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Abstract
The verification of deep neural networks is a recent algorithmic challenge that has attracted significant

interest, resulting in a wide array of complete and incomplete solvers that draw on diverse techniques.

As is typical in hard search problems, no single solver is expected to be the fastest on all inputs. While

this insight has been leveraged to boost Boolean Satisfiability (SAT), for instance, by combining or tuning

solvers, it is yet to lead to a leap in the neural network verification domain.

Towards this goal, we present Goose, a meta-solver for deep neural network verification. Goose’s

architecture supports a wide variety of complete and incomplete solvers and leverages three key meta-

solving techniques to improve efficiency: algorithm selection, probabilistic satisfiability inference, and

time iterative deepening. Using Goose we observe an 47.3% improvement in PAR-2 score across over

800 benchmarks and 13 solvers from VNN-COMP ’21.
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1. Introduction

Software engineers increasingly leverage machine learning (ML) due to its empirical ability

to implement some software functions from data [1]. This paradigm-shifting approach is

increasingly incorporated into safety-critical systems such as driverless cars and drones [2].

In response, there have been several research initiatives to build systems that can give formal

guarantees on the behavior of such learned models.

For example, consider the adversarial robustness problem. A desirable property of a ML

system is to fit the training data while being robust to small adversarial perturbations “in the

neighbourhood" of the training data. Surprisingly, researchers have shown that in the domain

of driverless cars, a deep neural network can be tricked into thinking a stop sign is a speed-limit

or green light if an adversary can put pieces of tape onto it [3]. Recently, several logical solvers

SMT 2022: Satisfiability Modulo Theories, August 11–12, 2022, Haifa, Israel
⋆

You shall use this document as the template for preparing your publication. We recommend using the latest version

of the ceurart style.

$ joseph.scott@uwaterloo.ca (J. Scott); g6pan@uwaterloo.ca (G. Pan); khalil@mie.utoronto.ca (E. B. Khalil);

vijay.ganesh@uwaterloo.ca (V. Ganesh)

� https://www.joe-scott.net/ (J. Scott); https://ca.linkedin.com/in/guanting-tony-pan-162452176 (G. Pan);

https://ekhalil.com/ (E. B. Khalil); https://ece.uwaterloo.ca/~vganesh/ (V. Ganesh)

� 0000-0002-4145-1612 (J. Scott); 0000-0003-4108-9032 (G. Pan); 0000-0001-5844-9642 (E. B. Khalil);

0000-0002-6029-2047 (V. Ganesh)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

99

mailto:joseph.scott@uwaterloo.ca
mailto:g6pan@uwaterloo.ca
mailto:khalil@mie.utoronto.ca
mailto:vijay.ganesh@uwaterloo.ca
https://www.joe-scott.net/
https://ca.linkedin.com/in/guanting-tony-pan-162452176
https://ekhalil.com/
https://ece.uwaterloo.ca/~vganesh/
https://orcid.org/0000-0002-4145-1612
https://orcid.org/0000-0003-4108-9032
https://orcid.org/0000-0001-5844-9642
https://orcid.org/0000-0002-6029-2047
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


have been constructed to find these adversarial inputs or give a guarantee that they do not exist

[4, 5, 6, 7, 8, 9, 10, 11].

As the deep neural network verification community grows, an emergent body of decision

procedures and semi-decision procedures has emerged. For a practitioner, it can be overwhelm-

ing to determine the most suitable verifier for the desired application and instance at hand. For

example, complete algorithms we consider herein include: Reluplex – a lazy unwinding of ReLu

activations within the simplex algorithm [4]; nnenum – a bound over-approximation algorithm

on starsets [12]; and Eager Translation – Direct translation of the problem into a Satisfiability

Modulo Theories (SMT) or Mixed Integer Linear Program (MILP) [13, 7]. Additionally, incom-

plete techniques that we consider include one based on abstract-refinement [6], auto_LiRPA

[8, 10], projected gradient descent (PGD)[14, 15], and fuzzing.

This problem of algorithm selection [16] is not unique to deep neural network verification.

For example, consider the competition-winning variant of the cvc5 SMT solver
1
. On just a

single logic (e.g., UF), 23 configurations of the cvc5 tool alone in a statically ordered sequential

portfolio are used to determine the satisfiability of the underlying benchmark. The authors

acknowledge this in the latest system description, which outlines speculative research initiatives

to implement better portfolios [17].

In this paper, we present Goose2
, a meta-solver – a solver designed around calling several sub-

solvers for deep neural network verification. Goose implements three meta-solving techniques.

First, ML-driven algorithm selection based on empirical hardness models for runtime prediction.

Algorithm selection solutions have had tremendous empirical success in logic solver commu-

nities [18, 19, 20]. Second, probabilistic satisfiability inference – a ML approach to determine

which subproblems are most likely satisfiable. Finally, time iterative deepening an exponentially

increasing wallclock timeout of the ML constructed sequential portfolio.

Contributions. Specifically, this paper makes the following contributions:

1. The Goose Tool. We present Goose, a tool for deep neural network verification (de-

scription Section 3 and architecture diagram Figure 1). The value-addition of Goose is

its meta-solver architecture, which implements a comprehensive approach to algorithm

selection, probabilistic satisfiability inference, and time interval deepening.

2. Evaluation on VNN-COMP ’21: We demonstrate the efficiency of Goose with a

competition-like evaluation over more than 800 instances from VNN-COMP ’21 against

13 competition solvers [21] such as 𝛼, 𝛽-CROWN [8, 10, 11], Verinet [13], ERAN [6], and

Marabou [22] (Section 4). We observe that Goose improves over the competition winner,

𝛼, 𝛽-CROWN , by 47.3% in PAR-2 score (Figure 2, Table 1).

2. Preliminaries

The Open Neural Network Exchange (ONNX) and VNN-LIB. ONNX is a research and

industrial initiative to standardize machine learning models [23]. In the latest version (V13),

1

https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/run-script-smtcomp-current

2

Etymology: after the Canadian Goose (bird) in honor of Canada
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Figure 1: Architecture Diagram of of Goose (See description in Section 3.1).

syntax and semantics of computation graphs are outlined for 156 operations (e.g., ReLU, Gemm).

ONNX is widely supported across major deep learning platforms such as TensorFlow [24],

PyTorch [25], and Keras [26].

The VNN-LIB is an international initiative with the aim of supporting neural network

verification research [27]. In the context of deep neural network verification, a verification

query requires two parts, a computation graph 𝐶 and a specification 𝜓. For the former,

VNN-LIB defines syntax and semantics leveraging a subset of 17 ONNX operations, with the

latest competition benchmarks leveraging 15 operators.

Problem Representations. Not all of the recently developed verifiers are compliant with arbi-

trary linear properties. For example, several solvers do not support disjunctions or conjunctions

or linear real/integer constraints over the input/output. To overcome this, we leverage a recent

equivalence result:

Theorem 1 ([28]). Let 𝐶 be a computation graph and let 𝜓 be a linear specification over the
input/output behaviour of 𝐶 (disjunctions, conjunctions, negations, and linear constraints). Then
there exists subproblems 𝜓𝑖 such that Ψ = (𝜓1, ...𝜓𝑛) and each 𝜓𝑖 is of the form

𝑥 ∈ 𝒳 ′ ∧ 𝑦 ∈ 𝒴 ′ ∧𝐴𝑦 ≤ 𝑏

for some interval 𝒳 ′,𝒴 ′, matrix 𝐴, and vector 𝑏, and input/output 𝑥/𝑦.

This theorem allows for us to construct a transformer 𝒯 of the original problem to create an

equivalent disjunction. We will leverage this in multiple ways within Goose. A consequence,

however, is a worst case exponential blowup in the number of disjunctions.
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3. Goose

In this section, we describe Goose, a meta-solver for neural network verification; an architecture

diagram is shown in Figure 1. We first provide a high-level description of the tool before

developing each of its component in more detail.

Goose leverages an empirical model 𝐸 to make predictions on runtimes and probabilities of

satisfiability. This model is trained offline and requires data collection. We elaborate on this

process in Section 4. In what follows, we assume the empirical model has already been trained.

The input to Goose is a computation graph 𝐶– a symbolic representation of the deep neural

network of interest –and a linear specification 𝜓 over the input/output behaviour of 𝐶 over

all 𝑥 ∈ 𝒳 . Goose outputs UNSAT if and only if ∀𝑥 ∈ 𝒳 , 𝐶(𝑥) |= 𝜓. Goose supports the input

formats .onnx for computation graphs and .vnnlib for specifications.

At the beginning, Goose loads the input into its respective internal data structures and

converts them into a disjunction over a canonical form (Theorem 1). Next, Goose featurizes the

input and leverages (trained) empirical hardness models to determine which solver should be

used; we refer to the aforementioned modules of Goose as the “Meta Empirical Engine". Solving

the algorithm selection task in this way allows for a novel scheme in which the meta-engine

can infer empirical probabilities of satisfiability for each of the individual disjuncts; then, the

problem corresponding to the disjunct that is most likely to be SAT is attacked first. Furthermore,

Goose employs a time iterative deepening which is inspired from the AI algorithm incremental
deepening [29] on two-player games. The intuition is that in practice, runtimes are either usually

either very short or long. Hence, when running a portfolio of algorithms, start with a shorter

wallclock portfolio timeout, and exponentially increase it if the portfolio failed. While this may

seem wasteful, it can be empirically effective.

3.1. Solver Architecture

Input/Output. The input to the Goose system is a computation graph 𝐶 (in .onnx format)

and a specification over its input-output behaviour 𝜓 (in .vnnlib format). We assume 𝜓
restricts the domain of 𝐶 to be bounded in 𝒳 (e.g., 0 ≤ 𝑥𝑖, 𝑦𝑖 ≤ 1). On a successful run, Goose
outputs UNSAT if and only if ∀𝑥 ∈ 𝒳 , 𝐶(𝑥) |= 𝜓, otherwise SAT.

Preprocessing. Goose has two key preprocessing steps. First, the inputs 𝐶 and 𝜓 are parsed

and loaded into flexible graph and specification classes. These classes were designed to have

significant utility to be later leveraged by a decision procedure. The second step is the conversion

into a canonical form. Specifically, we implement a transformer 𝒯 that implements Theorem 1

so that

𝜓 =

𝑛⋁︁
𝜓𝑖,

where each subproblem 𝜓𝑖 is composed of interval constraints on the input (𝒳 ) and output (𝒴),

and a halfspace polytope constraint 𝐴𝑦 ≤ 𝑏, for some 𝐴, 𝑏 computed by 𝒯 . By leveraging 𝒯 ,

we achieve a canonical form as each𝜓𝑖 := 𝑥 ∈ 𝒳 ′∧𝑦 ∈ 𝒴 ′∧𝐴𝑦 ≤ 𝑏, for a computed𝒳 ′,𝒴 ′, 𝐴, 𝑏.
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Meta Empirical Engine. Goose implements a ML-driven engine to make predictions from

a dataset of empirical performance measurements that is constructed once in advance. The

engine is composed of three key components. First, a data management scheme which includes

select training data and online data collection schemes. Online data collection and retraining

can be useful when solving problems on unseen problem classes. We however do not consider

this in the paper. This can be done easily via the command-line interface and programmatic

API with user adjustable resource constraints. The second major component is the problem

encoder, 𝜉(𝐶;𝜓𝑖) that converts the input to a real valued feature vector. This feature vector is

extendable by the user
3
. Out-of-the-box, Goose has 500 features on the problem format

4
. The

last major component is the ML backend. Goose is platform-agnostic, abstracted around a base

class. We have support for and evaluation with pytorch [25], but allow for scikit-learn
[30], and XGBoost [31] solutions.

Algorithms. Goose implements several decision procedures and semi-decision procedures

and configurations thereof. One widely spread technique is a direct or eager translation to a

core solver, such as MILP. Goose further supports two other complete algorithms, namely,

Reluplex and nnenum. This is done by leveraging Marabou’s and nnenum’s python API. Goose
supports semi-decision procedures Projected Gradient Descent (PGD), random fuzzing, and

over-approximation based bounding leveraging an eager translation.

Bounders. Several decision procedures require that every operation is tensor-component-wise

bounded. For example, consider the 𝑦 = ReLU(𝑥) = max(0, 𝑥) activation function. If 𝑦 can

be bounded by ℓ ≤ 𝑦 ≤ 𝑢, then this can be expressed in MILP [7] or SMT (QF_LIA) as:

(𝑦 ≤ 𝑥− ℓ(1− 𝑎)) ∧ (𝑦 ≥ 𝑥) ∧ (𝑦 ≤ 𝑢 · 𝑎) ∧ (𝑦 ≥ 0) ∧ 𝑎 ∈ {0, 1}

Goose includes a forward/backward interval arithmetic [32, 33] driven bounding system, as well

as auto_LiRPA and DeepPoly. A bounding algorithm is either exact or an overapproximation. If

a complete decision procedure requires a bounding, and is given an over-approximation, then

the decision procedure becomes incomplete. We compute two sets of boundings, via exact

bounding algorithms and over-approximation bounding algorithms. The final bounding for

each is computed via an intersection.

Eager Blasting5. One of the more sophisticated modules of Goose is its eager blasting engine.

The engine was designed to be agnostic to the underlying core solver. Goose implements a

base class that interacts with the engine. We provide support for the SCIP [34] and Gurobi [35]

MILP solvers in addition to the cvc5 [17] and z3 solver [36] (QF_LIRA).

Execution Loop. Goose implements a main solving loop that leverages all the above compo-

nents. It is outlined in Algorithm 1 and described in Section 3.2. The key value-added of Goose

3

Note that this requires retraining

4

The feature vector includes a one hot encoding of built in solvers and their configurations. The value-addition of

this is to not require complete empirical labelling over all decision procedures

5

We borrow this term from the SMT community

103



Algorithm 1 The main execution loop of Goose

Input: A computation graph 𝐶 and a linear specification 𝜓 over 𝐶
Output: SAT/UNSAT

1: procedure Goose-MainLoop

2: 𝒫 = 𝒯 (𝐶,𝜓) ◁ 𝒯 is the transform from Theorem 1

3: ℱ = [⊥ ∀𝐶, 𝜑𝑖 ∈ 𝒫]
4: Sort 𝒫 in decreasing order of SAT probabilities predicted by 𝐸
5: 𝑡 = 𝑡𝑖𝑛𝑖𝑡
6: solved = ⊥
7: while not solved do
8: for 𝐶,𝜓𝑖 in 𝒫 do
9: if ℱ [𝑖] then

10: continue
11: end if
12: Sort 𝒮 in ascending order by predicted runtimes by 𝐸.

13: 𝛼𝑠 = time allocation for each 𝑠 ∈ 𝒮 determined by 𝐸, 𝑡.
14: for 𝑠 ∈ 𝒮 do
15: 𝜌 = run(𝑠, 𝐶, 𝜓𝑖, 𝛼𝑠)
16: if 𝜌 is SAT then
17: return SAT

18: else if 𝜌 is UNSAT then
19: ℱ [𝐷,𝜓] = ⊤
20: end if
21: end for
22: end for
23: 𝑡 += an exponential increment

24: Re-sort 𝒫 leveraging 𝜉, 𝐸 and empirical feedback ◁ Optional

25: solved =

⋀︀
𝑣∈ℱ 𝑣

26: end while
27: return UNSAT

28: end procedure

comes from three main features: First, its ability to leverage ML driven algorithm selection.

Second, its time iterative deepening strategy, which calls solvers with exponentially increasing

wallclock timeouts. We do not believe this has been considered in the logic solver context.

Third, probabilistic satisfiability inference leveraging the same ML model for algorithm selection,

except the label vector is extended to include SAT and UNSAT class labels. This allows for us

to infer probabilities of satisfiability of each 𝜓𝑖 of 𝜓. As the ML model uses a feature vector

including the one-hot-encoding of the solver, an average over the set of solvers is taken. We are

not aware of such a scheme in the logic solver context.

104



3.2. Algorithmic Description

We next describe Algorithm 1, the main execution loop of Goose. For input 𝐶,𝜓, Goose
implements the transformation 𝒯 corresponding to Theorem 1, specifically, 𝒯 (𝐶,𝜓) computes

the subproblems over the disjunction as specification graph pairs (line 2). Additionally, a flag

ℱ is used to denote whether or not a subproblem is solved (line 3). Goose then invokes the

meta-engine to use the problem encoder 𝜉 over all subproblems to create feature vectors
6

Upon

computing all feature vectors, we query the learnt model 𝐸 to compute the probabilities of SAT
and predicted runtimes over the set of considered decision procedures 𝑆. This is used to sort 𝒫
by probability of satisfiability (line 4).

From here, we start the main loop (line 5). The termination condition is the conjunction over

ℱ (i.e., whether or not all problems in 𝒫 are UNSAT) or if there exists a SAT subproblem. On the

first iteration of the main loop, we first iterate over each 𝐶,𝜓𝑖 ∈ 𝒫 . We sort the set of decision

procedures 𝒮 such that they are in descending order of inferred probability of satisfiability (line

12).

On each iteration of the main loop, a global wallclock timeout for the iteration 𝑡 initialized

to 𝑡𝑖𝑛𝑖𝑡 (line 5) and is exponentially increased after each iteration (line 23). From here, we

leverage 𝐸 and the computed features over the subproblems to determine a resource allocation

scheme 𝛼𝑠 for 𝑠 ∈ 𝒮 . We compute this by taking a softmin
7

over the predicted runtimes from

the empirical model 𝐸 multiplied by the wallclock time limit 𝑡 for this iteration divided by

subproblems (line 13). We next run the solver and save the result 𝜌 (line 5). On a successful run

(i.e., 𝜌 ∈ {SAT, UNSAT}), we either terminate on SAT or on UNSAT mark the problems flag ℱ as

solved (line 19). At the end of the iteration of the loop, if the problem remains unsolved, we

exponentially increase the time increment.

Implementation Details. Goose is built on python 3.8 and can be run via command-line or

python API. Preprocessing was built leveraging the onnx python packages. The meta-engine

was built with the assistance of pandas, pytorch, and scikit-learn. We implement our

forward and backward interval internally and leverage auto_LiRPA for incomplete bounding

verification and handling of select activations.

4. Evaluation

In this section, we present an empirical evaluation of Goose over VNN-COMP ’21 instances

and its computation environment.

4.1. Experimental Setup

Empirical Model Architecture. We construct the empirical model using PyTorch. The

empirical model is an 8-layer fully-connected neural network with 1024 neurons per layer for

a total of 25M parameters. Each hidden layer is composed of a linear layer with bias, batch

normalization, dropout (p=0.25), and ReLU activations.

6

In the worst case, an exponential number of of sub-problems and feature vectors need to be computed, however,

this is rarely observed in practice.

7softmin(�⃗�) = exp(−𝑥𝑗)/
∑︀

𝑗 exp(−𝑥𝑗)
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Figure 2: Main experimental cactus plot over VNN-COMP ’21 benchmarks (Section 4). A cactus plot is
a visualization of a solver’s performance on a benchmark suite the horizontal axis represents the number
of benchmarks solved (higher is better) and the vertical axis is the benchmark wise PAR-2 (lower is
better).

Empirical Model Training Setup. We generate a training dataset of 10,000 instances produced

by using a random fuzzer over VNN-LIB [37]. An instance is generated and solved across all

considered solvers, with a 30-second timeout
8
. This data collection is performed on Compute

Canada [38], particularly on a CentOS V7 cluster of Intel Xeon Processor E5-2683 running at

2.10 GHz with 8 GB of memory. Wallclock runtimes are rounded to the nearest second. All

solvers were ran sequentially. For labels we use log PAR-2 scores. A PAR-2 is the wallclock

runtime if successful, else twice the wallclock timeout. The empirical model was trained with

Adam [39] and a learning rate of 4 · 10−4
, mean squared error loss, and 1 · 10−4

weight decay

on a NVIDIA1080 GPU for 2 hours.

Computation Environment. The evaluation was ran on the Amazon Web Service (AWS). Per

VNN-COMP rules, since some tools are either CPU or GPU based, there are two different types

of AWS instances depending on the solver [21]. We evaluate Goose on the GPU instance.

8

This is not used in the main experiment, and is only lowered to increase data collection times
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Solver PAR-2 Score Solver PAR-2 Score

Goose 42917.306 Debona 342215.706
𝛼-𝛽 CROWN 81455.553 venus2 364639.422
VeriNet 96584.104 RPM 435868.435
ERAN 143568.969 nnv 440426.117
oval 148884.067 NV 458472.933
Marabou 285863.380 DNNF 483079.800
nnenum 333131.499

Table 1
Table of sums of PAR-2 scores across the solvers from the empirical evaluation (Section 4). The PAR-2
score of a solver on a benchmark is the wallclock runtime if successful, otherwise twice the wallclock
runtime (lower is better).

Solvers. For complete decision procedures we use the following: Reluplex (via Marabou),

nnenum, Eager Blasting + SCIP, Eager Blasting + Gurobi, Eager Blasting + cvc5, Eager Blasting +

z3. For incomplete procedures, we consider two configurations of PGD and two configurations

of random fuzzing. Additionally, we consider two variants of incomplete bounding within

auto_LiRPA for both Gurobi and SCIP. This yields a set of |𝒫| = 14 decision procedures.

4.2. Results

The cactus plot of the evaluation is presented in Figure 2. A cactus plot is a visualization of a

solver’s performance on a instance suite. The horizontal axis represents the number of instances

solved (higher is better) and the vertical axis is the instance-wise PAR-2 (lower is better). In

Figure 2, we observe that Goose outperforms the competition winning solver 𝛼-𝛽 CROWN.

Table 1 presents the PAR-2 across all instances for all solvers. The PAR-2 score of a solver on

a instance is the wallclock runtime if successful, otherwise twice the wallclock runtime (lower

is better). We observe Goose to improve on the competition winning solver 𝛼-𝛽 CROWN by

47.3% in PAR-2 score.

VNN-COMP ’21 determined competition winners via a custom scoring scheme. We do not

consider this. However, the standings of the competition are highly correlated.

4.3. Analysis

One possible limitation of any ML-driven approach is that it is difficult to generalize to novel

problem occurrences and not overfit to ones it has been trained on. While this evaluation is

limited to 800 instances from VNN-COMP, the training dataset was produced from a completely

independent class of problems [37]. As such, our approach does not seem to suffer from the

aforementioned issues.

The incomplete solvers were notably particularly effective, in particular on the first round of

the incremental deepening. PGD was extremely effective on SAT instances. Complete verifiers

have a strong preference for Gurobi, while Gurobi did outperform SCIP in general, SCIP was

observed faster on several instances, with up to a 7x improvement over Gurobi.
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5. Related Work

Perhaps the biggest inspirations and insights of this work were from DNNV [28]. In particular,

Theorem 1 for the canonical form. This further enabled the probabilistic satisfiability inference

of Goose.

Algorithm selection tools have a rich history and have been around since at least 1976 when

Rice et al. first proposed it [16]. Algorithm selectors have been extensively used in many

contexts, e.g., classifiers for machine learning [40], combinatorics [41], and other NP-hard

optimization problems [42, 43].

Within the context of logic solvers, algorithm selectors have been proposed for SAT [44, 45, 46]

and Quantified Boolean Formulas [47, 48]. Scott et al. proposed the MachSMT algorithm

selection tool for SMT Solvers [19]. A system for dynamic algorithm selection over SMT solvers

was also recently proposed [18].

6. Conclusions

In this paper, we presented Goose, a solver for deep neural network verification. Goose has

a meta-solver architecture (Figure 1) and supports a wide variety of decision procedures and

semi-decision procedure. Goose leverages three key meta-solving techniques to further improve

efficiency, namely, algorithm selection, probabilistic satisfiability inference, and time interval

deepening. Using Goose we observe a 47.3% improvement across benchmarks and solvers from

VNN-COMP ’21.

Future Work. Logic solvers for SAT, SMT, and MILP, among others, often implement several

configurations of a base decision procedure, as there is no known universally optimal procedure

for such hard search and optimization problems. This phenomenon has been observed across

numerous communities [19, 49, 20], and this paper suggests something analogous for VNN-LIB

solvers. Despite this success, several modern logic solvers architectures do not take this into

account. This poses challenges when incorporating meta-solving with existing solvers. With

the empirical success of Goose, we believe meta-solving should be seen as a “first-class citizen"

engineering (standard, not meta) solvers in the future.
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