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ABSTRACT
It is important to select memorable videos from the huge amount of
videos, which can serve other fields, such as video summary, movie
production, etc. The Predicting Media Memorability task in Media-
Eval2021 focuses on predicting how well a video is remembered.
In this paper, we use a text-guided visual cross-modal guidance
approach for the video memorability prediction task. Based on
this, we use a late fusion approach to fuse features from multiple
modalities and predict the final video memorability scores.

1 INTRODUCTION
The image memorability task is already a relatively mature field,
and much work has been proposed to study it [1, 8–10]. However,
the video memorability prediction task is a brand new task from an
artificial intelligence perspective. For images, people maymemorize
a certain region in the image, which leads to high memorability
scores. For videos, people may memorize certain frames in a video
and video memorability prediction is a more complex and difficult
task. The Predicting Media Memorability task in the MediaEval
2021 workshop [11] is designed for this purpose, with the aim of
investigating how to assess better the degree to which a video
gives a moment of memory. Video memorability scores are used to
measure this metric. Over the past two years, work has been done
on the video memorability prediction task in the 2019 [14, 19] and
2020 [12, 13] editions of the task, where we looked at and considered
the advantages and disadvantages of other methods, and finally
we proposed our own method for predicting video memorability
scores.

2 RELATEDWORK
There are multiple attributes in videos, such as vision and audio,
which play important roles in video memorability prediction. Re-
searchers have used different methods to extract the features of
multiple modalities to obtain a good feature representation. For
example, the authors in [19] tried to extract features of video frames
using 2D convolution method, Inception-V3 and used them to com-
pose features of the whole video. Authors in [20] tried to extrat
textual features with Glove model [17], which is a common model
used in the NLP field. Researchers in [12] used a VGGish model
[12] to extract audio features.

Cross-modal interaction approaches are widely used in the field
of computer vision. For example, in [15], textual features are used
to enhance the representation of visual features in the image cap-
tioning task and this is achieved with good results. We therefore
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try to introduce the approach of cross-modal interaction methods
to the field of video memorability prediction.

3 APPROACH
As we have previously described, visual, textual, and audio infor-
mation play an important role in the video memorability prediction
task. We therefore carefully considered the feature extraction steps
for each modality. At the same time, we argued that since the text
was manually annotated based on the video content, there was
semantic consistency between the textual and visual content, and
since previous studies have shown that textual information played
a role in memorability prediction tasks [3, 18], textual features
were used to guide the representation of visual features, and the
two modal features were interacted. After obtaining the features
from each of the above three modalities, they were passed through
several MLP structures and predicted their respective video memo-
rability scores. Finally, we used an adaptive score fusion strategy
to fuse the scores of the three modalities.

3.1 Visual Feature
The 3D and 2D convolutional neural networks each have their own
advantages when dealing with video contents. The 3D convolu-
tional neural network takes into account the temporal features of
the video, while the 2D convolutional neural network has a smaller
number of parameters. We use a 3D convolutional neural network,
SlowFast [5], to extract features from the video as Global-level fea-
tures. We also use a ResNet-101 network [6] to extract features
from the video frames. For each input video, we sample 8 frames
evenly. These video frame features are fed into the GRU network
[2] to solve the timing-independent problem, and the GRU network
outputs the features as Temporal-aware level features. Afterwards,
these features are fed into a 1D convolutional neural network with
different convolutional kernel sizes 2,3,4,5 to sense visual features
of different local sizes, and the output of the 1D convolutional neu-
ral network is used as the Local level features. We splice the Global,
Temporal-aware, and Local level features as visual features.

3.2 Textual Feature
We used the Bert model [4] to extract the textual features of the
video. For each text, we first perform a word separation operation
and prefix each text with a [CLS] token. The features corresponding
to the last layer of [CLS] token in Bert was used as features for the
whole text. For videos with multiple texts, we average the features
of multiple texts as the textual features corresponding to the video
because of the similarity of these texts.

3.3 Audio Feature
We used the VGGish model [7] to extract audio features. First, we
cut each video into segments without overlapping in 0.96s, and each
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segment was fed into the VGGish network and a 128-D vector was
generated. We fed this vector into an MLP structure and predicted
the video memorability score of the segment. We take the median
score of these segments as the audio stream video memorability
prediction score for the video.

3.4 Cross-modal Interaction
With the visual and textual features already extracted above, we
used the textual features to interact with the visual features. For
the visual features extracted above, we first cut them into M=8
segments and mapped the visual features and textual features into
the same semantic space. Afterwards, the mapped textual features
and each segment of visual features were integrated to calculate
the weight of each segment of visual features. We used this weight
to weight and sum the cut M-segment visual features to obtain the
interacted features. Through this interaction, the visual features
exploited the semantic consistency with the textual features to
enhance the expressiveness of their own features.

3.5 Score Fusion
We trained simple MLP networks using visual, textual, and audio
features separately as regressors for predicting the video memora-
bility scores of the respective modalities. MLP network is composed
of several fully connected layers and non-linear activation func-
tions. Afterwards, an adaptive weight assignment strategy was used
to fuse the three scores. We varied the weights of each modality
score in steps of 0.05, but ensured that the total weight sums to 1.
In this way, we fused the three scores and predicted the final video
memorability score.

4 RESULTS AND ANALYSIS
In this section, we describe specifically how we used the TRECVid
and Memento10k dataset in our experiments and present the results
in Table 1 and Table 2 below. And this is followed by a brief analysis
of the results of the experiments.

Table 1 shows the experimental results of ourmethod on TRECVid
2021. w/(dev) in the table means that the development set was used,
while w/o(dev) means that the development set was not used. This
is because the development set was not officially released at the
beginning of the competition, so we only used the training set to
train the model. When the development set was not used, we di-
vided the training set of 590 videos into 479 as the training set and
111 as the validation set to train our model. When the development
set was used, we considered it unreasonable to use only 590 videos
as the training set and more than 1000 videos as the validation set,
considering that the development set contains nearly 1000 videos.
So we mixed the training set and development set together and
divided the data set into training and validation sets at a ratio of
0.8/0.2. We believe that more data would be beneficial to the model.
We were surprised to find that when training a short-term video
memorability prediction model, the model without the develop-
ment set achieved better performance, both in terms of raw and
normalized scores, while when training a long-term video mem-
orability prediction model, using the development set improved
the performance significantly. Now we do not know the reason for

Table 1: Results of our method on TRECVid2021 Dataset
validation set and test set

Run test set (RC) validation set (RC)
short-term w/(dev) 0.113 0.330
short-term w/o (dev) 0.123 0.432

normalized short-term w/(dev) 0.106 0.296
normalized short-term w/o(dev) 0.132 0.462

long-term w/(dev) 0.11 0.331
long-term w/o(dev) 0.037 0.298

Table 2: Results of our method on Memento10k Dataset vali-
dation set and test set

Run test set (RC) validation set (RC)
short-term 0.628 0.642

normalized short-term 0.649 0.655

this phonomenon. Additionally, in score fusion stage, visual feature
occupies the greatest weight and textual feature is scondary to it.

Table 2 shows the results of our method on the Memento10k
dataset. When training with the Memento10k dataset, we trained
our model using the officially published training/validation set par-
titioning method. We should also explain that we did not use audio
features when training the Memento10k dataset, partly because
some of the videos lack audio, and partly because in [16] the au-
thors did not use audio features, so we did not use audio features
either. Our model achieves better performance on the Memento10k
dataset, and we speculate that the reason for this is that more data
allows for better training of the model and mitigates the effects of
overfitting.

5 DISCUSSION AND OUTLOOK
In this competition, we first extracted features from multiple modal-
ities, then we used cross-modal interaction to enhance the repre-
sentation of visual features, and finally we used late fusion to fuse
the video memorability scores predicted by multiple modalities to
obtain the final video memorability scores. In addition to this, we
observed that optical flow was used to predict video memorability
scores in multiple methods, which is one of our future research
directions. However, as optical flow is time-consuming and labour-
intensive, we did not use optical flow features in this experiment
for the time being.
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