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ABSTRACT
The Sports Video Task in MediaEval 2021 Challenge contains two
subtasks, detection and classification. The classification subtask
aims to classify different strokes in table tennis segments. These
strokes are fine grained actions and difficult to distinguish. To solve
this challenge, we, the INF Team, proposed a fine grained action
classification pipeline with SWIN-Transformer and a combination
of optimization techniques. According to the evaluation results, our
best submission ranks first with 74.21% accuracy and significantly
outperforms the runner-up (74.21% v.s. 68.78%).

1 INTRODUCTION
Action classification has been a heated topic in computer vision and
can be widely implemented in real-world applications. Recent years
have witnessed many successful works on action classification[6,
9, 12]. The recent improvements of these methods can be highly
attributed to the advancement of temporal modeling capacity. Dif-
ferent from previous series of 2D-Stream CNN works or 3D-CNN
methods, [12] factorizes the 3D spatial-temporal convolution to a
2D spatial convolution and a 1D temporal convolution. TRM [9]
directly replaces convolution operation with temporal relocation
operation to enable the 2D CNNs the capability of spatial-temporal
modeling with an equivalent temporal receptive field of the whole
input video clip. Given the recent success of implementing trans-
former [13] based methods in image-level computer vision tasks (i.e.
ViT [3] for image classification), Video SWIN-Transformer (VST) [6]
proposed a transformer based video feature extractor model and
surpassed previous CNN based SOTAs with noticeable margins on
multiple action recognition benchmarks. However, directly imple-
menting the VST model on the dataset of sports video classification
task in the 2021 Mediaeval Challenge won’t be the optimal solution.
Different from the other action classification benchmarks [4, 7, 11],
the Sports Video Classification Task [7] of 2021 Mediaeval Chal-
lenge specifically focused on strokes within table tennis segments.
These strokes are fine-grained actions that are visually similar and
take place in limited scenes. Meanwhile, the samples for training
are pretty limited, and the dataset is severely long-tail distributed.
Without specially-designed techniques, the model will be easily
overfitted and biased to strokes of head classes. To solve this, we
implemented Background Erasing [14] which prevents the model
from overfitting to background regions. We also proposed a sample-
balanced cross entropy loss for model optimization on the long-tail
distributed dataset.
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2 APPROACH
2.1 Implementation of VST Model
Unless otherwise mentioned, all our reported results use VST-B [6]
as the backbone extractor. Specifically, the channel number of the
hidden layers in the first stage is 128. The window size is set to 𝑃 = 8
and 𝑀 = 7. The query dimension of each head is 𝑑 = 32, and the
expansion layer of each MLP is set to 𝛼 = 4. The layer numbers of
the four stages are {2, 2, 18, 2}. The model is initialized with weights
pretrained on Kinetics600 [1]. We employ an SGD optimizer with
plateau scheduler and train the model for 30 epochs. We use rank1
accuracy as the monitor metric of plat scheduler, and the patience is
set as 1. During training stage, the input frames are firstly resized to
256×256, then randomly cropped to 224×224 for data augmentation.
In evaluation stage, the input frames are firstly resized to 256× 256,
then center cropped to 224 × 224. For each segment, 32 frames are
evenly sampled as the input instance. Therefore, for each segment,
the size of input sample 𝑉𝑏𝑒 is 32 × 224 × 224.

2.2 Implementation of Background Erasing
After analyzing the training set videos, we find the scenes are quite
similar, e.g., many videos are recorded in the same scene. As a result,
the model may easily become background biased as reported in
[5, 16–18] and experiments in [2]. To solve this issue, we followed
[14] to apply a background erasing algorithm in training. To be
specific, one static frame is randomly sampled from each input
segment and added to every other frames within the segment to
construct a distracting sample. Then, an MSE loss is implemented
to force the features extracted from the original clip to be similar
to those extracted from the distracting sample.

L𝑚𝑠𝑒 = ∥N (𝑉𝑜𝑟𝑔) − N (𝑉𝑏𝑒 )∥2 (1)

where N represents the backbone VST extractor, 𝑉𝑜𝑟𝑔 represents
the original input clip, and 𝑉𝑏𝑒 represents the background erased
clip.

2.3 Implementation of Balanced Loss
As is shown in Figure 1, the training dataset is severely long-tail
distributed. If all samples are evenly weighted, the model may
easily become biased to the head classes (i.e. the classes with much
more samples than others in the training set). Thus, we use a class-
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Figure 1: The number of segments for training varies among
different strokes. Especially, there are no samples of Serve
Backhand Loop and Serve Backhand Sidespin for training.

Table 1: Results of CMU INF Team in Sports Classification
Task of 2021 Mediaeval Challenge

Run ID System Spec Val Acc % Test Acc %

Run1 swin-transformer 63.40 63.35
Run3 Run1 + balanced loss 67.81 66.06
Run2 Run3 + background erasing 75.25 74.21

where𝑁 𝑖 represents the 𝑖𝑡ℎ stroke’s number of samples for training,
and 𝑛 represents the number of strokes (20 here). The overall loss
function for optimization becomes:

L𝑖
𝑥𝑒 = −𝑤𝑖

𝑠 log(
exp(𝜙 (N (𝑥𝑖𝑛)))∑
𝑗 exp(𝜙 (N (𝑥 𝑗𝑛)))
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L = 𝛼L𝑚𝑠𝑒 + 𝛽L𝑥𝑒 (6)

where 𝜙 represents the MLP classifier with dropout layers that
projects extracted video feature to vector of probabilities. Unless
specially mentioned, we set 𝛼 = 1 and 𝛽 = 1 for all our results in
this report.

3 RESULTS AND ANALYSIS
As is shown in Table 1, we report the performance of our three
submissions on both self-evaluated validation set and official hid-
den test set. Through comparing Run1 and Run3, we can find that
the implementation of balanced loss brings 3.41% improvements
on validation set and 2.71% improvements on test set. It shows
that balanced sampling can improve the final performance through
forcing the model pay more attention on tail classes and less atten-
tion on head classes. It may also work for similar tasks[8, 10, 15?
]. Through comparing Run2 and Run3, we can find that the usage
of background erasing significantly improves the performance on
both validation set (7.44%) and test set (8.15%).

Figure 2: Confusion matrix among sub-group attributes of
Run2 submission.

4 DISCUSSION AND OUTLOOK
The strokes in the sports classification task have several sub-group
attribute pairs (i.e., Defensive v.s. Offensive and Forehand v.s. Back-
hand). So besides comparing the global accuracy performance, we
also analyze the confusion matrix of these sub-group attributes. As
is shown in Figure 2, we can find our system can successfully distin-
guish similar attribute pairs such as forehand v.s. backhand, server
v.s. offensive, and server v.s. defensive. However, it doesn’t perform
as well when encountering offensive v.s. defensive. We suggest the
0-1 classification of sub-group attributes can be included in next
year’s challenge as extra metric. Meanwhile, we find several strokes
(i.e. Serve Backhand Loop and Serve Backhand Sidespin) never appear
in training or validation sets. Although the balanced loss can relieve
the classifier bias to head classes to some extent, the number of sam-
ples for several strokes (i.e. Serve Forehand Loop ) is still too small
to train a robust model. Thus, we hope the dataset can be re-split
or augmented for next year’s challenge. Finally, we didn’t use both
train and val samples for final submission, we will have a try next
year to see if the performance get improved. Meanwhile, we also
assume initializing with weights pretrained on large fine-grained
action recognition datasets may also improvements.
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