
High Performance Mixed Graph-Based Concurrency
Control
Jack Waudby1

1Supervised by Paul Ezhilchelvan, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE1 7RU, United Kingdom

Abstract
Modern applications are often built on top of many-core OLTP databases. In such systems, concurrency control is an
essential component in achieving high performance. Graph-based concurrency control was historically deemed nonviable
due to concerns over the computational costs of maintaining an acyclic conflict graph. This conventional wisdom has been
refuted by recent research. The work conducted in this PhD has sought to further investigate the usefulness of graph-based
concurrency control. Specifically, we propose mixed serialization graph testing (MSGT), a concurrency control protocol
that allows transactions to concurrently execute at different isolation levels whilst minimizing unnecessary aborts. MSGT
combines a recently proposed concurrent graph data structure with Adya’s mixing-correct theorem. The practical utility
of MSGT is illustrated by a survey of isolation levels supported by 24 ACID databases. MSGT has been implemented in a
prototype many-core database and a preliminary evaluation using an augmented YCSB workload performed. Initial results
indicate the efficacy of MSGT at leveraging transactions specified with weaker isolation requirements. In such workloads,
MSGT is able to outperform serializable graph-based concurrency control by up to 23%. We cast further doubt on the notion
that graph-based concurrency control in many-core OLTP databases is impractical.
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1. Introduction
Database concurrency control is responsible for ensur-
ing the effects of concurrently executing transactions are
isolated from each other. This is captured by the correct-
ness criteria serializability [1]. Implementing serializable
transaction processing efficiently is a challenging task
and many strategies have been proposed [2]. Until re-
cently, graph-based concurrency control was discounted
as a viable strategy, despite possessing the theoretically
optimal property of accepting all conflict serializable
schedules [1]. Graph-based concurrency control directly
uses the conflict graph theorem by maintaining an acyclic
conflict graph. The computational costs of this were per-
ceived to be intolerable. However, this was refuted in [3]
who, using a concurrent data structure to represent the
conflict graph, demonstrated graph-based concurrency
control can achieve comparable, and often higher, per-
formance in a many-core database when compared to
alternative strategies.

Despite advances in serializable transaction process-
ing performance, it often remains unsuitable for appli-
cation demands. Another tool at databases’ disposal to
achieve improved performance is to execute transactions
at weaker isolation levels [4, 5]. Central to this PhD
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project is addressing the following question: can graph-
based concurrency control support transactions ex-
ecuted atweak isolation levels, whilst still accepting
all valid executions? Such a mixed approach would
minimize aborts, permitting higher concurrency and per-
formance. This paper describes our initial attempts to
achieve this goal and describes mixed serialization graph
testing (MSGT) which blends the data structure from [3]
with Adya’s mixing-correct theorem [6].

The remainder of this paper is organized as follows.
Section 2 motivates the need for a high performance
mixed concurrency control protocol. Section 3 describes
the necessary background introducing serializable graph-
based concurrency control and weak isolation theory,
before Section 4 presents mixed serialization graph test-
ing. Section 5 gives our initial evaluation of MSGT’s
performance. Section 6 presents the PhD work plan and
concludes this paper.

2. Motivation
To motivate the development of a high performance
mixed graph-based concurrency control we surveyed
the isolation levels offered by 24 ACID databases. Classi-
fication was performed based on each database’s public
documentation. We found 7 isolation levels represented:
Read Uncommitted, Read Committed, Cursor Stability,
Snapshot Isolation, Consistent Read, Repeatable Read,
and Serializable. Note, the exact behavior of each isola-
tion level is highly system-dependent. Interestingly, we
found 18 databases supported multiple isolation levels.
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(b) Direct serialization graph, 𝐷𝑆𝐺(𝑠).
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(c) Mixed serialization graph, 𝑀𝑆𝐺(𝑠).

Figure 1: Various representations of an execution of transactions.

Of systems offering a singular isolation level Serializable
was the most common; these were typically NewSQL [7]
systems, e.g., CockroachDB [8]. This may suggest a trend
away from mixed databases, however, TiDB [9] recently
added support for Consistent Read isolation indicating
the utility of weaker isolation remains.

Table 1
Isolation Levels Supported by ACID Databases.

Database Isolation Level
System RU RC CS SI CR RR S
Actian Ingres 11.0 3 3 3 7 7 3 3∗

Clustrix 5.2 7 3 7 7 7 3 3
CockroachDB 20.1.5 7 7 7 7 7 7 3∗

Google Spanner 7 7 7 7 7 7 3∗

Greenplum 6.8 3 3∗ 7 7 7 3 7
Dgraph 20.07 7 7 7 3∗ 7 7 7
FaunaDB 2.12 7 7 7 3 7 7 3∗

Hyper 7 7 7 7 7 7 3
IBM Db2 for z/OS 12.0 3 3 3∗ 7 7 3 7
MySQL 8.0 3 3 7 7 7 3∗ 3
MemGraph 1.0 7 7 7 3∗ 7 7 7
MemSQL 7.1 7 3 7 7 7 7 7
MS SQL Server 2019 3 3∗ 7 3 7 3 3
Neo4j 4.1 7 3∗ 7 7 7 7 3
NuoDB 4.1 7 3 7 7 3∗ 7 7
Oracle 11g 11.2 7 3∗ 7 3 7 7 7
Oracle BerkeleyDB 3 3 3 3 7 7 3
Oracle BerkeleyDB JE 3 3 7 7 7 3∗ 3
Postgres 12.4 3 3∗ 7 7 7 3 3
SAP HANA 7 3∗ 7 3 7 7 7
SQLite 3.33 3 7 7 7 7 7 3∗

TiDB 4.0 7 7 7 3∗ 3 7 7
VoltDB 10.0 7 7 7 7 7 7 3∗

YugaByteDB 2.2.2 7 7 7 3∗ 7 7 3
∗ Indicates the default setting.

Our survey’s findings are corroborated by a 2017 sur-
vey of database administrators on how applications use
databases [4], the survey found the majority of transac-
tions execute at Read Committed. In short, this evidence
illustrates the ubiquity of mixed databases and motivates
the work to be conducted in this PhD.

3. Background
This section describes serializable graph-based concur-
rency control, the many-core optimizations made in [3],
and introduces a correctness criteria for mixed databases.

3.1. Serialization Graph Testing
Graph-based concurrency control, also known as serial-
ization graph testing (SGT), directly utilizes the conflict
graph theorem [1] by maintaining an acyclic conflict
graph. An execution of transactions can be represented
by a schedule. Consider transactions 𝑇1, 𝑇2, and 𝑇3 shown
in schedule 𝑠 below; a write on item 𝑥 by transaction 𝑇𝑖 is
denoted by 𝑤𝑖[𝑥], a read by 𝑟𝑖[𝑥], and a commit operation
by 𝑐𝑖.

𝑠 = 𝑤1[𝑥] 𝑟2[𝑥] 𝑟2[𝑦] 𝑤1[𝑦] 𝑤2[𝑧] 𝑤3[𝑧] 𝑟3[𝑥] 𝑐1 𝑐3 𝑐2

This schedule can be represented by a conflict graph
𝐶𝐺(𝑠), shown in Figure 1a. Nodes represent transac-
tions and conflicting operations 𝑎𝑖 of 𝑇𝑖 and 𝑏𝑗 of 𝑇𝑗
such that 𝑎𝑖[𝑥] < 𝑏𝑗[𝑥], where 𝑇𝑖 ≠ 𝑇𝑗, are repre-
sented by an edge 𝑇𝑖 → 𝑇𝑗; possible conflict pairs are
(𝑎, 𝑏) ∈ [(𝑟 , 𝑤), (𝑤, 𝑟), (𝑤, 𝑤)]. For example, in 𝑠, 𝑇2 reads
𝑥 after 𝑇1 writes to 𝑥, thus there exists an edge from 𝑇1 to
𝑇2 in Figure 1a. Changing the order of conflicting opera-
tions could alter the behavior of at least one transaction.
Therefore, an execution of transactions is conflict seri-
alizable if a serial ordering of transactions that satisfies
all conflict edges can be found. Such a serial ordering
exists iff the conflict graph is acyclic. This is known as
the conflict graph theorem [1]. Note, 𝑠 is not conflict
serializable because 𝐶𝐺(𝑠) in Figure 1a contains a cycle.

Theorem 1 (Conflict Graph Theorem). A schedule 𝑠
is conflict serializable iff its corresponding conflict graph
𝐶𝐺(𝑠) is acyclic.

In SGT, for each operation within a transaction, con-
flicts are determined and edges inserted into the graph.
After edge insertion, a cycle check is performed before
executing the operation; in [3] a reduced depth-first search
(DFS) is used for cycle checking, which starts from the
validating node, searching only the necessary portion of
the graph. If executing the operation would introduce a
cycle the offending transaction is aborted and its edges re-
moved. At commit time, a transaction delays until it has
no incoming edges, at which point it cannot be involved
in a cycle. When the transaction terminates it removes
its outgoing edges. In short, SGT provides serializability
by ensuring the acyclic invariant and thus accepting all
valid conflict serializable schedules.



In a many-core database, common sources of perfor-
mance degradation are, (i) reliance on a global times-
tamp allocator for transaction ids [2], (ii) use of a single-
thread validation phase [10], and (iii) when conflicts are
common, optimistic protocols exhibit a high number of
aborts [11]. In the SGT implementation in [3], a con-
current graph data structure is developed which uses a
node-level locking protocol to avoid using a global lock
for graph operations. To avoid a global counter bottle-
neck, graph nodes double up as transaction ids. Lastly,
owing to SGT’s acceptance of all valid conflict serializable
schedules, aborts are naturally minimized.

3.2. Mixing-Correct Theorem
To define weak isolation levels Adya [6] uses a direct
serialization graph,𝐷𝑆𝐺, which annotates a conflict graph
with the ways transactions have directly conflicted: write-
depends (ww), read-depends (wr), and anti-depends (rw).
The corresponding 𝐷𝑆𝐺 of 𝑠 is given in Figure 1b. Non-
serializable behaviour (anomalies) are defined by stating
properties about the 𝐷𝑆𝐺, and isolation levels by which
anomalies they prevent. For brevity, in this paper we
consider 3 isolation levels, for a full enumeration see [6].

• Read Uncommitted: proscribes anomaly Dirty
Write (G0), the 𝐷𝑆𝐺 cannot contain cycles con-
sisting entirely of ww edges.

• Read Committed: proscribes G0 and anomalies,
(i) Aborted Read (G1a), transactions cannot read
data item versions created by aborted transac-
tions, (ii) Intermediate Reads (G1b), transactions
cannot read intermediate data item versions, and
(iii) Circular Information Flow (G1c), the 𝐷𝑆𝐺 can-
not contain cycles consisting of ww and wr edges.

• Serializable: proscribes anomalies G0, G1, and
G2, the 𝐷𝑆𝐺 cannot contain any cycles.

Then to define a correctness criteria for a mixed
database, Adya uses a 𝐷𝑆𝐺 variant referred to as a mixed
serialization graph,𝑀𝑆𝐺. A𝑀𝑆𝐺 includes a transaction’s
declared isolation level and only includes relevant and
obligatory conflicts. A relevant conflict is a conflict that
is pertinent to a given isolation level, e.g., read-depends
(wr) edges are relevant to Read Committed transactions
but not Read Uncommitted transactions. An obligatory
conflict is a conflict that is relevant to one transaction but
not the other, e.g., an anti-depends (rw) edge between a
Read Committed transaction and a Serializable transac-
tion is relevant to the Serializable transaction and not the
Read Committed transaction but still must be included
in the 𝑀𝑆𝐺. Adya defines the edge inclusion rules for an
𝑀𝑆𝐺 as follows:

1. Write-depends edges (ww) are relevant to all
transactions regardless of isolation level thus al-
ways included.

2. Read-depends edges (wr) are relevant for edges
incoming to Read Committed and Serializable
transactions.

3. Anti-depends edges (rw) are included for outgo-
ing edges from Serializable transactions.

Now in a mixed database, a schedule is correct if each
transaction is provided the isolation guarantees that per-
tain to its level, leading to the mixing-correct theorem [6,
p.54–56]. Figure 1c illustrates the differences between
𝐷𝑆𝐺 and 𝑀𝑆𝐺 representations of a schedule with the
non-relevant and non-obligatory edges removed.

Theorem 2 (Mixing-Correct Theorem). A schedule 𝑠
is mixing-correct if 𝑀𝑆𝐺(𝑠) is acyclic and phenomena G1a
and G1b do not occur for Read Committed and Serializable
transactions.

4. Mixed Serialization Graph
Testing

In this section, we describe mixed serialization graph
testing, focusing on the adjustments to the SGT algorithm
(sketched in 3.1) and the concurrent graph data structure;
we direct the reader to [3] for their original in-depth
description.

For MSGT we use the graph data structure in [3] to
represent an 𝑀𝑆𝐺, which requires one alteration: nodes
include transactions’ required isolation levels. MSGT
proceeds in the same manner as SGT, with one key ex-
ception: for each operation, edge insertion of a detected
conflict is subject to MSG’s edge inclusion rules enumer-
ated in Section 3.2. MSGT’s edge insertion algorithm
is given in Algorithm 1. First, if an edge already exists
for this conflict type no further action is needed, else a
cascading abort check if performed. If the parent node
has aborted and the inserting node is Serializable or Read
Committed it must also abort to avoid G1a anomalies.
Then, the edge is inserted iff it satisfies MSG’s inclusion
rules, before a cycle check is executed. If a cycle is found
the transaction must abort. At commit time the transac-
tion delays until it has no incoming edges.

5. Preliminary Evaluation
We implemented MSGT and SGT in our prototype in-
memory database. Experiments were performed using a
Azure Standard D48v3 instance with 48 virtualized CPU
cores and 192GB of memory.
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Figure 2: YCSB - SGT and MSGT with 40 cores when varying the proportion of Serializable transactions from 0% to 100%
with medium contention 𝜃 = 0.8 and 50% update rate.

Algorithm 1: MSGT Edge Insertion

1 Input: Node& this, Node& from, Conflict cType
2 if (from.id,cType) ∉ this.inSet then
3 if cType != RW ∧ this.iso == (RC ∨ S) ∧

from.state == aborted then
4 return false // cascading abort

5 if cType == ww then
6 this.inSet.add(from.id)
7 from.outSet.add(this.id)
8 else if cType == wr ∧ this.iso != RU then
9 this.inSet.add(from.id)

10 from.outSet.add(this.id)
11 else if cType == rw ∧ from.iso == S then
12 this.inSet.add(from.id)
13 from.outSet.add(this.id)
14 else
15 return true // not relevant/obligatory

16 cycle = cycleCheck(thisNode)
17 return !cycle
18 else
19 return true // edge already exists abort

In our preliminary experiments we use the Yahoo!
Cloud Serving Benchmark (YCSB) [12]. YCSB has 1 table
with a primary key and 10 additional columns each with
100B of random characters; we use a table with 100K
rows. There are 2 transaction types: read or update, each
contains 10 independent operations accessing 10 distinct
items. Update transactions consist of 5 reads and 5 writes
that occur in random order. Read transactions consists of
solely read operations. The proportion of update trans-
actions is controlled by the parameter, 𝑈. Data access
follows a Zipfian distribution, where the frequency of
access to hot records is tuned using a skew parameter,
𝜃. When 𝜃 = 0, data is accessed with uniform frequency,
and when 𝜃 = 0.9 it is extremely skewed; increasing the
probability of conflicts between transactions. To measure
the impact of transactions running at weaker isolation
we introduce an additional parameter, 𝜔, which controls

the proportion of transactions running at Serializable iso-
lation. The remainder are split between Read Committed
(90%) and Read Uncommitted (10%).

Due to space constraints we report only the results of
the experiment which measures the impact of increasing
the proportion of transactions executing at Serializable
isolation from 0% to 100%. This aims to test MSGT’s abil-
ity to leverage its theoretical properties to offer increased
performance when transactions are run at weaker isola-
tion levels. For this experiment, 𝑈 is fixed to 50%, medium
contention is used (𝜃 = 0.8) and the framework is con-
figured to use 40 cores. Prior to experiments, tables are
loaded, followed by a warm-up period, before a measure-
ment period; both are configurable, we use 60 seconds
and 5 minutes respectively. We measure the following
metrics: (i) throughput: committed transactions per sec-
ond, (ii) abort rate: proportion of transactions aborted,
and (iii) average latency: latency time of committed trans-
actions (in 𝑚𝑠) averaged across the measurement period.

In Figure 2a, SGT’s throughput is invariant to 𝜔, as
it is unable to take advantage of transactions’ declared
isolation levels, in effect, executing all transactions at
Serializable. Meanwhile, the throughput of MSGT de-
creases as 𝜔 is increased, converging towards SGT’s
throughput. When there are no Serializable transactions
(𝜔 = 0.0) MSGT achieves a 23% increases in throughput.
At 𝜔 = 0.4, this drops to a 10% increase and at 𝜔 = 0.8 a
2.5% gain. When 𝜔 = 1.0, all transactions are executed at
Serializablewhich allows us to ascertain the overheads of
MSGT compared to SGT. SGT outperforms MSGT how-
ever the difference in throughput is less than 1%.

6. Conclusion &Work Plan
In this paper, we presented MSGT, a graph-based sched-
uler that leverages Adya’s mixing-correct theorem to
permit transactions to execute at different isolation lev-
els. When workloads contain transactions running at
weaker isolation levels, MSGT is able to outperform SGT
by up to 23%. Like SGT, MSGT minimizes the number



of aborted transactions, accepting all useful schedules
under the mixing-correct theorem. In summary, this pa-
per strengthens recent work refuting the assumption that
graph-based concurrency control is impractical. The next
steps of this PhD projects are:

1. MSGT Optimizations: we have identified two op-
timizations to improve MSGT’s performance: rele-
vant reduced DFS and early commit. The first is based
on the observation that under the current scheme
transactions can unnecessarily abort from detecting
a non-relevant cycle. The second allows weak iso-
lation transactions to commit with incoming edges,
provided none are relevant to their isolation level,
reducing latency.

2. Additional Experiments: we will quantify MSGT’s
performance under various application-level bench-
marks, e.g., TPC-C [13], and analyze their isolation
requirements to help understand where various trans-
action types occur in practice.

3. Supporting Additional Isolation Levels: this PhD
project will explore howMSGT can support additional
isolation levels, e.g., Snapshot Isolation [14], and quan-
tify the overheads.

4. Distributed MSGT: this thesis will explore how
MSGT can be integrated into a distributed shared-
nothing database. Specifically, how isolation levels,
e.g., Read Committed, can be highly available [5] in
the presence of concurrent transactions executing at
isolation levels that are provably unavailable, e.g., Se-
rializable.
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