
LauSAn at eRisk 2022: Simply and Effectively
Optimizing Text Classification for Early Detection
Andreas Säuberli

1,2
, Sooyeon Cho

1,2
and Laura Stahlhut

1,2

1Department of Computational Linguistics, University of Zurich, Switzerland
2All authors contributed equally

Abstract
The goal of early detection tasks at eRisk is to classify social media users as early as possible, based

on streams of posts written by those users. We present two simple strategies of adapting standard text

classification models in order to optimize them for early detection: concatenating the posts in different

ways during training and inference, and continuously moving the decision boundary at inference time.

We applied these approaches to two different text classification architectures based on pre-trained

language models in eRisk 2022’s Task 2 (early detection of depression), and were able to reach top

5 placements in all time-sensitive evaluation metrics. A systematic post-submission ablation study

confirmed that both strategies were effective at optimizing for early detection.

Keywords
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1. Introduction

In this paper, we describe our team’s participation at at the 2022 Conference and Labs of the
Evaluation Forum (CLEF) eRisk task for early detection of depression (Task 2) [1]. Depressive

disorders are common in the general population and associated with burdens such as conflict

in private life and an increased risk of suicide. Many cases remain undiagnosed, e.g., due to

patient somatization and denial or social stigma [2]. It has been shown that certain patterns

in a person’s writing can be indicative of depression [3, 4]. Being able to detect depression at

an early stage from social media, postings could play a part in enabling more people to get

treatment earlier and give social media sites a tool to detect potentially suicidal users. The task

of early prediction on social media postings can also be extended to other topics, as can be seen

from the other eRisk tasks (e.g. early detection of signs of gambling, signs of self-harm or signs

of anorexia).

The aim of this task is to detect signs of depression in posts from social media as early as

possible. In the training stage, labeled data from the depression subreddit is available to develop

depression detection models. During the test phase, models receive the users’ posts one by one

in chronological order and have to make a binary decision after each post whether the user is

depressed or not. The decision for a particular user cannot be undone later.
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The main factor that differentiates this task from typical classification tasks is time-sensitivity,

i.e., the necessity to classify a user as depressed as early as possible and not only after seeing

the entire post history. In addition to standard classification measures such as precision,

recall, and 𝐹1, eRisk uses several time-sensitive evaluation metrics such as early risk detection
error (𝐸𝑅𝐷𝐸), latency, speed and latency-weighted 𝐹1. See Parapar et al. [5] for a complete

description of these metrics.

In this paper, we present methods to adapt standard text classification models in order to

optimize for early detection, and show that these can be effectively applied to Task 2 of eRisk

2022. Our main contributions are twofold:

• We experiment with different strategies for concatenating a sequence of posts in order to

optimize training for the early detection setting.

• We present threshold scheduling, a method to change the decision boundary over the

course of a post history in order to optimize for one of the time-sensitive evaluation

metrics.

The remainder of this paper is organized in the following way: In Section 2, we mention

some related work on earlier installments of eRisk shared tasks, which inspired our approaches.

Section 3 describes the task dataset. Section 4 explains our approaches and models. The

experimental setup for the submisson of our models is introduced in Section 5. In Section 6,

we report and discuss our results on the submitted models and post-submisson ablation study.

Finally, Section 7 provides a general conclusion and brief outlook on future research.

2. Related work

Task 2 (Early Detection of Depression) of CLEF 2022 eRisk is a continuation of eRisk’s 2017 Task

1 and eRisk 2018’s Task 1 (Losada et al. [6, 7]). Thus, there have been multiple groups that have

worked with a subset of the dataset we worked on with the same aim we have. While approaches

in the preceding versions of this task were mostly concentrated on feature engineering and the

application of various classification models, approaches to related early classification tasks in

more recent years were often based on Transformer models and transfer learning.

Examples include un Nisa and Muhammad [8], who applied pre-trained BERT embeddings

in combination with logistic regression for early detection of self-harm. For the same task,

Martínez-Castaño et al. [9] finetuned various transformer models, and trigger a positive decision

when the moving average of the predicted probability reaches a specified threshold within a

certain time window in the user’s post history. For early detection of signs of pathological

gambling, Bucur et al. [10] finetuned BERT models on single posts, and used aggressive decision

boundaries in order to prevent false positives.

These submissions, which are based on binary text classification, had to make use of very

high decision boundaries, or limit the time window where a positive decision can be made, in

order to avoid low precision when repeatedly classifying the same users at every time step. In

our submission, we experiment with slightly different approaches to overcome these challenges.



Users Posts

Negative 1,493 986,360

Positive 214 90,222

Total 1,707 1,076,582

Positive ratio 12.5% 8.4%

Table 1
Number of users and posts in positive and negative groups in the dataset. Each users’s writing contains

a series of posts in chronological order.

3. Dataset

The data used in eRisk 2017 and 2018 are provided as training data by the organizers. This

dataset, which was initially presented in Losada and Crestani [11], was collected from Reddit,

and contains a chronological collection of posts (title and content) and comments for each of

1,707 users from wide range of subreddits. Each user is labeled either positive (depressed) or

negative (control group), based on whether the user has clearly expressed a depression diagnosis

in one of their posts (e.g. ‘I was diagnosed with depression’).
Table 1 shows the distribution of labels among posts and users. Each user has between 10

and 2,000 posts (median: 366), and each post (title and text combined) contains between 0 and

8,177 whitespace-delimited tokens (median: 13).

4. Methods

We frame the early detection task as a standard text classification problem, where the decision

whether a user is depressed or not is done based on a classification of the user’s post history

each time a new post is added. In this section, we describe the two approaches we developed to

achieve this, as well as the models we chose for the shared task submission. The code used in

our experiments is available on GitHub.
1

4.1. Concatenation strategies

We consider three different strategies to prepare the input data. The simplest way would be to

use only the most recent post at each given point in time as input to the model. We call this

strategy no-concat. For instance, if a user has 6 posts [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ] where 𝑎 is the oldest and 𝑓
is the most recent post, we will train the model by giving it single posts as input ([𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ]).

However, our hypothesis is that it is difficult to classify whether someone has depression

based on a single post, thus we want to include several posts by concatenating a post with a

number of directly preceding posts. We propose two such concatenation strategies, which we

name concat1 and concat2.

In concat1, the most recent 𝑛 posts in the user’s post history are concatenated. If a user has

6 posts, we train the model by giving post concatenations as input ([𝑎, 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑, 𝑏𝑐𝑑𝑒, 𝑐𝑑𝑒𝑓 ],
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Figure 1: Example of training sample generation for one user with 6 posts using different strategies.

Note the different distributions of post length and samples with signs of depression. The oldest post is

always to the left. In this example, we assume that this user has 6 posts, [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ]. In the no-concat

strategy, each post is fed as a single input. Strategy concat1 concatenates the 4 most recent posts. In

the concat2 strategy, 1, 2, 3 and 6 concatenated posts are used as input.

with 𝑛 = 4). A potential problem with this strategy (particularly for users with long post

histories) is that almost none of the training samples (only the first 𝑛− 1) are shorter than 𝑛
posts, which means that the model will likely perform worse on the first few posts of a user’s

history. Since it is exactly in this early part where we want to detect most of the depressed users,

we propose our final strategy (concat2). This strategy generates both a higher ratio of shorter

and additional longer training samples, in order to widen the distribution of the numbers of

concatenated posts. For a user’s post, we train the model on the individual posts as well as the

specified number of concatenations. If we concatenate 1, 2, 3, and 6 posts of a user with 6 posts,

the resulting training data is [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑎𝑏, 𝑐𝑑, 𝑒𝑓, 𝑎𝑏𝑐, 𝑑𝑒𝑓, 𝑎𝑏𝑐𝑑𝑒𝑓 ] (see Figure 1).

During inference, in concat1 we use the most recent 𝑛 posts, and in concat2 the entire post

history (limited only by the model’s maximum input sequence length).

4.2. Threshold Scheduling

As we repeatedly classify users based on their increasingly long post history, taking into account

that a positive decision cannot be reversed later, another issue is that a constant decision

boundary means that the probability of classifying a user as depressed increases continuously

as more posts are processed. Consider the following example: A trained model has a chance

𝑝 = 5% of correctly classifying the user as depressed at any point in time. In this case, the

chance of detecting a positive user with a history of 10 posts in total is 1−
∏︀10

𝑖=1(1− 𝑝) = 40%,

whereas for a history of 100 posts, it is already > 99%. Similarly, the chance of incorrectly

classifying a user as depressed increases very quickly. Therefore, users with a long post history

have a much higher chance of being misclassified as depressed, while users with a short post

history have a much higher chance of remaining undetected. To fix this imbalance, we propose

continuously changing the decision boundary during prediction, in order to increase chances of

early detection, and reduce misclassifications later in the post history. We use the following

exponential threshold scheduling function to achieve this:
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Figure 2: Threshold scheduling functions optimized on the same model for 𝐸𝑅𝐷𝐸5, 𝐸𝑅𝐷𝐸50, and

latency-weighted 𝐹1. In the function optimized for 𝐸𝑅𝐷𝐸5, thrmin = −3, thrmax = 3, and 𝑐 = 8.

thr(𝑡) = thrmax + (thrmin − thrmax)× 10−𝑡/𝑐

thr(𝑡) is the decision boundary applied to the model output after 𝑡 posts, thrmin is the starting

threshold, thrmax is the upper limit threshold, which is asymptotically approached by thr(𝑡),
and 𝑐 determines how many posts it takes for thr(𝑡) to reach 90% of the way towards thrmax.

We optimize thrmin, thrmax, and 𝑐 using grid search on the training data, after training the

model itself. Figure 2 shows three threshold scheduling functions optimized on the same model

for three different metrics. Note that for metrics which highly favor early detection, the initial

threshold is much lower, and the threshold increases very quickly.

In addition, we realized that the first few posts are still more difficult to classify, even when

using the concat1 or concat2 strategies, so we experiment with an additional modification

of the function described above, where the first 𝑛 posts are forced to yield negative decisions,

and only then the actual threshold scheduling is applied, i.e., the first 𝑛 posts are ignored. This

is similar to how Martínez-Castaño et al. [9] enforce a minimum number of posts to be read

before a positive decision can be made, but we explicitly include 𝑛 in the grid search space.

4.3. Models

Due to the way we frame the task, any machine learning architecture capable of binary text

classification could be used. After initial experiments with different architectures, two models

based on pre-trained language models appeared most promising.

The first model is a logistic regression model which we feed a vector representation of the

input sequence, obtained by averaging embeddings from the final four layers of a pre-trained

BERT model (Devlin et al. 12; bert-base-uncased on Hugging Face2
) across the entire input

sequence. This approach is similar to un Nisa and Muhammad [8], although we do not use any

additional preprocessing and simply truncate the concatenated raw input posts (title and text)

if it is longer than 512 subwords.

2
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For our second model architecture, we finetune a DistilBERT model (Sanh et al. 13; distil-
bert-base-uncased on Hugging Face) directly on the binary classification task, again with

no additional preprocessing and truncating to 512 subwords.

5. Experimental Setup

For the training of our submitted models, we combined the training and test sets from eRisk 2017

and 2018 and split off 20% of the users as validation data for model selection. We undersampled

the majority class to reach a positive ratio of 25% in the training data, and trained for three

epochs. We used scikit-learn [14] for the logistic regression model, and the Transformers
library by Hugging Face [15] for the transformer models.

After experimenting with the different concatenation strategies and threshold scheduling

optimizations, we submitted five runs with the following models:

• LauSAn#0: Logistic regression with BERT embeddings, no-concat, exponential thresh-

old scheduling optimized for 𝐸𝑅𝐷𝐸5

• LauSAn#1: Logistic regression with BERT embeddings, concat1 (5 posts), exponential

threshold scheduling optimized for 𝐸𝑅𝐷𝐸50

• LauSAn#2: Logistic regression with BERT embeddings, concat1 (5 posts), exponential

threshold scheduling optimized for 𝐸𝑅𝐷𝐸50 (ignoring the first 3 posts)

• LauSAn#3: Logistic regression with BERT embeddings, concat1 (5 posts), exponential

threshold scheduling optimized for latency-weighted 𝐹1 (ignoring first 3 posts)

• LauSAn#4: Finetuned DistilBERT, concat2, exponential threshold scheduling optimized

for 𝐸𝑅𝐷𝐸5

For models with concat1, we chose the maximum number of concatenated posts to be 𝑛 = 5.

For concat2, we concatenated 1, 2, 3, 4, 10, 20, 30, 40, and 50 posts without overlap. In all cases,

we concatenated the posts in reverse order, such that sequences longer than 512 subwords are

truncated on the oldest posts rather than the most recent ones.

6. Results and discussion

6.1. Submitted models

Table 2 shows the results of our submitted models on the official test set.
3

Out of 62 runs by 13 teams, our runs 4 and 0 ranked 1st and 2nd in terms of 𝐸𝑅𝐷𝐸5, run

2 ranked 4th in terms of 𝐸𝑅𝐷𝐸50, and run 3 ranked 5th in terms of latency-weighted 𝐹1.

However, none of our architectures ranked in the top 10 for several of these metrics at once.

This suggests that our threshold scheduling approach was very effective at optimizing towards

a specific evaluation metric without re-training the model (note that the models from runs 1, 2,

and 3 use exactly the same parameters, apart from the decision boundary).

3

The organizers also report ranking-based evaluation metrics (ranking based on model scores after 1, 100, 500,

and 1000 posts). Since our model classifies only based on the local post history and does not accumulate scores

across time, these measurements are not informative in our case, and we do not report them here.



Run Precision ↑ Recall ↑ 𝐹1 ↑ 𝐸𝑅𝐷𝐸5 ↓ 𝐸𝑅𝐷𝐸50 ↓ latency ↓ speed ↑ lw-𝐹1 ↑

LauSAn#0 0.137 0.827 0.235 0.041 0.038 1 1.000 0.235

LauSAn#1 0.165 0.888 0.279 0.053 0.040 2 0.996 0.278

LauSAn#2 0.174 0.867 0.290 0.056 0.031 4 0.988 0.287

LauSAn#3 0.420 0.643 0.508 0.059 0.041 6 0.981 0.498

LauSAn#4 0.201 0.724 0.315 0.039 0.033 1 1.000 0.315

UNSL#2 0.4 0.755 0.523 0.045 0.026 3 0.992 0.519

Table 2
Test set results of our submitted models, compared with a strong model by team UNSL, which performed

well across all time-sensitive metrics.

𝐸𝑅𝐷𝐸 is a measure that penalizes late decision. 𝐸𝑅𝐷𝐸5 begins punishing strongly from

the 5th post, 𝐸𝑅𝐷𝐸50 from the 50th post. This means that our models were successful at

classifying users early, especially runs 0 and 4. Comparing with standard classification metrics,

it can be seen that there is a tradeoff between accurate and early classification. For instance,

among our models, run 3 achieved the best 𝐹1 as well as the worst 𝐸𝑅𝐷𝐸5 and 𝐸𝑅𝐷𝐸50.

6.2. Post-submission ablation study

The results described above are not very informative for comparing the different parts of our

approach independently. Therefore, we conduct a post-submission ablation study in order

to assess the contributions of concatenation strategies, threshold scheduling, and model ar-

chitectures separately, and investigate their interactions. We trained models to cover the full

combination space of 2 model architectures, 3 concatenation strategies, and 2 thresholding

strategies, each optimized for 𝐸𝑅𝐷𝐸5, 𝐸𝑅𝐷𝐸50, and latency-weighted 𝐹1. We finetuned the

DistilBERT models for 6 epochs in the case of no-concat and concat1, and 3 epochs in the

case of concat2, in order to account for the different number of training samples generated by

the processing strategies, without undersampling the training set. Otherwise, the experimental

setup is the same as in Section 5. Results can be seen in Table 3. Note that these scores are not

directly comparable to the ones in Table 2, as they are only based on our own development set

and not the official test set.

In almost all cases, threshold scheduling with the exponential function defined in Section 4.2

outperforms or equals the constant decision boundary. These results confirm the hypothesis

that a constant threshold is suboptimal for repeatedly classifying the same users. The optimized

threshold scheduling functions look similar across different concatenation strategies: starting

below the midpoint, and quickly increasing towards a value above it.
4

In contrast, the optimal

constant threshold fluctuates strongly between optimization metrics, and in one case even leads

to an 𝐹1 score of 0.

Regarding the concatenation strategies, the picture is less clear. 𝐸𝑅𝐷𝐸50 and 𝐹1 both profit

from the concatenation strategies that involve history (concat1, concat2). Compared to

no-concat, they tend to lose performance when optimized for 𝐸𝑅𝐷𝐸5, although concat2

4

An exception is the model trained with concat2 and threshold scheduling optimized for latency-weighted 𝐹1,

where the optimized exponential function turns out to be equal to the constant one.



Logistic regression with averaged BERT embeddings:
Concatenation strategy
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constant, optimized for

... 𝐸𝑅𝐷𝐸5 0.126 0.126 0.000 0.117 0.101 0.458 0.106 0.075 0.512

... 𝐸𝑅𝐷𝐸50 0.132 0.089 0.388 0.124 0.075 0.419 0.106 0.075 0.512

... latency-weighted 𝐹1 0.124 0.093 0.485 0.113 0.090 0.490 0.104 0.077 0.528
exponential, optimized for

... 𝐸𝑅𝐷𝐸5 0.073 0.069 0.347 0.081 0.079 0.326 0.073 0.066 0.361

... 𝐸𝑅𝐷𝐸50 0.086 0.068 0.470 0.077 0.054 0.413 0.087 0.068 0.471

... latency-weighted 𝐹1 0.086 0.068 0.470 0.105 0.065 0.521 0.104 0.077 0.528

Finetuned DistilBERT:
Concatenation strategy

no-concat concat1 concat2
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constant, optimized for

... 𝐸𝑅𝐷𝐸5 0.129 0.109 0.224 0.174 0.094 0.256 0.150 0.097 0.267

... 𝐸𝑅𝐷𝐸50 0.167 0.106 0.244 0.171 0.099 0.251 0.151 0.083 0.308

... latency-weighted 𝐹1 0.174 0.114 0.261 0.173 0.096 0.258 0.158 0.085 0.315

exponential, optimized for

... 𝐸𝑅𝐷𝐸5 0.086 0.083 0.391 0.105 0.102 0.272 0.094 0.088 0.353

... 𝐸𝑅𝐷𝐸50 0.100 0.096 0.318 0.103 0.086 0.362 0.096 0.052 0.474

... latency-weighted 𝐹1 0.088 0.083 0.404 0.107 0.102 0.271 0.102 0.057 0.478

Table 3
Ablation results for logistic regression with averaged BERT embeddings. The changing factors were

concatenation strategy (no-concat, concat1, concat2), threshold scheduling (constant, exponential),

and the metric for which we optimized (𝐸𝑅𝐷𝐸5, 𝐸𝑅𝐷𝐸50, latency-weighted 𝐹1), which resulted in

18 trained models for each architecture. Best scores for each metric and architecture are shown in bold.

manages to recover some of it, likely due to the additional short samples seen during training.

Overall, it appears that concat2 leads to better results, unless the evaluation metric exclusively

favors very early detection as in 𝐸𝑅𝐷𝐸5.

Comparing the two model architectures, the logistic regression model mostly outperforms

DistilBERT, especially with no-concat and concat1 strategies. DistilBERT outperforms the

logistic regression model in terms of 𝐸𝑅𝐷𝐸5 and 𝐸𝑅𝐷𝐸50 only in the setting with exponential

threshold scheduling and concat2. This suggests that classifying averaged word representations

from pre-trained language models can be a viable option for this task. An explanation for this

could be that depression mainly manifests itself in the general semantic topic of the posts rather

than subtle linguistic details, and can thus largely be captured by averaged word embeddings.



7. Conclusion and outlook

We presented our approaches to 2022’s eRisk task for early detection of depression. Framing

this problem as a modified text classification, we experimented with different strategies for

input concatenation and threshold scheduling in order to take the post history into account

and enable early detection. Two of our models ranked first and second in the 𝐸𝑅𝐷𝐸5 metric,

which implies that they were particularly successful at detecting depression as early as possible.

In addition, we conducted an ablation study in order to determine the effect of the concate-

nation strategies and threshold scheduling. Our results show that adapting the classification

threshold at inference time (specifically, starting with a small threshold and increasing over

time) is highly effective for supporting early detection when the total number of samples is

unknown at first. We tested three concatenation strategies and observed that our concat2

strategy, which generates training data with both short and long post histories, results in a

good trade-off between early and accurate detection. We also show that for this specific task,

classification of pre-trained hidden representations with traditional machine learning models

can be a very effective and more robust alternative to finetuning.

Overall, the performance achieved on early detection of depression still leaves room for

improvement, with best achieved 𝐹1 scores in eRisk 2022 of 0.712 by NLPGroup-IISERB. In

future experiments, our approaches could be extended by further optimizing hyperparameters

for the concatenating strategies. Comparing our method of using local classification scores

with threshold scheduling with more globally accumulated confidence scores may provide

more insights into its effectiveness. And finally, our approaches leave room for integrating

domain-specific knowledge such as engineered linguistic features, which we have not explored

at all.
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