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Abstract
A key operation for the (increasingly large) data series collection analysis is similarity search. According to recent studies,
SAX-based indexes offer state-of-the-art performance for similarity search tasks. However, their performance lags under
high-frequency, weakly correlated, excessively noisy, or other dataset-specific properties. In this work, we propose to
facilitate data series similarity search with deep learning techniques, involving both data series approximation and data series
indexing. Our preliminary study focuses on developing Deep Embedding Approximation (DEA), a novel family of data series
summarization techniques based on deep neural networks. Moreover, we describe SEAnet, a novel architecture specially
designed for learning DEA, that introduces the Sum of Squares preservation property into the deep network design. Finally,
we propose a new sampling strategy, SEASam, that allows SEAnet to effectively train on massive datasets. Comprehensive
experiments verify the advantages of DEA learned using SEAnet. These preliminary results can lead to further progress in
this area, by developing more customized architectures and training strategies, better integrating DEA with index structures,
learning novel data series indexes, and facilitating faster model training.
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1. Introduction
With the rapid developments and deployments of modern
sensors, massive data series1 datasets are now being gen-
erated, collected and analyzed in almost every scientific
domain [1]. Data series similarity search aims to find the
closest series in a dataset to a given query series according
to a distance measure, such as Euclidean distance, which
is one of the most widely used [2]. Similarity search can
be divided into exact search and approximate search [3].
Approximate similarity search may not always produce
the exact answers, but in most cases, it produces answers
that are very close to the exact ones [4]. Thus, it is very
popular in practice, and widely used on massive series
collections to enable interactive data exploration and
other latency-bounded applications [5]. In this work, we
focus on approximate similarity search under Euclidean
distance.

Indexes are widely employed to speed up data se-
ries similarity search [3, 4]. Most indexes are based
on summarized representations of the data series [2] of
lower dimensionality. Symbolic Aggregate approXima-
tion (SAX) [6] is a popular and effective discretized sum-
marization. SAX-based indexes [7] are the state-of-the-
art (SOTA) data series similarity search methods [3, 4].
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1A data series, or data sequence, is an ordered sequence of points.
The most common type of data series is time series, where the
dimension that imposes the sequence ordering is time; though, this
dimension could also be the mass, angle, or position [1].

Nevertheless, SAX-based indexes suffer from the prob-
lem that SAX fails in hard datasets with specific prop-
erties [8]. Since SAX is the symbolization of Piecewise
Aggregate Approximation (PAA) [6], failure of PAA to
correctly represent some data series directly translates
to failure of the PAA-based SAX. For example, the high
frequency of Deep1B series means that each PAA seg-
ment has to average many highly-varying points, leading
to similar PAA values across different segments, and to
indistinguishable SAX words across different series. In-
troducing more SAX words could alleviate the problem,
but would lead to an undesirably long summarization
that could not be effectively indexed.

To address the aforementioned problems, we propose
to build a data series index based on Deep Embedding
Approximations (DEA), i.e., data series summarizations
derived from embeddings learned using deep neural net-
works. Embedding techniques, or representation learn-
ing [9], is to learn vectors possessing necessary latent
information for classification, clustering, and other down-
stream applications. Embedding techniques have been
proven to be capable of capturing frequency [10] and
other latent properties. However, data series embed-
ding has not been adapted to and evaluated for similarity
search (and could also be applied to other tasks, e.g.,
anomaly detection [11, 12, 13]).

Specifically, we propose to replace traditional summa-
rizations (e.g., PAA) with DEA, and then be symbolized
and indexed by an iSAX index. DEA targets to preserve
original pairwise distances in the lower-dimensional DEA
space. Thus, it is naturally capable of being symbolized
into SAX, on which an iSAX index can be built.

Our preliminary results show that compared to PAA
and SAX (which is based on PAA), DEA better preserves
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pairwise distances, leading to a more effective index
for data series similarity search. This can be used as
a blueprint to facilitate further progress in this area.
Promising further directions include developing more
customized architectures and training strategies based
on observations from preliminary results, better inte-
grating DEA learning with index structure designs, and
facilitating faster DEA learning or transferring [14] on
massive datasets.

Note that existing studies on learned indexes [15] can-
not be straightforwardly employed for facilitating data
series similarity search with deep learning techniques.
This is true, because most existing methods assume that
the data are sortable in a natural order, which can then be
captured by learned distribution functions [15]. However,
such global orders for data series similarity search do not
exist (since the order depends on the queries) [16]. Fur-
thermore, existing methods suitable for similarity search
are built upon grid indexes [17, 18], which do not scale to
the high dimensionalities (i.e., in the order of 100s-1000s)
of data series. Hence, how to extend existing studies
to resolve the aforementioned open problems remains a
challenging research direction.

In this work, we propose the following research direc-
tions:

1. [Architecture] Design novel architectures that
are specifically built to support high-quality DEA and
similarity search. Our preliminary solution, SEAnet (cf.
Section 3.1), introduces and formalizes the principle of
Sum of Squares (SoS) preservation.

2. [Training Dataset] Propose novel sampling strate-
gies for massive data series collections, enabling effective
training for deep models. One such example is SEAsam
(cf. Section 3.2), which demonstrates that intelligent sam-
pling strategies can help improve the performance of the
deep network models.

3. [Learned Indexes] Integrate index structure build-
ing into DEA learning to fully exploit the edges of DEA.
Pushing further in this direction, it would be interesting
to learn a specifically designed index structure together
with DEA learning.

4. [Model Training] Address the problem of the long
training times needed by the deep neural models (which
can be significantly slower than traditional approaches),
by introducing transfer learning and domain adaptation
techniques in this context.

2. Background
A data series, 𝑆 = {𝑝1, ..., 𝑝𝑚}, is a sequence of points,
where each point 𝑝𝑖 = (𝑣𝑖, 𝑡𝑖), 1 ≤ 𝑖 ≤ 𝑚 is asso-
ciated to a real value 𝑣𝑖 and a position 𝑡𝑖. The posi-
tion corresponds to the order of this value in the se-
quence. We call 𝑚 the length, or dimensionality of the
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Figure 1: Workflow of DEA-based similarity search.

data series. 𝒮 denotes a collection of data series, i.e.,
𝒮 = {𝑆1, ..., 𝑆𝑛}. We call 𝑛 the size of the data series
collection. A summarization 𝐸 = {𝑒1, ..., 𝑒𝑙} of a se-
ries 𝑆 is a lower, 𝑙-dimensional representation, which
preserves some desired properties of 𝒮 . For similarity
search, the target property is pairwise distance space
structure of 𝒮 , i.e., ∀𝑆𝑖, 𝑆𝑗 ∈ 𝒮, 𝑑′(𝐸𝑖, 𝐸𝑗) ≈ 𝑑(𝑆𝑖, 𝑆𝑗),
where 𝐸𝑖, 𝐸𝑗 are summarizations of 𝑆𝑖, 𝑆𝑗 , 𝑑(·, ·), and
𝑑′(·, ·) are distance measures in series and summariza-
tion spaces, respectively. The distance measure 𝑑
we use is Euclidean distance [2]. 𝑑′ in the summariza-
tion space needs not be the same as 𝑑, e.g., for PAA,
𝑑′(·, ·) =

√
𝑚/

√
𝑙 × 𝑑(·, ·). 𝑑′ for DEA is the same

as PAA if it’s scaled for SoS preservation. Otherwise,
𝑑′(·, ·) = 𝑑(·, ·). Given a query series 𝑆𝑞 of length 𝑚,
a series collection 𝒮 of size 𝑛 and length 𝑚, a distance
measure 𝑑, similarity search targets to identify the se-
ries 𝑆𝑐 ∈ 𝒮 whose distance to 𝑆𝑞 is the smallest, i.e.,
∀𝑆𝑜 ∈ 𝒮, 𝑆𝑜 ̸= 𝑆𝑐, 𝑑(𝑆𝑐, 𝑆𝑞) ≤ 𝑑(𝑆𝑜, 𝑆𝑞). Instead of
finding the exact closest series 𝑆𝑐, approximate simi-
larity search targets to find a series 𝑆′

𝑐 ∈ 𝒮 such that
𝑑(𝑆′

𝑐, 𝑆𝑞) ≈ 𝑑(𝑆𝑐, 𝑆𝑞). 𝑑(𝑆𝑐, 𝑆𝑞)/𝑑(𝑆
′
𝑐, 𝑆𝑞) ∈ (0, 1] is

called 𝑆′
𝑐’s tightness.

The most prominent data series indexing techniques
can be categorized into optimized scans [19], and tree-
based indexes [20]. Recent studies [3, 4] have demon-
strated that the SAX-based indexes [7] achieve SOTA per-
formance under several conditions. In this work, we use
MESSI as our iSAX index [21] , because its main-memory
operation and parallel design lead to SOTA performance.

3. DEA-based Similarity Search
Figure 1 illustrates the proposed DEA-based data series
similarity search framework, including the SEAnet ar-
chitecture. Given a series collection, SEAsam first draws
representative samples to train SEAnet. After SEAnet
converges, it embeds all series into DEAs, which are
further discretized into SAXs. Thus, DEA-based SAXs
are structured into an iSAX index, where approximate
similarity search can be efficiently conducted.
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Figure 2: The SEAnet architecture and the details of a dilated full-preactivation ResBlock.

SEAnet is a novel autoencoder proposed to learn high-
quality DEA (cf. Section 3.1). Moreover, it introduces the
principle of SoS preservation for lower dimensionality
representation learning (cf. Section 3.1.1). SEAsam makes
use of the inverse iSAX sortable summarization [22] (cf.
Section 3.2).

3.1. SEAnet Architecture
The SEAnet architecture is illustrated in Figure 2a. The
first part of the SEAnet encoder, from ConvLayer1 to
MaxPool, comprises 𝑘 stacked dilated full-preactivation
ResBlocks in Figure 2b for nonlinear transformations.
The second part of the SEAnet encoder, from Linear1
to LayerNorm2, comprises two linear layers for dimen-
sionality reduction. Unlike most existing encoders with
linear final layers [23], the SEAnet encoder is finalized
by LayerNorm2, which is specifically designed using the
SoS preservation principle.

SEAnet is trained in a pairwise manner by mini-
batched Stochastic Gradient Descent (SGD). Its loss func-
tion is a linear combination of two components: (1) The
Compression Error 𝐿𝐶 (i.e., the average differences be-
tween the original distance of data series pairs (𝑆𝑖, 𝑆𝑗)
and their DEA distance) evaluates whether original dis-
tances are well preserved in the DEA space. (2) The
Reconstruction Error 𝐿𝑅 (i.e., the average distance be-
tween the original series 𝑆𝑖 and the reconstructed series)
𝐿𝑅 evaluates how well the original series can be recon-
structed using SEAnet.

3.1.1. Sum of Squares Preservation

We propose a SoS preservation framework for effective
DEA learning. SoS preservation has been observed be-
fore [24], but to the best of our knowledge, has never been
formally introduced to representation learning. Given
an 𝑛×𝑚 matrix 𝑀 , where each row 𝑀𝑖,* corresponds
to a series and each column 𝑀*,𝑗 corresponds to a po-
sition, SoS =

∑︀
𝑖,𝑗 𝑀

2
𝑖,𝑗 . Note that defining new axes

based on the largest SoS is equivalent to selecting the
largest eigenvalues in linear dimensionality reductions
on z-normalized datasets, with the purpose of preserving
information about the dataset through linear transforma-
tions [24]. Thus, SoS may be regarded as an indicator
of transformation quality. By keeping SoS invariant, the
quality of DEAs is upheld from this perspective, and the
networks then focus on learning the nonlinear transfor-
mations.

We now elaborate on the architecture design and
model training under SoS preservation. Given the (z-
normalized) input dataset, SoS preservation requires two
steps: (1) z-normalizing the output of encoder (DEAs)
and decoder (the reconstructed series); and (2) scaling
the series by 1/

√
𝑚 and DEA by 1/

√
𝑙 in 𝐿𝐶 and 𝐿𝑅.

Based on theoretical analysis [25], we observe that
scaling series and DEA will not only keep the two dis-
tances to the same level, but will also largely stabilize the
distance distributions. Thus, by z-normalizing DEA, and
scaling series and DEA in 𝐿𝐶 and 𝐿𝑅, SEAnet succeeds
in providing high-quality DEAs by preserving SoS.

3.2. Sampling with SEAsam
The representativeness of the training set upper bounds
for the quality of the deep models. Not only we need our
sample to effectively cover the entire space of a given
dataset, but also we need to efficiently select this sample
without having to perform expensive computations on
the full dataset.

To this end, we propose SEAsam (SEA Sampling), a
novel data series sampling strategy based on the sortable
data series representation, InvSAX [22]. Recall that SAX
first transforms the data series into 𝑙 real values , and
then quantizes these real values, representing them using
discrete symbols [20]. The core observation is that ev-
ery subsequent bit in a SAX word contains a decreasing
amount of information about the location of its corre-
sponding data point, and simply increases the degree of
precision. Interleaving SAX’s bits such that all significant
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Figure 3: Approximate query answers quality: 1st BSF tightness vs number of series visited (higher is better); 100M series

bits across each SAX word precede all less significant bits
presents a value array with descending significance, i.e.,
InvSAX. SEAsam orders the series collection by their
InvSAX representations, and draws samples at equal-
intervals (e.g., every 1,000 series) from this sorted order.
Thus, SEAsam samples are expected to preserve the dis-
tribution of the series collection by evenly covering its
InvSAX space. Moreover, the time complexity of SEAsam
is 𝒪(𝑛𝑚), and the space complexity of SEAsam is 𝒪(𝑛𝑙),
rendering SEAsam an efficient strategy.

4. Preliminary Results
We present our experimental evaluation of SEAnet, DEA-
based data series similarity search, and SEAsam using 7
diverse synthetic and real datasets. Totally, 5,040 deep
models were trained to provide a thorough profile of DEA
architectures. In summary, the results demonstrate that
the SEAnet DEA is robust across various dataset proper-
ties and outperforms its competitors by better preserving
original pairwise distances and nearest neighborhood
structure, leading to better approximate similarity search
results than traditional (PAA-based) and alternative deep
learning (DEA-based using FDJNet [23], TimeNet [26],
and InceptionTime [27]) approaches.

We evaluate the benefit of using DEA for similarity
search, by reporting the 1st Best-So-Far (BSF) tightness,
i.e., the 1st Nearest-Neighbor (NN) distance divided by
the 1st BSF distance given a specific query, as a function
of the number of series that the similarity search algo-
rithm examines. The results on 100M datasets and 1K
queries, are shown in Figure 3. SEAnet-nD is an encoder-
only version of SEAnet. SEAnet improved the 1st BSF
tightness, and thus the similarity search results, in 61
out of the 63 experiments. Its advantage was particularly
obvious on the hard datasets, namely, Deep1B, Seismic,
and Astro (detailed experimental results in [25]).

5. Discussion and Conclusions
In this paper, we introduce the use of deep learning em-
beddings, DEA, for data series similarity search. We pro-
pose a novel autoencoder, SEAnet, designed under the

firstly introduced SoS preservation principle, for effec-
tively learning DEA. A new sampling strategy, SEAsam, is
introduced in order to facilitate SEAnet’s training on mas-
sive collections. We demonstrate that the DEA learned by
SEAnet more closely approximates the original data se-
ries distances, better preserves the true nearest neighbors
in the summarized space, better reconstructs the original
series, and leads to better similarity search results than
the SOTA PAA-based iSAX (when examining either a
small, or a large number of candidates). These prelimi-
nary results are very promising, they set the ground for
further advancements in this area, and have the potential
to also improve the performance of kNN classification,
anomaly detection, and other similarity search-based ap-
plications.

Promising directions in our future studies include the
following:

1. Develop more customized architectures and train-
ing strategies. An interesting candidate would be to
quantify with differentiability the nearest neighborhood
preservation in the DEA space [28], which shows posi-
tive correlations with the qualities of query answers in
our preliminary results.

2. Investigate the lower bounding properties for DEA
that will enable exact similarity search [29].

3. Integrate DEA learning with index structure build-
ing. Such an end-to-end framework will have more po-
tential to reduce information loss during the DEA and
indexing steps. Candidate index structures could be ex-
tended from trees[30] to clusters [31] and hash tables [16].
DEA and index structure could be learned together to
fully exploit advantages from both sides.

4. Design more powerful sampling strategies [32] to
cover the large (pairwise distances) space, whose size
is 𝒪(𝑛2) (where 𝑛 is the number of series in the collec-
tion). Ideally, a small sample should train models able to
efficiently serve any ad-hoc query.

5. Facilitate faster DEA learning on massive datasets.
Promising techniques include incremental learning [33]
and transfer learning [14]. How to identify useful com-
mon information and how to best transfer this knowledge
between massive datasets makes this a very challenging
problem.

6. Benchmark data series summarizations for similar-
ity search [34, 13]. We will design a unified workflow



and proper metrics to evaluate different summarization
techniques, based on a set of representative data series
collections for similarity search. The compatibility be-
tween different summarization techniques and indexing
techniques [35, 30] will also need to be studied.

Acknowledgments
Work supported by ANR-18-IDEX-000, Chinese Schol-
arship Council, HIPEAC 4, GENCI–IDRIS (Grant 2020-
101471), and NVIDIA Corporation for the Titan Xp GPU
donation used in this research.

References
[1] T. Palpanas, V. Beckmann, Report on the first and

second interdisciplinary time series analysis work-
shop (itisa), SIGMOD Record (2019).

[2] X. Wang, A. Mueen, H. Ding, G. Trajcevski,
P. Scheuermann, E. J. Keogh, Experimental compar-
ison of representation methods and distance mea-
sures for time series data, DMKD (2013).

[3] K. Echihabi, K. Zoumpatianos, T. Palpanas, H. Ben-
brahim, The lernaean hydra of data series similarity
search: An experimental evaluation of the state of
the art, PVLDB (2018).

[4] K. Echihabi, K. Zoumpatianos, T. Palpanas, H. Ben-
brahim, Return of the lernaean hydra: experimen-
tal evaluation of data series approximate similarity
search, PVLDB (2019).

[5] A. Gogolou, T. Tsandilas, K. Echihabi, A. Bezeri-
anos, T. Palpanas, Data series progressive similar-
ity search with probabilistic quality guarantees, in:
SIGMOD, 2020.

[6] J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic
representation of time series, with implications for
streaming algorithms, in: SIGMOD, 2003.

[7] T. Palpanas, Evolution of a data series index, in:
ISIP, 2019.

[8] O. Levchenko, B. Kolev, D. E. Yagoubi, R. Akbarinia,
F. Masseglia, T. Palpanas, D. Shasha, P. Valduriez,
Bestneighbor: Efficient evaluation of knn queries
on large time series databases, KAIS (2020).

[9] Y. Bengio, A. C. Courville, P. Vincent, Represen-
tation learning: A review and new perspectives,
PAMI (2013).

[10] J. Wang, Z. Wang, J. Li, J. Wu, Multilevel wavelet de-
composition network for interpretable time series
analysis, in: KDD, 2018.

[11] P. Boniol, T. Palpanas, Series2Graph: Graph-based
Subsequence Anomaly Detection for Time Series,
PVLDB 13 (2020).

[12] P. Boniol, M. Meftah, E. Remy, T. Palpanas, dCAM:
Dimension-wise Activation Map for Explaining

Multivariate Data Series Classification, in: SIG-
MOD, 2022.

[13] J. Paparrizos, Y. Kang, P. Boniol, R. S. Tsay, T. Pal-
panas, M. J. Franklin, TSB-UAD: An End-to-
End Benchmark Suite for Univariate Time-Series
Anomaly Detection, PVLDB (2022).

[14] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu,
H. Xiong, Q. He, A comprehensive survey on trans-
fer learning, PIEEE (2020).

[15] T. Kraska, A. Beutel, E. H. Chi, J. Dean, N. Polyzotis,
The case for learned index structures, in: SIGMOD,
2018.

[16] M. Li, Y. Zhang, Y. Sun, W. Wang, I. W. Tsang, X. Lin,
I/O efficient approximate nearest neighbour search
based on learned functions, in: ICDE, 2020.

[17] V. Nathan, J. Ding, M. Alizadeh, T. Kraska, Learning
multi-dimensional indexes, in: SIGMOD, 2020.

[18] J. Ding, V. Nathan, M. Alizadeh, T. Kraska, Tsunami:
A learned multi-dimensional index for correlated
data and skewed workloads, PVLDB (2020).

[19] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, A. E.
Abbadi, Vector approximation based indexing for
non-uniform high dimensional data sets, in: CIKM,
2000.

[20] J. Shieh, E. Keogh, isax: indexing and mining ter-
abyte sized time series, in: KDD, 2008.

[21] B. Peng, P. Fatourou, T. Palpanas, MESSI: In-
Memory Data Series Indexing, ICDE, 2020.

[22] H. Kondylakis, N. Dayan, K. Zoumpatianos, T. Pal-
panas, Coconut: A scalable bottom-up approach
for building data series indexes, PVLDB (2018).

[23] J.-Y. Franceschi, A. Dieuleveut, M. Jaggi, Unsuper-
vised scalable representation learning for multivari-
ate time series, in: NeurIPS, 2019.

[24] S. Wold, K. Esbensen, P. Geladi, Principal compo-
nent analysis, Chemometrics and intelligent labo-
ratory systems (1987).

[25] Q. Wang, T. Palpanas, Deep learning embeddings
for data series similarity search, in: KDD, 2021.

[26] P. Malhotra, V. TV, L. Vig, P. Agarwal, G. M. Shroff,
Timenet: Pre-trained deep recurrent neural net-
work for time series classification, in: ESANN,
2017.

[27] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier,
D. F. Schmidt, J. Weber, G. I. Webb, L. Idoumghar,
P. Muller, F. Petitjean, Inceptiontime: Finding
alexnet for time series classification, DMKD (2020).

[28] L. Van der Maaten, G. Hinton, Visualizing data
using t-sne., JMLR 9 (2008).

[29] P. Indyk, R. Motwani, P. Raghavan, S. S. Vempala,
Locality-preserving hashing in multidimensional
spaces, in: SOTC, 1997.

[30] K. Echihabi, P. Fatourou, K. Zoumpatianos, T. Pal-
panas, H. Benbrahim, Hercules Against Data Series
Similarity Search, PVLDB (2022).



[31] H. Jégou, M. Douze, C. Schmid, Product quantiza-
tion for nearest neighbor search, PAMI (2011).

[32] C. Wu, R. Manmatha, A. J. Smola, P. Krähenbühl,
Sampling matters in deep embedding learning, in:
ICCV, 2017.

[33] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Y. Fu,
Large scale incremental learning, in: CVPR, 2019.

[34] R. Marcus, A. Kipf, A. van Renen, M. Stoian,
S. Misra, A. Kemper, T. Neumann, T. Kraska, Bench-
marking learned indexes, PVLDB (2020).

[35] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas,
T. Palpanas, S. Athanasiou, S. Skiadopoulos, Effi-
cient Range and kNN Twin Subsequence Search in
Time Series, TKDE (2022).

A. Online Resources
The source code, pretrained models, and datasets have
been made available at http://www.mi.parisdescartes.fr/
~themisp/seanet.
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