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Abstract
In this extended abstract we present our work on solving non-linear polynomial systems over finite

fields. Given a formula over (in-)equality constraints of polynomials over finite fields, we developed

an automated search procedure that checks satisfiability of the polynomial system, that is checking

the existence of an assignment of the polynomial variables to values from the finite field such that the

constraints are satisfied. We have designed a Model Constructing Satisfiability (MCSat) style search

procedure with two different approaches for explanation functions. We have implemented our procedure

and compared its performance to state-of-the-art approaches.
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1. Introduction

When reasoning in emerging applications of system security [1, 2, 3, 4], computer cryptography,

especially post-quantum cryptography [5, 6, 7, 8, 9, 10], or computational biology [11, 12],

one is often faced with the challenge of solving non-linear arithmetic equations modelling

functional behaviour of the respective application instance. In this extended abstract we propose

our ongoing efforts towards developing an automated reasoning procedure for deciding the

satisfiability of a system on non-linear equations over finite fields. In the area of blockchains,

so-called ZK-rollups are based on polynomials over (a very large) finite field [13]. Proving

properties over those can be helpful, while breaking them could have serious consequences.

There have been many approaches presented for solving systems of polynomials over finite

fields. Earlier procedures are based on decomposing the system into multiple systems with

specific properties. They are called triangular sets [14, 15] or characteristic sets [16, 17]. In

the recent years most solutions are based on Gröbner bases which are well known for solving

polynomial systems in general. In the case of finite field polynomials, specialized approaches

have been developed, most notably the algorithms F4 [18] and F5 [19]. A further procedures is

the widely known XL algorithm [20]. One common aspect of all these works is that they are

fully solving the system - they are describing the full solution space even if just a satisfiability

answer is required. To the best of our knowledge, no SMT style approach has been so far

proposed for solving the satisfiability of polynomial equations over finite fields.
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2. Our SMT Problem

In algebra, a field is a set of elements that is closed with regard to the operations sum, difference,

product and inverse finding in their usual definitions. Well known examples for fields (of infinite

size) are the rational, real, and complex numbers. When the number of elements in a field is

finite, it is denoted as a finite field. The order of a finite field is defined as the number of the

field’s elements.

Given a number 𝑞 = 𝑝𝑛, where 𝑝 is prime, and 𝑛 ≥ 1, we can construct a finite field of order

𝑞. As all finite fields of order 𝑞 are isomorphic, we denote the field as F𝑞 .

In case 𝑛 = 1 the integers modulo 𝑝 describe a finite field with elements {0, 1, . . . , 𝑝− 1}.
Addition, subtraction and multiplication can be performed in the integer domain followed by

the modulo operation. To get the multiplicative inverse, one computes the extended Euclidean

algorithm

For 𝑛 > 1, the elements of the field are polynomials over F𝑝 modulo an irreducible polynomial

over F𝑞 with degree 𝑛. The operations are the corresponding polynomial operations over the

quotient ring. A polynomial is irreducible when it cannot be factored into polynomials of smaller

degree, i.e. it cannot be represented as a product of polynomials of smaller degree.

Example 1. A finite field with 5 elements is F5 = {0, 1, 2, 3, 4}. The term (2 · 3) + 4 evaluates
to 0 in F5. A field of order 4 using the (only) irreducible polynomial over F2: 𝑎2 + 𝑎+ 1 consists of
F22 = {0, 1, 𝑎, 1 + 𝑎}. The term ((𝑎) + (1)) · (𝑎+ 1) evaluates to 𝑎 under F22 .

Given a finite field F𝑞 , a multivariate polynomial 𝑓 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛] is of the form

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑎𝑚 · 𝑥𝑑𝑚𝑛 + 𝑎𝑚−1 · 𝑥𝑑𝑚−1
𝑛 + · · ·+ 𝑎1 · 𝑥𝑑1𝑛 + 𝑎0

where 0 < 𝑑1 < · · · < 𝑑𝑚 are non-negative integers and the coefficients 𝑎𝑖 are inF𝑞[𝑥1, . . . , 𝑥𝑛−1]
with 𝑎𝑚 ̸= 0. A (polynomial) constraint is of the form 𝑓 ▷ 0 where ▷∈ {=, ̸=}. With an

assignment function 𝜈 : 𝑋 → F𝑞 the constraint can be evaluated by replacing the variables in 𝑓
accordingly and evaluating the (dis-)equality. As usual, we denote a set of constraints a clause
and a set of clauses a formula. We refer to a constraint that is part of a clause as a literal. A

formula is satisfied by 𝜈 if and only if each clause contains at least one constraint that evaluates

to true under 𝜈. A formula is satisfiable if such an assignment function exists.

SMT Problem Statement. Consider a finite field F𝑞 with 𝑞 = 𝑝𝑛, where 𝑝 is prime and

𝑛 ≥ 1. Let ℱ be a formula as defined above. Then the literals in the clauses of ℱ are constraints

over polynomials in F𝑞[𝑥1, . . . , 𝑥𝑛]. Our SMT problem as the following satisfiability query:

Does there exist an assignment function 𝜈 : {𝑥1, . . . , 𝑥𝑛} → F𝑞 that satisfies ℱ?
Note that the problem of solving a polynomial system, i.e. finding a common zero for a set of

given polynomials, can trivially be formulated as a conjunction of unit clauses and, therefore, is

in the scope of our SMT problem.

Example 2. Given the formula ℱ with polynomials over F3[𝑥, 𝑦].

ℱ = { {𝑥2𝑦 − 1 = 0}⏟  ⏞  
𝐶1

, {𝑦 = 0, 2𝑦 + 1 = 0}⏟  ⏞  
𝐶2

}

The formula ℱ is satisfiable with the assignment function 𝜈 : {𝑥 ↦→ 1, 𝑦 ↦→ 1}.
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3. Non-Linear SMT Reasoning over Finite Fields

Our approach for solving the SMT problem of Section 2 is based on the Model Constructing

Satisfiability (MCSat) calculus presented in [21]. This calculus was successfully applied in

various areas, most notably for solving linear integer constraints [22] and for solving non-linear

constraints over reals [23]. In our work, we ajdusted the MCSat approach towards finding

solutions over finite fields (Section 3.1), while resolving propositional conflicts (Section 3.2).

In this extended abstract, we only give a high-level description of the procedure and show

the basic ideas. We refer to [24] for further details, including formal definitions and proofs.

3.1. Search Procedure

The MCSat procedure combines Conflict-Driven Clause Learning (CDCL) with theory reason-

ing [21]. During the search for satisfying assignments, we are deciding on literals as well as

values for the polynomial’s variables. This is reflected in the search procedure’s trail which, in

addition to tracking polynomial constraints that are decided or required by propagation to be

true, contains assignments 𝛼𝑖 to polynomial variables 𝑥𝑖. A trail 𝑀 has the following structure:

𝑀 = J. . . , 𝐹0, . . . , 𝐹𝑚, 𝑥𝑘−1 ↦→ 𝛼𝑘−1, 𝐺1, 𝐺2, . . . , 𝐺𝑙K,

where the constraints 𝐹𝑖 contain polynomials over F𝑞[𝑥1, . . . , 𝑥𝑘−1], and the constraints 𝐺𝑖

are over F𝑞[𝑥1, . . . , 𝑥𝑘]. A polynomials constraint 𝐺𝑖 is added to the trail if and only if all its

theory variables but 𝑥𝑘 (the highest according to some predefined variable order) are assigned

a value. Once all such polynomials are added, we determine a suitable value for 𝑥𝑘 . If there is a

value 𝛼𝑘 that fulfils all constraints 𝐺𝑖, we add 𝑥𝑘 ← 𝛼𝑘 and continue the search with 𝑥𝑘+1. If

no such value exists, we need to derive a new clause 𝐸 (called explanation clause) to represent

this fact. 𝐸 is constructed in a way that a conflict occurs and a regular CDCL style conflict

analysis can start right away. This generates a conflict clause which is then used to backtrack

and lead the search in a new direction. Generating explanations is the core strength of a MCSat

style procedure, as it translates theory knowledge (e.g., the fact that there is no suitable value

for a variable) into a clause that can be utilised by CDCL.

While explanation clauses are primarily generated when a conflict occurs, we can utilize this

feature in other instances as well. For example, consider a constraint that is fulfilled independent

of the assignment of some variables. This fact can be expressed using an explanation clause to

further guide the search.

Example 3. A trail while searching for a solution of Example 2 might be:

𝑀 = J(𝑦 = 0), 𝑦 ↦→ 0, 𝐸 → (𝑥2𝑦 − 1 ̸= 0)K

Where 𝐸 = {𝑥2𝑦 − 1 ̸= 0, 𝑦 ̸= 0} is a generated explanation clause. Note that 𝐸 is generated
such that an immediate unit propagation is possible and the search is in a conflicting state.

3.2. Generating Explanations

Finding a procedure to generate explanations is the key challenge when applying a MCSat style

procedure to a new theory domain.
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The explanation clause generation procedure takes a trail 𝑀 containing assignments for

variables 𝑥1, . . . , 𝑥𝑘−1 as well as a polynomial constraint 𝐺 over F𝑞[𝑥1, . . . , 𝑥𝑘] that makes

the trail incompatible. This means that by adding 𝐺 to the 𝑀 , the (previously non-empty) set

of possible values for the (yet unassigned) variable 𝑥𝑘 gets empty. Therefore, 𝑀 cannot be

extended with an assignment for 𝑥𝑘 after 𝐺 is added.

To generate an explanation clause, we first generate a set of constraints 𝒞 that contains all

constraints from 𝑀 as well as 𝐺. It then holds that⋀︁
𝑐∈𝒞

𝑐 =⇒ ∃𝑥𝑛
⋀︁
𝑐∈𝒞

𝑐

Utilizing a quantifier elimination procedure, we can remove ∃𝑥𝑛 and get a formula 𝒞′ which

contains only constraints with polynomials in F𝑞[𝑥1, . . . , 𝑥𝑛−1] and, therefore, can be fully

evaluated using the variable assignments in 𝑀 . Let 𝜈[𝑀 ] be the assignment function generated

from the assignments in 𝑀 . Representing 𝒞′ in conjunctive normal form (CNF), there must be

at least one clause that is false under 𝜈[𝑀 ] as we have added the incompatible constraint 𝐺.

We can use this clause (together with constraints from 𝒞) to construct the explanation clause 𝐸.

Note that it suffices to generate one such clause and it is not required to fully generate 𝒞′.

Example 4. We show how the clause 𝐸 in Example 3 is generated. After arriving at a trail

𝑀 = J(𝑦 = 0), 𝑦 ↦→ 0K

we are searching for an assignment for 𝑥. However, there is no feasible value to satisfy the unit
clause 𝐶1 = {𝑥2𝑦 − 1 = 0}. Therefore,

∃𝑥.𝑦 = 0 ∧ 𝑥2𝑦 − 1 = 0

is not satisfied by the current assignment 𝜈 = {𝑦 ↦→ 0}. When applying a quantifier elimination
procedure we can derive that there is in fact no solution and we thus generate the explanation
clause 𝐸 = {𝑥2𝑦 − 1 ̸= 0, 𝑦 ̸= 0}.

There are multiple quantifier elimination procedures for polynomials over finite fields. In

our work, we have constructed two alternative explanation functions based on two quanti-

fier elimination procedures, in particular using a tailored approach for eliminating existential

quantifiers [25] and using Gröbner basis computation for deriving elimination ideals of polyno-

mials [26, 27].

Elimination theory. The first approach we present is based on [25] for solving systems of

polynomials, and adjusting the solving procedure over finite fields. Given a polynomial system

𝑆 = (𝑆=, �̸�=), with finite sets of polynomials 𝑆=, �̸�= ⊂ F𝑞[𝑥1, . . . , 𝑥𝑛], a solution (i.e. a zero)

of 𝑆 is a tuple 𝛼 ∈ F𝑛
𝑞 such that for all 𝑠 ∈ 𝑆=, 𝑠(𝛼) = 0 and for all 𝑠′ ∈ 𝑆 ̸=, 𝑠′(𝛼) ̸= 0. Given

a set of polynomial constraints 𝒞, we can easily generate such a system.

Following the ideas in [25], in [24] we present a set of algorithms that decomposes the system

𝑆 into multiple systems such that

Proj𝑥1,...,𝑥𝑛−1zero(𝑆) =
⋃︁
𝑠∈𝒮

zero(𝑠)
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and the systems in 𝒮 only contain polynomials from F𝑞[𝑥1, . . . , 𝑥𝑛−1]. The projection operator

Proj𝑥1,...,𝑥𝑛−1
translates the zeros from the F𝑛

𝑞 space into the F𝑛−1
𝑞 space by simply removing

the last element of the 𝑛-tuple. Note that the decomposition process ensures that every solution

(𝛼1, . . . , 𝛼𝑛−1) ∈
⋃︀

𝑠∈𝒮 zero(𝑠) can be extended to a solution for 𝑆, i.e. there exists an 𝛽 ∈ F𝑞

such that (𝛼1, . . . , 𝛼𝑛−1, 𝛽) ∈ zero(𝑆). Therefore, this is the desired existential quantification

elimination procedure we need to generate an explanation clause. We generate the explanation

clause 𝐸 by adding one polynomial constraint from each decomposed system 𝑠 ∈ 𝒮 such that

the current assignment 𝜈[𝑀 ] does not satisfy the constraint.

As mentioned above, we are not required to calculate the full decomposition. We can abort

the procedure once the assignment function for the current trail is excluded and thus keep the

size of 𝒮 reasonably small compared to fully decomposing the system for direct solving.

Gröbner basis computation. Gröbner bases yield a finite representation of polynomial

ideals. The algorithmic computation of Gröbner bases implements a saturation/completion

method in order to derive generating sets (i.e. bases) for polynomial ideals in a polynomial ring.

Roughly speaking, the ideal described by a given finite basis contains all polynomials that have

the same zero set. Although an ideal is, in general, infinite in size, there always exists finite

bases, in particular a Gröbner basis w.r.t. to a given variable ordering (extended to a monomial

ordering).

When a basis 𝐺 is Gröbner with a lexicographical monomial ordering, it admits existential

quantifier elimination. This means that

Proj𝑥1,...,𝑥𝑛−1zero(𝐺) = zero(𝐺 ∩ F𝑞[𝑥1, . . . , 𝑥𝑛−1])

holds and we can generate an explanation clause by removing all polynomials that contain 𝑥𝑘
from 𝐺. Quantifier elimination for polynomials over finite fields using Gröbner bases has been

presented in [28].

Note that 𝐺 describes a basis, i.e. a set of polynomials, instead of a polynomial system as

defined above. Thus, we need to convert dis-equalities to equalities beforehand. This can be

done by introducing a new variable for each converted constraint. These additional variables

are later removed in the same way as 𝑥𝑛. There are many Gröbner basis algorithms specially

tailored for finite fields (e.g. [20, 18, 19]), however, incorporating the current trail’s assignment

into a Gröbner basis based explanation procedure remains an open problem. Nevertheless, by

reducing the input to the procedure - the core of a conflict instead of the whole problem - a

performance benefit can often be observed.

4. Implementation and Results

A first prototype of our procedure was implemented in Python using Sage [29]. For performance

evaluation, we generated random inputs. We compared our approach to solving an input

instance with Sage’s built-in capabilities utilizing lexicographical Gröbner bases to create an

elimination ideal for the whole problem at once which, to the best of our knowledge, is the

state-of-the-art. We compared four solving approaches: GFSAT(ELIM) and GFSAT(GB) are our

approaches with elimination theory and Gröbner bases for explanation generation, respectively;
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Table 1
Performance comparison for F3. Number of instances solved within 30 seconds out of 25 instances for

each approach and category. A category is described by the number of polynomials (#poly) and the

number of variables (#var) of its instance.

#var 8 8 10 10

#poly 8 12 8 12

total 25 25 25 25

GFSAT(GB) 4 1 1 1

GFSAT(ELIM) 25 25 19 16

GB 25 25 7 13

BF 25 2 0 0

Suite I

#var 32 64 64 128

#poly 32 64 128 256

total 25 25 25 25

GFSAT(GB) 25 25 25 25

GFSAT(ELIM) 25 25 25 25

GB 16 19 16 0

BF 0 0 0 0

Suite R

GB utilizes Sage’s built-in Gröbner bases capabilities to solve the whole instance using one ideal;

and BF is a brute force approach. For the calculation of elimination ideals in GFSAT(GB) and GB,

Sage utilizes the eliminate command of the Singular library. Note that our implementation

has a significant engineering disadvantage compared to Sage’s internal capabilities. While Sage

utilizes highly engineered routines written in C++ and compiled to machine code, our prototype

is using interpreted Python for most of its runtime. A native implementation of our procedure

would certainly lead to a significant performance increase.

During development, we observed that the effort of solving polynomial systems depends to a

huge extent on the amount of irreducible factors in the system’s polynomials. This holds true

for both, the regular Gröbner basis methods, as well as our approach. Irreducible factors do

not contribute to a solution as their zeros are not in the base field. Therefore, when generating

benchmarks for performance comparison, we decided to take this observation into account by

generating two sets of benchmarks. The first benchmark set (suite I) consists of polynomials

with mostly irreducible factors. Polynomials of the second suite (suite R) have almost exclusively

zeros from the base field.

Table 1 gives an overview over the number of instances that could be solved with each

approach for suite I and R. All our experiments were conducted on an Intel Core i5-8365U CPU

@ 1.60GHz with 16GB of RAM running Linux and Sage release 9.5. Experiments clearly show

that irreducible factors in the input polynomials have a performance impact. For GFSAT(GB)

this has a worse impact than for GFSAT(ELIM). We assume that this is due to the fact that

explanations generated by the latter are weaker but easier to compute. Constraints generated

by GFSAT(GB) tend to grow much faster in size and, thus, become intractable quicker. In suite

R, the performance difference is much smaller, nevertheless, GFSAT(ELIM) tend to outperform

GFSAT(GB) slightly.

While the theory holds for any finite field, our experiments show that the approach is

only practically feasible when the field’s size is rather limited. With our current approach,

solving systems in finite fields beyond a single digit field size is unfortunately intractable. Our

experiments have shown that the current bottleneck of our approach is the vastly growing

size of the generated polynomials when generating explanations. This is especially the case

when the size of the base field increases even slightly. It is certainly a next step to weaken the

explanations in favour of polynomial length.
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Unfortunately, most real world applications mentioned in the introduction often require

finite fields of order well over 2200, which is far beyond our current capabilities and remains a

challenge for future research.

5. Summary and Future Work

In our work so far, we have concluded that an MCSat style search is suited for solving non-linear

polynomials over finite fields. For that we have developed two independent approaches for

explanation generation based on elimination theory as well as Gröbner bases.

So far, we could show that a MCSat search procedure performs better compared to traditional

solving techniques for polynomials over finite fields. We believe that this is because calling

the quantifier elimination procedures with smaller subproblems leads to an overall better

performance. Furthermore, using a partial assignment allows us to stop the solving procedures

early on.

In our next steps, we will work on how we can utilize the current assignment in Gröbner

basis calculation and check how the growth of polynomials can be tackled. Moreover, we are

interested in applying our SMT procedure on examples coming from real-world applications,

potentially improving our approach towards solving problems with large number of variables

and constraints (yet, with likely relatively small polynomial degrees).
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