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Abstract
The analysis of scientific data is often exploratory, meaning that the exact design of a workflow to process data is subject
to continuous investigation and redesign. While support for the design of such workflows is manifold, it focuses primarily
on reuse, reproducibility, and traceability of analysis results. Yet, it typically relies on static models of workflows that force
scientists to wait for completion and restart a workflow repeatedly to explore different design choices. This is inefficient in
terms of the invested time and resources.

In this PhD project, we strive for support of user interactions in workflow execution. Our proposal is to extend common
workflow models with concepts to define interaction points and possible actions, thereby providing users the flexibility to
realize diverse interaction primitives, such as forwarding, repetition, and sample-based exploration. We further outline our
initial results on realizing a model for interactive workflows.
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1. Introduction
In domains such as bio-informatics, remote sensing, and
materials science, the analysis of large-scale data is a
prerequisite for scientific progress [1]. To this end, com-
plex pipelines of operators, also referred to as scientific
workflows or data analysis workflows, are designed and ex-
ecuted using infrastructures for distributed computation.
However, the respective analysis is typically exploratory,
meaning that it emerges from a scientific process, in
which hypotheses are designed and step-wise confirmed
or invalidated. Therefore, workflows used for the analy-
sis are also subject to continuous change.

While the importance of supporting the design and exe-
cution of workflows is widely recognized [3] [4], existing
models and methods focus on reuse, reproducibility, and
traceability of analysis results. Workflow engines such
as Kepler [5], Galaxy [6], Pegasus [7], Snakemake [8],
or Nextflow [9] offer means to specify workflows from
reusable building blocks, provide technical abstractions
of compute infrastructures, and include functionality for
exchange and collaboration in the workflow design. How-
ever, they adopt a static notion of a workflow as shown
in fig. 1(a): A user specifies and configures a workflow,
which is subsequently executed.

A static workflow model is inherently limited in its sup-
port of interactivity for exploratory data analysis, though.
The exploration of design choices and possible changes
in the analysis, and hence in the workflow, can only be
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Figure 1: (a) Data analysis based on a traditional workflow
that is first defined and then executed; (b) exploratory data
analysis that is supported by interactive workflows.

defined at design time, if at all. In practice, therefore,
such exploration is restricted to relatively simple scenar-
ios, such as the definition of parameter sweeps of certain
operators, see Nimrod [10] for Kepler and Scalarm [11]
for Pegasus. The lack of flexibility in the workflow execu-
tion has severe implications. Scientists waste their own
time as well as resources of a compute infrastructure as
they have to resort to submitting their workflow for exe-
cution and waiting for its completion, before repeating it
all over again with potentially only minor adjustments.

In this paper, we propose to extend common workflow
models with interaction capabilities, thereby providing
support for exploratory data analysis by a human-in-
the-loop model for workflow execution, see fig. 1(b). By
enabling scientists to examine the intermediate data pro-
duced by a workflow, and to configure and adjust the
workflow based on their observations, design choices can
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Figure 2: (a) The static PopIns workflow [2] for calling non-reference sequence insertions from many genomes jointly. The
workflow includes operators that are executed separately per genome, as well as operators executed for all genomes. (b) A
trace of the execution of this workflow once interactions by a user are included: A user explores the results of the contig
alignment step in a notebook and decides to repeat the respective step before continuing with the workflow.

be explored immediately and systematically, using less
compute resources compared to the traditional model.

In order to realize this objective, we set out to answer
the following research questions:

(R1) How to support interactions during workflow exe-
cution?

(i) When and where shall a user be able to inter-
act?

(ii) What are the actions a user may apply?
(R2) How can this dynamic interactive exploratory

model be implemented in common workflow sys-
tems and infrastructures?

Below, we first introduce a motivating example (§ 2) and
review related work (§ 3). Then, we outline our ideas to
answer the above questions. This includes a model for
interactive workflows including notions of interaction
points and actions (§ 4). Moreover, we elaborate on our
preliminary results in terms of realizing this model in an
existing workflow engine (§ 5), before we conclude (§ 6).

2. Motivation
We illustrate the need for interactive workflows for ex-
ploratory data analysis with an example from a bio-
informatics field, in particular genomics. Here, recent
advances in DNA sequencing led to the wide-spread avail-
ability of large volumes of genome sequence data. Spe-
cific research questions in this area, for instance, relate to
the identification of structural variants (SVs) in genomes.
In particular, tools such as PopIns [2] and PopDel [12]
have been developed to detect large insertion and dele-
tion variants in whole-genome sequencing (WGS) data
of hundreds to tens of thousands of individuals.

A tool such as PopIns actually implements a workflow
of multiple operators that are applied to the genome of
each individual separately, or that combine data from

multiple individuals, as shown in fig. 2(a). In general,
this workflow starts with the assemble (AS) operator that
takes a genome (G) as input and reconstructs contigs
from unalgined reads (UnR), i.e., a set of unaligned reads
from a sequencing dataset of a single individual and its
task is to reconstruct a set of contigs, representing can-
didate sequences of insertions. Then, a merge operator
combines the contigs from different genomes, which re-
sults in so-called super-contigs. Those are used in the
contig alignment (CoA) step which aligns the unaligned
reads to the supercontigs and outputs candidate loca-
tions (approximate positions) of the supercontigs in the
reference genome. The placement of the reference align-
ment (PR) step identifies precise insertion positions of
the supercontigs in the reference genome.

To summarize, the output of each step in the PopIns
workflow is the input of the next one, and the behaviour
of the system depends on the input/output quality. There-
fore, it is necessary for the scientist to examine the in-
termediate results and observe the system behaviour at
various points during execution. This may result in re-
peating or skipping some steps. These design choices
make genome analysis workflows good examples for ex-
ploratory data analysis. Yet, the example also illustrates
that, if no ground truth is available, the design of the
respective workflows cannot be optimized automatically.

To support such application scenarios effectively, we
envision a model of an interactive workflow to enable an
execution as sketched in fig. 2(b). The execution starts
with the assemble and merge steps, followed by contig
alignment. However, we envision the definition of an
interaction point, so that the execution of the workflow
is paused. Then, a frontend, here denoted as a notebook,
shall enable the visualization of the contig alignments
and provide descriptive statistics over unaligned reads.

Let us now assume that, based on some observations,
a user takes the action to repeat the separation of un-



aligned reads with a different algorithm. However, the
user may also update the definition of the interaction
point that may pause the workflow after that specific
step: It may be assigned a condition based on statistics
over the unaligned reads, so that it is triggered only when
this condition is met. Afterwards another interaction
point is activated, enabling the user to investigate all in-
termediate results obtained so far, i.e., contig alignments,
unaligned reads and a genome sample.

These above interaction points provide the user with
the flexibility to make decisions and take actions on the
workflow execution based on intermediate results. This
way, a user can incorporate immediate and systematic
changes at runtime, which will not only save time and
computational resources, but could also act as an early
indicator for technical errors during workflow execution.

3. Related Work
Scientific workflows help scientists to manage and or-
ganize their data-driven analysis [13]. There are many
workflow engines that scientists rely on, such as Ke-
pler [5], Galaxy [6], Pegasus [7], Snakemake [8], and
Nextflow [9]. These engines provide ease-of-use through
user interfaces, graphically or script-based, and cata-
logues of standardized data preprocessing techniques.
As mentioned above, some engines provide some lim-
ited support for exploratory analysis, e.g., for parameter
sweeps. Also, notably, dynamic control of iterations in
workflows based on changes of the processed data by a
user was proposed in [14]. However, there is a gap in
terms of expressive models to support generic interactiv-
ity during runtime, i.e., while a workflow is executed.

Data flow optimization is related as it targets some
of the challenges stemming from workflows used for ex-
ploratory analysis. For instance, meta-dataflows (MDFs),
introduced in [15], to improve the task scheduling and
memory allocation in exploratory analysis. Data access
patterns caused by exploratory analysis may also benefit
from caching layers, such as Tachyon [16].

Debugging of data processing pipelines received
increased interest in the data management community re-
cently [17]. For example, Dagger [18] provides interactiv-
ity through debugging primitives in data-driven pipelines.
DataExposer [19], in turn, helps to identify properties
that can be considered to be root causes of performance
degradation, or system failure due to data. Yet, most of
this work focuses on debugging at the data-level, rather
than the control-flow level.

4. Model of Interactive Workflows
Below, we describe our take on research question (R1), i.e.,
how to model interactive workflows. We first propose an

extension to the common workflow model (§ 4.1), before
elaborating on exploration primitives (§ 4.2).

4.1. Interaction Points and Actions
As a starting point, we consider a traditional model of a
workflow, see [4]. It defines a workflow as a DAG, where
vertices denote operators and edges denote data depen-
dencies between the references to the datasets consumed
or produced by operators, also known as input and out-
put ports. A state of such a workflow is then given by a
binding of specific files to these input and output ports.

As hinted at already above, the question of how to
model interactive workflows can be split into two parts,
when and where to interact; and what actions to apply.
We therefore propose to extend the traditional workflow
model with two concepts, as follows:

Interaction points indicate that the workflow execu-
tion shall be paused for a user to explore the current
state in terms of the data generated so far, which poten-
tially involves executing some additional analysis to get
insightful visualizations or to compute descriptive statis-
tics on the intermediate results. Such an interaction point
is given by an edge of the workflow DAG and, potentially,
a condition. The latter may refer to a state of workflow
execution (e.g., checking the number of lines in a data
file) or meta-data (e.g., checking the execution time of an
operator). The semantics of an interaction point (IP) are
summarized as follows: Upon completing the execution
of the operator that is the source of the respective edge,
the workflow engine checks the condition and, if it is
true, does not continue execution with the operator that
is the target of the edge, but waits for user input.

Actions indicate how the user intends to continue the
execution of a workflow once an interaction point is
reached. To this end, we consider different types of ac-
tions, including:

• Revise interaction points: The set of interaction
points defined for the workflow is updated.

• Revise workflow: The structure of the workflow
in terms of operators and data dependencies is
updated.

• Continuation: Workflow execution continues
with the operator following the interaction point.

• Skipping: Workflow execution continues based
on the workflow DAG, but skips over the specified
operators when doing so, i.e., the output ports of
skipped operators denote empty datasets.

• Rewind: Workflow execution continues from an
earlier state, which is identified by an operator in
the workflow DAG.

Naturally, the actions to revise interaction points and the
workflow shall be combined with a continuation, skip-
ping, or rewind action. Moreover, we note that the ac-



tions impose certain consistency requirements to enable
proper workflow execution, e.g., in terms of reachability
of operators in the workflow DAG and the realization of
data dependencies.

4.2. Exploration Primitives
The extension of a model for workflows realized by inter-
action points and actions enables us to support various
primitives often found in exploratory workflows. Below,
we outline how this support is achieved for some of these
exploration primitives:

Fast-forward: Based on properties of some intermedi-
ate results, a user may want to fast-forward the
workflow execution to save time and compute
resources. An example would be a sequence of
operators to implement noise filtering, which may
not be needed if the data variance stays within
certain limits. This is enabled by defining an in-
teraction point to decide on fast-forwarding (e.g.,
to compute the variance), which may then be
realized through a skipping action.

Repetition: A user may want to repeat a certain step,
or a set thereof, before advancing with the work-
flow execution, e.g., to fine the configuration of
operators. Support for such repetition is limited
in common workflow management systems. The
reason being that most of them adopt an exe-
cution model based on a DAG, which prevents
the definition of a cycles in the workflow struc-
ture. Using the concepts envisioned for interac-
tive workflows, we support repetitions by defin-
ing an interaction point at which a user may de-
cide on a rewind action or a continuation action.

Sample-based exploration: Another pattern in ex-
ploratory analysis is that a user wants to test their
workflow on a subset of data, before applying it
to the complete dataset in order to save time and
compute resources. An example would be the cal-
ibration of some data transformations by fitting a
statistical model. Here, the fit of various models
may first be explored using a sample of the data.
Based thereon, the model is adopted to transform
the whole dataset, or the workflow is altered to
incorporate a different transformation. This is
realized by defining an interaction point after the
sample was processed, with the possible actions
being to rewind and re-execute the workflow with
the complete dataset, or to revise the workflow
by replacing the transformation operator.

5. Towards a Realization
Technical environment: To realize our conceptual
model for interactive workflows (§ 4), we choose Snake-
make, a state-of-the-art rule-based workflow manage-
ment system. Here, a workflow is defined by a set of
rules. Each rule denotes a task or operator and specifies
how to create sets of output files from sets of input files.
Then, the engine establishes the dependencies between
the rules by matching file names. In Snakemake, when
starting a workflow, these rules are used to create a DAG
as the basis for execution. However, this also means that
an adaptation of the rules and, hence, the DAG is not
possible after the start of workflow execution.

However, even though the DAG cannot be altered at
runtime, Snakemake provides limited support for interac-
tivity. That is, a Jupyter notebook [20], a popular Python-
based computational environment, can easily be inte-
grated with Snakemake. Such a notebook combines code
snippets, documentation, as well as plots into a single
document. The integration in Snakemake is realized via
dedicated rules, which, once executed, start a notebook
for a user to work with. The workflow only continues
execution according to the constructed DAG once the
user closes the respective notebook.

Preliminary results: To test the feasibility of our
ideas, we implemented parts of our proposed model for
interactive workflows in Snakemake using the notebook
integration, and applied it to the PopIns workflow men-
tioned earlier (§ 2). Specifically, we added interaction
points in the workflow by rules that start a notebook,
as sketched in fig. 2(b). These notebooks then enable
access to the intermediate results (e.g., unaligned reads
and contigs in our example). Moreover, we realized the
aforementioned rewind and continuation actions, which,
once triggered by a user in the notebook, enable the repe-
tition of particular steps in the workflow. Since the DAG
constructed by Snakemake is immutable, our solution for
the rewind action is based on an abortion of the current
workflow instance and the creation of a new instance,
while the control-flow in the new instance is guided by
the automated creation and deletion of dedicated files.

Applied in the context of the PopIns workflow, our
prototype, despite its limited support of the envisioned
model, highlights the benefits of offering interactivity
in workflow execution. Users can explore and examine
intermediate results at runtime, and realize common ex-
ploration primitives directly, rather than being delayed
by the need to wait for workflow completion.

6. Conclusions
In this work, we outlined the need to support interactiv-
ity in workflows for scientific data. To address this need,



we outlined a model for interactive workflows, which is
based on interaction points and actions. We further re-
ported on our preliminary results of realizing this model
in Snakemake, a rule-based workflow engine, and its inte-
gration with Jupyter notebooks. Specifically, we adopted
the implementation in the Popins workflow for structural
variant calling in genomics.

Having a first version of a model for interactive work-
flows, our research plan involves the following phases:
First, we intend to study the realization of further ex-
ploration primitives using interaction points and actions.
This way, we also seek to understand whether our model
shall incorporate more expressive actions. Second, we
aim to ensure that our implementation is supported not
only in the stand-alone execution mode of Snakemake,
but can also be employed for cluster-based execution.
Third, our goal is to provide implementation strategies
for our model of interactive workflows for other work-
flow engines, such as Nextflow.
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