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Abstract
Contextual reasoning is the result of the composition of local reasoning in each context via a set of
inference rules, called bridge rules. In the past it has been argued that organizing knowledge in multi-
ple related contexts (modules) provides many advantages. Logical inference and satisfiability in multi
context systems have been widely studied. However,there are other important inference tasks such as
model counting and weighted model counting that one want to perform on an MCS. In this note we
concentrate on Model Counting task that can provide a good base for probabilistic reasoning in Multi
Context Systems. The paper proposes a method that computes model counting for a multi context
system in terms of the combination of model counting in each context.

1. Introduction

Multi Context Systems (MCSs) [1, 2, 3, 4, 5, 6] are logical frameworks that allow modelling
knowledge distributed amongst a set theories called contexts. Each theory is specified in a
(possibly different) logical language, called local language. The fact that a formula 𝜑 holds in
a context 𝑐 is expressed by the labelled formula 𝑐 : 𝜑. The connections between knowledge
of different contexts are modeled by the so called bridge rules, which are inference rules with
premises and conclusions in different contexts. An interpretation of an MCS maps every
context in a set of interpretations of the local language, called local interpretations. An MCS
interpretation is a model if local interpretations satisfy local theories and the combination of
local interpretations satisfy the bridge rules. Model counting for MCS is the task of determining
the cardinality of the set of models of an MCS.

Model counting for logical system is obtaining increasing attentions due to its important role
in the modern approaches of AI [7], where logical reasoning are blended with some form of
quantitative inference such as for instance probability. The aim of this paper is to investigate
about model counting method for MCS that exploit the intrinsic modular structure available
in an MCS. To the best of our knowledge this is the first attempt to solve the model counting
problem for MCSs. The paper provides theoretical result that proves how model counting in
MCS can be obtained by a suitable combination of algorithms for model counting in each single
context.
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2. Multi context systems

Let 𝐶 be a set. Every element of 𝐶 is called context. A Multi Context System on a family of
logical languages 𝐿 = {𝐿𝑐}𝑐∈𝐶 , is a structure MC =

⟨︀
{Φ𝑐}𝑐∈𝐶 ,BR

⟩︀
where Φ𝑐 is a set of

closed formulas of the language 𝐿𝑐 and BR is a set of bridge rules, i.e., expressions of the form

𝑐1 : 𝜑1, . . . , 𝑐𝑛 : 𝜑𝑛 ⇒ 𝑐𝑛+1 : 𝜑𝑛+1 (1)

where 𝜑𝑖 is a sentential formula of 𝐿𝑐𝑖 . A model for an MCS
⟨︀
{Φ𝑐}𝑐∈𝐶 ,BR

⟩︀
is a structure

Ω = {Ω𝑐}𝑐∈𝐶 where

1. Ω𝑐 is a set of interpretations of 𝐿𝑐 such that for all 𝜔 ∈ Ω𝑐, 𝜔 |= Φ𝑐 (written as Ω𝑐 |= Φ𝑐);
2. For every bridge rule of the form (1) in BR, if Ω𝑐𝑖 |= 𝜑𝑖 for all 𝑖 = 1, . . . , 𝑛, then

Ω𝑐𝑛+1 |= 𝜑𝑛+1

By considering each 𝜑 ∈ Φ𝑐 as a rule with zero premises, an MCS can be seen as a set of bridge
rules BR. In the following we consider this simpler form of an MCS.

Example 1. Alice and Bob are two agents who have beliefs about two propositions 𝑝 and 𝑞. Bob
can query Alice on her beliefs about 𝑝 and 𝑞, Alice can have partial or contraddictory beliefs
about 𝑝 and 𝑞, therefore, it is possible that Alice provides no answer or contraddictory answers
to Bob’s queries. Bob has the following beliefs about Alice. He believes that, if Alice is reliable
(𝑟), then Alice’s answers are correct, and therefore he will also believe in what Alice says. This
simple scenario can be formulated with an MCS 𝑀𝐶𝑎𝑏 with two contexts 𝐶 = {𝑎, 𝑏}; where the
local languages 𝐿𝑎 and 𝐿𝑏 are s propositional languages on the propositions {𝑝, 𝑞} and {𝑝, 𝑞, 𝑟}
respectively, The two contexts are connected by the following bridge rules:

𝑎 : 𝑝 ⇒ 𝑏 : 𝑟 → 𝑝 𝑎 : ¬𝑝 ⇒ 𝑏 : 𝑟 → ¬𝑝 (2)

𝑎 : 𝑞 ⇒ 𝑏 : 𝑟 → 𝑞 𝑎 : ¬𝑞 ⇒ 𝑏 : 𝑟 → ¬𝑞 (3)

The above bridge rules simulate all the query-answering interactions between Alice and Bob. No-
tice that if Alice provides contraddictory answers, e.g., 𝑎 : 𝑝 and 𝑎 : ¬𝑝 then Bob will believe that
she is not reliable (𝑏 : ¬𝑟. A model for 𝑀𝐶𝑎𝑏 is a pair ⟨Ω𝑎,Ω𝑏⟩, where Ω𝑎 and Ω𝑏 represent the
final belief state of the two agents after Bob have done all the possible queries to Alice. We are
interested in counting the number of final states of such a simple system, i.e., the number of models
of 𝑀𝐶𝑎𝑏.

3. Multi context model counting

Suppose that for every language context 𝑐, there is an oracle mc𝑐 that returns the number of
models mc𝑐(Φ)

1 for every set of 𝐿𝑐-sentences Φ. We are interested in finding a way to solve
the model counting problem for BR using such oracles.

Let 𝐵 be the set of labelled formulas 𝑐 : 𝜑 contained in in some bridge rule of BR. Let 𝐹 ⊆ 𝐵
be any subset of 𝐵 closed under BR. Let F be the set of all such 𝐹 ’s. Let’s define mc(𝐹 ) as the
number of Ω = {Ω𝑐}𝑐∈𝐶 , where Ω𝑐 is a set of models for 𝐿𝑐, such that:
1When it is clear from the context we will omit the index to the context and use the simpler notation mc(𝜑).



1. Ω𝑐 |= 𝜑 for every 𝑐 : 𝜑 ∈ 𝐹 and
2. Ω𝑐 ̸|= 𝜑 for every 𝑐 : 𝜑 ∈ 𝐹̄ = 𝐵 ∖ 𝐹 .

Notice that Ω satisfies conditions 1 and 2 if and only if Ω is a model of BR.

Proposition 1. Ω cannot satisfy conditions 1 and 2 for two distinct 𝐹 and 𝐹 ′.

Proof: If 𝐹 ̸= 𝐹 ′ there is a labelled formula 𝑐 : 𝜑 such that either 𝑐 : 𝜑 ∈ 𝐹 ∩ 𝐹̄
′ or

𝑐 : 𝜑 ∈ 𝐹̄ ∩ 𝐹 ′. If Ω satisfies condition 1 and 2 for both 𝐹 and 𝐹 ′ then Ω𝑐 |= 𝜑 and Ω𝑐 ̸|= 𝜑,
which is a contradiction. □

Lemma 1. For every 𝐹 ⊆ 𝐵:

𝑚𝑐(𝐹 ) =
∏︁
𝑐

∑︁
𝐺⊆𝐹 𝑐

(−1)|𝐺|2𝑚𝑐(𝐹𝑐∪𝐺)

where, for every set of labelled formulas 𝑋 , 𝑋𝑐 denotes the set {𝜑 | 𝑐 : 𝜑 ∈ 𝑋}.

Proof: For a given 𝐹 , an MC interpretation Ω = {Ω𝑐}𝑐∈𝐶 satisfies all the 𝑐 : 𝜑 in 𝐹 and does
not satisfy all the 𝑐 : 𝜑 ∈ 𝐹̄ if and only if it satisfies the following two conditions for every
𝑐 ∈ 𝐶 :

1. for all 𝜑 ∈ 𝐹𝑐, 𝜔 |= 𝜑 for all 𝜔 ∈ Ω𝑐;
2. for all 𝜑 ∈ 𝐹̄ 𝑐, 𝜔 |= ¬𝜑 for some 𝜔 ∈ Ω𝑐.

Therefore we have to count how many such a Ω𝑐 exist for every 𝑐. For this purpose we use the
following result:

Corollary 1 ([8] section 4.2). Let 𝑋 be a set of objects and let 𝒴 = {𝑌1, . . . , 𝑌𝑚} be a set of
subsets of 𝑋 . For every 𝒬 ⊆ 𝒴 , let 𝑁(⊇ 𝒬) be the count of objects in 𝑋 that belong to all the
subsets 𝑌𝑖 ∈ 𝒬, i.e., 𝑁(⊇ 𝒬) =

⃒⃒⃒
{
⋂︀

𝑌𝑖∈𝑄 𝑌𝑖}
⃒⃒⃒
. For every 0 ≤ 𝑙 ≤ 𝑚, let 𝑠𝑙 =

∑︀
|𝒬|=𝑙 𝑁(⊇ 𝒬)

and let 𝑒0 be count of objects that do not belong to any of the 𝑌𝑖 in 𝒴 , then

𝑒0 =
𝑚∑︁
𝑙=0

(−1)𝑙𝑠𝑙 (4)

In our case, let 𝑋 be the set of all the subsets of models of 𝐹𝑐. I.e. 𝑋 = {Ω ⊆ Ω(𝐿𝑐) | Ω |= 𝐹𝑐},
where Ω(𝐿𝑐) is the set of all interpretations of 𝐿𝑐. Let 𝒴 = {𝑌𝜑}𝜑∈𝐹 𝑐

, where 𝑌𝜑 = {Ω ∈ 𝑋 |
Ω |= 𝜑}. With this definition we have that 𝑒𝑜 is the number of subsets of 𝑋 (models of 𝐹𝑐) that
do not satisfy none of the formulas in 𝐹̄ 𝑐. To apply Corollary 1 we need to calculate 𝑠𝑙 for every
0 ≤ 𝑙 ≤ |𝐹̄ 𝑐|. By definition of 𝑠𝑙 we have:

𝑠𝑙 =
∑︁
|𝒬|=𝑙

𝑁(⊇ 𝒬) =
∑︁
𝐺⊆𝐹̄ 𝑐
|𝐺|=𝑙

⃒⃒⃒⃒
⃒⃒ ⋂︁
𝜑∈𝐺

𝑌𝜑

⃒⃒⃒⃒
⃒⃒



Notice that Ω ∈
⋂︀

𝜑∈𝐺 𝑌𝜑 if and only if Ω |= 𝐹𝑐∧𝐺. This implies that
⃒⃒⃒⋂︀

𝜑∈𝐺 𝑌𝜑

⃒⃒⃒
is the number

of subsets of the set of models that satisfiey 𝐹𝑐 ∧𝐺, i.e.,

𝑠𝑙 =
∑︁
𝐺⊆𝐹̄ 𝑐
|𝐺|=𝑙

2𝑚𝑐(𝐹𝑐∧𝐺)

From which we conclude that the number of sets of models that satisfies 𝐹𝑐 and do not satisfy
𝐹̄ 𝑐 is:

𝑒0 =
∑︁
𝐺⊆𝐹 𝑐

(−1)|𝐺|2𝑚𝑐(𝐹𝑐∪𝐺)

Notice that every model of 𝐹 that does not satisfy the formulas in 𝐹 can be obtained by
selecting for every 𝑐 a set of models that satisfy 𝐹𝑐 and do not satisfy 𝐹̄ 𝑐. Since we have∑︀

𝐺⊆𝐹 𝑐
(−1)|𝐺|2𝑚𝑐(𝐹𝑐∪𝐺) of such sets of models, we can conclude that

𝑚𝑐(𝐹 ) =
∏︁
𝑐

∑︁
𝐺⊆𝐹 𝑐

(−1)|𝐺|2𝑚𝑐(𝐹𝑐∪𝐺) (5)

(6)

□

Theorem 1.

mc(BR) =
∑︁

𝐹∈F(BR)

∏︁
𝑐

∑︁
𝐺⊆𝐹 𝑐

(−1)|𝐺|2𝑚𝑐(𝐹𝑐∪𝐺) (7)

Proof: For every model Ω of BR there is an 𝐹 such that Ω |= 𝐹 and for every 𝑐 : 𝜑 ∈ 𝐹̄
Ω𝑐 ̸|= 𝜑. Furthermore, Proposition 1 guarantees that Ω cannot be a model of two distinct 𝐹 ’s.
This allows us to infer that

mc(BR) =
∑︁

𝐹∈F(BR)

mc(𝐹 )

=
∑︁

𝐹∈F(BR)

∏︁
𝑐

∑︁
𝐺⊆𝐹 𝑐

(−1)|𝐺|2𝑚𝑐(𝐹𝑐∪𝐺)

□
Notice that the set F(BR) can be computed by starting from any subset of 𝐵 and by applying

bridge rules until a fixpoint is reached. This operation takes at most |BR| steps. In the worse
case at every step only one element of BR is fired. Furthermore one can compute and cash
𝑚𝑐(𝑋𝑐) for all the subset 𝑋𝑐 ⊆ 𝐵𝑐. The complexity of this is fully determined by mc𝑐 and it is
not influenced by the complexity of the model counting in the other contexts. Therefore the
complexity of the entire process is just the sum of the complexity of computing model count in
𝑐 for all the subsets of 𝐵𝑐.



Example 2 (continuation of Example 1). Let us apply Theorem ?? to a simplified version of
Example 1, where 𝐿𝑎 contains the only proposition 𝑝 and 𝐿𝑏 𝑟 and 𝑝 we consider only bridge rules
(2). The set 𝐵 is equal to:

𝐵 = {𝑎 : 𝑝, 𝑎 : ¬𝑝, 𝑏 : 𝑟 → 𝑝, 𝑏 : 𝑟 → ¬𝑝}

The set F of subsets 𝐹 of 𝐵 closed under the bridge rules (2) and (3), are the following:

𝐹0 = {}
𝐹1 = {𝑏 : 𝑟 → 𝑝}
𝐹2 = {𝑏 : 𝑟 → ¬𝑝}
𝐹3 = {𝑏 : 𝑟 → 𝑝, 𝑏 : 𝑟 → ¬𝑝}
𝐹4 = {𝑎 : 𝑝, 𝑏 : 𝑟 → 𝑝}
𝐹5 = {𝑏 : 𝑟 → 𝑝, 𝑏 : 𝑟 → ¬𝑝}
𝐹6 = {𝑎 : ¬𝑝, 𝑏 : 𝑟 → ¬𝑝}
𝐹7 = {𝑎 : ¬𝑝, 𝑏 : 𝑟 → 𝑝, 𝑏 : 𝑟 → ¬𝑝}
𝐹8 = {𝑎 : 𝑝, 𝑎 : ¬𝑝, 𝑏 : 𝑟 → 𝑝, 𝑏 : 𝑟 → ¬𝑝}

Using formula (5) one can cmput mc(𝐹𝑖) and then sum all the result, obtaining mc((2)). Let us
for instance compute mc(𝐹3) and mc(𝐹4)

mc(𝐹3) = (2𝑚𝑐𝑎(⊤) − 2𝑚𝑐𝑎(𝑝) − 2𝑚𝑐𝑎(¬𝑝) + 2𝑚𝑐𝑎(𝑝∧¬𝑝)) · 2𝑚𝑐𝑏((𝑟→𝑝)∧(𝑟→¬𝑝))

= 22 − 21 − 21 + 20) · 22 = 4

mc(𝐹4) = (2𝑚𝑐𝑎(𝑝) − 2𝑚𝑐𝑎(𝑝∧¬𝑝)) · (2𝑚𝑐𝑏(𝑟→𝑝) − 2𝑚𝑐𝑏(𝑟→𝑝∧𝑟→¬𝑝))

= (21 − 20) · (23 − 22) = 4

4. Conclusion and future directions

In this short note, we proved a formula to compute model counting for MC systems that is based
on model counting for each single context. This initial idea can be generalised in a number
of directions. The first direction concerns the generalisation to MC weighted model counting.
Weighted model counting is tightly connected to probabilistic reasoning (see e.g., [9]), this will
open the opportunity of doing contextual probabilistic inference. A second research direction
can be obtained by exploiting the correspondence between modal logic and MC systems proved
in [2] and develop a context based approach to model counting and probabilistic inference for
modal logic. Finally one could extend the result of this note to distributed first order logic [5]
and distributed description logics [6]. Further generalisation involves more complex bridge
rules including for instance negated labelled formulas and disjunction of labelled formulas.
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