRegression + BOW (n_gram=2) 0.8 0.49 0.6
LogisticRegression + BOW (n_gram=3) 0.87 0.16 0.27
LogisticRegression + TF-IDF 0.79 0.66 0.72
LogisticRegression + TF-IDF (max_df=0.8) 0.79 0.66 0.72
LogisticRegression + TF-IDF (n_gram=2) 0.77 0.54 0.64
LogisticRegression + TF-IDF (n_gram=3) 0.8 0.32 0.46
KNeighbors + BOW 0.67 0.55 0.6
KNeighbors + BOW (max_df=0.8) 0.67 0.55 0.6
KNeighbors + BOW (n_gram=2) 0.63 0.39 0.41
KNeighbors + BOW (n_gram=3) 0.9 0.02 0.04
KNeighbors + TF-IDF 0.58 0.22 0.32
KNeighbors + TF-IDF (max_df=0.8) 0.58 0.22 0.32
KNeighbors + TF-IDF (n_gram=2) 0.63 0.16 0.25
KNeighbors + TF-IDF (n_gram=3) 0.73 0.32 0.24
DecisionTree + BOW 0.7 0.63 0.67
DecisionTree + BOW (max_df=0.8) 0.7 0.64 0.67
DecisionTree + BOW (n_gram=2) 0.75 0.47 0.58
DecisionTree + TF-IDF 0.7 0.65 0.68



Table 6
Additional results for the ML approach in the first run, on the unbalanced dataset.

ML + feature extractor Precision Recall F1
LinearSVC + BOW 0.82 0.88 0.85
LinearSVC + BOW (min_df=0.2) 0.79 0.85 0.82
LinearSVC + BOW (max_df=0.8) 0.83 0.9 0.86
LinearSVC + BOW (n_gram=2) 0.79 0.68 0.73
LinearSVC + BOW (n_gram=3) 0.98 0.15 0.25
LinearSVC + TF-IDF 1.0 0.81 0.89
LinearSVC + TF-IDF (min_df=0.2) 0.99 0.83 0.9
LinearSVC + TF-IDF (max_df=0.8) 1.0 0.81 0.89
LinearSVC + TF-IDF (n_gram=2) 0.99 0.51 0.67
LinearSVC + TF-IDF (n_gram=3) 0.8 0.07 0.13
LogisticRegression + BOW 0.85 0.87 0.86
LogisticRegression + BOW (min_df=0.2) 0.83 0.85 0.84
LogisticRegression + BOW (max_df=0.8) 0.87 0.87 0.87
LogisticRegression + BOW (n_gram=2) 0.89 0.61 0.72
LogisticRegression + BOW (n_gram=3) 1.00 0.11 0.19
LogisticRegression + TF-IDF 1.0 0.67 0.80
LogisticRegression + TF-IDF (min_df=0.2) 1.00 0.63 0.77
LogisticRegression + TF-IDF (max_df=0.8) 1.0 0.67 0.8
LogisticRegression + TF-IDF (n_gram=2) 0.8 0.05 0.1
LogisticRegression + TF-IDF (n_gram=3) 0.0 0.0 0.0
RandomForest + BOW 1.00 0.29 0.45
RandomForest + BOW (min_df=0.2) 1.00 0.46 0.63
RandomForest + BOW (max_df=0.8) 1.00 0.29 0.44
RandomForest + BOW (n_gram=2) 0.99 0.41 0.58
RandomForest + BOW (n_gram=3) 0.6 0.02 0.05
RandomForest + TF-IDF 1.0 0.67 0.57
RandomForest + TF-IDF (min_df=0.2) 1.00 0.57 0.72
RandomForest + TF-IDF (max_df=0.8) 1.0 0.34 0.5
RandomForest + TF-IDF (n_gram=2) 1.0 0.42 0.59
RandomForest + TF-IDF (n_gram=3) 0.6 0.04 0.08
KNeighbors + BOW 0.96 0.63 0.76
KNeighbors + BOW (min_df=0.2) 0.94 0.6 0.74
KNeighbors + BOW (max_df=0.8) 0.96 0.73 0.83
KNeighbors + BOW (n_gram=2) 0.91 0.12 0.2
KNeighbors + BOW (n_gram=3) 0.0 0.0 0.0
KNeighbors + TF-IDF 0.94 0.67 0.78
KNeighbors + TF-IDF (min_df=0.2) 0.9 0.76 0.82
KNeighbors + TF-IDF (max_df=0.8) 0.98 0.61 0.75
KNeighbors + TF-IDF (n_gram=2) 0.0 0.0 0.0
KNeighbors + TF-IDF (n_gram=3) 0.0 0.0 0.0
DecisionTree + BOW 0.84 0.85 0.85
DecisionTree + BOW (min_df=0.2) 0.67 0.69 0.68
DecisionTree + BOW (max_df=0.8) 0.86 0.86 0.86
DecisionTree + BOW (n_gram=2) 0.88 0.82 0.85
DecisionTree + BOW (n_gram=3) 0.71 0.45 0.55
DecisionTree + TF-IDF 0.9 0.91 0.91
DecisionTree + TF-IDF (min_df=0.2) 0.75 0.73 0.74
DecisionTree + TF-IDF (max_df=0.8) 0.87 0.88 0.87
DecisionTree + TF-IDF (n_gram=2) 0.87 0.86 0.86
DecisionTree + TF-IDF (n_gram=3) 0.51 0.63 0.56



B. Chunking visualization

(a) All the aggregated posts for each user.

(b) Depending on the label, the posts are split to a maximum length. The
posts of users with label 1, contain information from the previous
post chunk, depending on the overlap.

(c) Final result of the chunking algorithm

Figure 1: A visual explanation of the algorithm described in subsection 3.1



C. Deep Learning Grid Search

Table 7
Deep Learning Grid Search Results

Hidden
Dimension

Embedding
Size

Num. Att.
heads

Trained
Epochs F1 score Loss

64

64

1

14 0.705 0.452
19 0.479 0.514
11 0.536 0.531
21 0.232 0.763

4

41 0.872 0.228
36 0.850 0.259
22 0.848 0.262
15 0.843 0.287
43 0.851 0.289
29 0.859 0.336

128
1

33 0.813 0.403
10 0.537 0.559

4 12 0.831 0.298

128

64

1

40 0.705 0.436
31 0.690 0.465
10 0.093 0.632
16 0.449 0.729

2 6 0.730 0.390

4
56 0.888 0.218
18 0.816 0.360

128

2
24 0.827 0.275
16 0.841 0.307

4
40 0.859 0.257
27 0.858 0.257
14 0.743 0.440
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