
127

Modern Types of Databases for SIEM System Development

Sergiy Gnatyuk1, Rat Berdibayev2, Ivan Azarov1, Nazerke Baisholan3, and Iryna Lozova1

1 National Aviation University, 1 Liubomyr Huzar ave, Kyiv, 03058, Ukraine
2 Almaty University of Power Engineering and Telecommunication, 126/1 Baytursynuli str., Almaty, 050013, Kazakhstan
3 Al-Farabi Kazakh National University, 71 al-Farabi ave, Almaty, 050040, Kazakhstan,

Abstract
Today SIEM systems are used to prevent information loss in computer systems and

networks. There are many approaches to databases construction in SIEM. But there is no

any information about most effective (optimal) approach or their comparison. From this

viewpoint, the paper is devoted to the analysis of existing types of modern databases and

their management systems used in SIEM systems, as well as comparative characteristic of

their capabilities and differences, advantages and disadvantages. The analysis identified

the optimal types of databases that are used in existed SIEM systems and meet most of the

criteria of modern SIEM systems and have the greatest number of advantages. The actual

types of databases for future development of new advanced SIEM systems are also given

in this research study. It will be used in research project realization devoted to open source

SIEM development.

Keywords1
Database, DBMS SIEM, SQL, NoSQL, NewSQL, SIEM, cybersecurity, SIEM development,

cyber threat.

1. Introduction

In the modern world, the number of cyber threats is constantly growing; in particular, SIEM systems

are used to prevent information loss. For the development of a future SIEM system, various types of

existing modern databases that are used in SIEM systems are considered. A database is an ordered

collection of structured data that is stored electronically in a computer system. The database is

controlled by a database management system (DBMS). Data together with the DBMS, as well as the

applications that are associated with them, are called a database system or database. Data in modern

types of databases is usually stored as columns and rows that form a table. This data can be easily

managed, added, modified, deleted, updated, monitored and organized. Most databases use Structured

Query Language (SQL) to write and query data.

2. Analysis of Modern Approaches and Problem Statement

There are many different types of databases [1–3]. Choosing the best database for a specific SIEM

system depends on how the data will be used. Database types are templates and structures that are used

to organize data in a database management system (DBMS) [1–5].

The purpose of the work is an analysis of the types of databases used by SIEM systems to define

most effective and use it for future SIEM development.

Consider the following types of databases that use SIEM systems.

CPITS-II-2021: Cybersecurity Providing in Information and Telecommunication Systems, October 26, 2021, Kyiv, Ukraine

EMAIL: s.gnatyuk@nau.edu.ua (S. Gnatyuk); r.berdybaev@aues.kz (R. Berdibayev); azarovphone@gmail.com (I. Azarov);
baisholan@gmail.com (N. Baisholan); ilozovaya@gmail.com (I. Lozova)

ORCID: 0000-0003-4992-0564 (S. Gnatyuk); 0000-0002-8341-9645 (R. Berdibayev); 0000-0002-6810-8152 (I. Azarov); 0000-0002-8134-

0466 (N. Baisholan); 0000-0002-7224-4763 (I. Lozova)

©️ 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)
s

128

3. The Simplest Types of Databases

Let’s start with three types of databases that can still be found in specialized environments, but have

largely been replaced by reliable and efficient alternatives.

3.1. Simple Data Structures
The first and simplest way to store data is text files. The method is still used today to work with

small amounts of information. A special character is used to separate fields: a comma or semicolon in

csv dataset files, a colon or space in * nix-like systems:

root:x:0:0:root:/root:/bin/bash

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

Consequences:

 the type and level of complexity of the stored information is limited;

 it is difficult to establish connections between data components;

 lack of concurrency features;

 practical only for systems with low read and write requirements;

 used to store configuration data;
 no need for third party software.

Examples:

 /etc/passwd and /etc/fstab on * nix systems;

 csv files.

3.2. Hierarchical Databases
In contrast to text tables, in the next type of database, links between objects appear. In hierarchical

databases, each record has one parent. This creates a tree structure in which records are classified

according to their relationship to the parent record chain, the structure of hierarchical databases is shown

in Figure 1.

Figure 1: Structure of hierarchical databases

Consequences:

 information is organized in a tree structure with ancestor-child relationships;

 each record can have at most one parent;

 links between records are made in the form of physical pointers;

 it is impossible to implement a many-to-many relationship.

Examples:

 file systems;

 DNS;

 LDAP.

129

3.3. Network Databases
Networked databases extend the functionality of hierarchical databases: records can have more than

one parent. This means that you can model complex relationships, the structure of network databases is

shown in Fig. 2.

Figure 2: Structure of network databases

Consequences:

 information is organized in a tree-like structure with ancestor-child relationships;

 limited by the same access patterns as hierarchical databases.

Example:

 IDMS.

4. Relational Databases

4.1. SQL Databases
Relational databases are the oldest type of general purpose database still in widespread use. Data in

a relational database is organized in tables, consisting of columns and rows. Each column in a table has

a name and type. Each row represents a separate record or data element in the table, containing a value

for each of the columns, the structure of relational databases is shown in Fig. 3.

Figure 3: Structure of relational databases

130

Consequences:

 a field in a table, called a foreign key, can contain references to columns in other tables,

which allows them to be joined;

 highly organized structure and flexibility makes relational databases powerful and adaptable

to various types of data;

 structured query language (SQL) is used to access data;

 a reliable choice for many applications;

 fast and efficient access to structured information.

Examples:

 MySQL;

 MariaDB;

 PostgreSQL;

 SQLite;

 MSSQL;

4.2. OLTP Databases
An OLTP database is a database designed to perform business transactions performed by multiple

users, the structure of OLTP databases is shown in Fig. 4.

Figure 4: Structure of OLTP databases

Advantages

 High reliability and reliability of data as a result of the transactional approach.

 The transaction either completes completely and successfully, or fails and the system reverts

to its previous state. For any outcome of the transaction, data integrity is not violated.

Disadvantage

 OLTP systems are optimized for small discrete transactions. But requests for some complex

information (for example, quarterly dynamics of sales volumes for a certain product model in

a certain branch), which are typical for analytical applications (OLAP), will generate complex

table joins and whole tables view. One such request will take a lot of time and computer

resources, which will slow down the processing of current transactions.

131

Relational databases use such SIEM systems: IBM QRadar, LOGRHYTHM, AlienVault USM,

AlienVault OSSIM, Splunk, FortiSIEM, Wazuh, SolarWinds, ManageEngine, RuSIEM, Prelude OSS,

Prelude SIEM, Sagan, Maxpatrol, EventTracker, Trustwave SIEM Enterprise, McAfee (ESM) [6-8].

5. NoSQL Databases

NoSQL is a group of database types that offer approaches other than the standard relational pattern.

NoSQL refers to either “non-SQL” or “not just SQL” to clarify that sometimes a SQL-like query is

allowed.

A NoSQL database, or non-relational database, provides the ability to store and process unstructured

or semi-structured data (as opposed to a relational database, which defines the structure of the data it

contains). The popularity of NoSQL databases is growing as web applications proliferate and become

more complex.

5.1. Key-Value Databases
In key-value databases, to store information, you provide a key and a data object that you want to

store. For example, JSON object, image or text. To request data, you send a key and receive a blob, the

structure of NoSQL databases is shown in Fig. 5.

Figure 5: Structure of key-value databases

Consequences:

 storage facilities provide fast and low-cost access;

 often store configuration data and information about the state of data represented by

dictionaries or hashes;

 there is no rigid scheme of the relationship between data, therefore, different types of data

are often stored in such databases at the same time;

 it is the developer's responsibility to define the key naming scheme and ensure that the value

is of the appropriate type / format.

Examples:

 Redis;

 memcached;

 etcd.

5.2. Document Database
Document databases (also document databases or document repositories) share the basic semantics

of accessing and retrieving key and value stores. Such databases also use a key to uniquely identify

data. The difference between key-value stores and document databases is that instead of storing blobs,

document databases store data in structured formats – JSON, BSON or XML, the structure of document

databases is shown in Fig. 6 [9–10].

132

Figure 6: The structure of document databases

Consequences:

 the database does not prescribe a specific format or schema;

 each document can have its own internal structure;

 document databases are a good choice for rapid development;

 at any time, you can change the properties of the data without changing the structure or the

data itself.

Examples:

 MongoDB;

 RethinkDB.

5.3. Graph Database
Instead of mapping relationships to tables and foreign keys, graph databases establish relationships

using nodes, edges and properties, the structure of graph databases is shown in Fig. 7.

Figure 7: The structure of graph databases

133

Graph databases represent data as individual nodes, which can have any number of properties

associated with them. A graph database stores data in the context of entities and relationships between

entities.

Consequences:

 look similar to network;

 focus on relationships between elements;

 explicitly displays relationships between data types;

 do not require a step-by-step walk to move between elements;

 there are no restrictions on the types of links represented.

Examples:

 Neo4j;

 JanusGraph;

 Dgraph.

5.4. Columnar Databases
Columnar databases (also non-relational column stores or wide-column databases) belong to the

NoSQL database family, but look similar to relational databases. Like relational databases, columnar

databases store data using rows and columns, but with a different relationship between elements.

In relational databases, all rows must conform to a fixed schema. The schema determines what

columns will be in the table, data types, and other criteria. Column bases have structures called "column

families" instead of tables. Families contain strings, each of which defines its own format. A string

consists of a unique identifier used for searching, followed by a set of column names and values, the

structure of columnar databases is shown in Fig. 8.

Figure 8: The structure of columnar databases

Consequences:

 DBs are convenient when working with applications that require high performance;

 record data and metadata are available by one identifier;

 it is guaranteed that all data from a row is placed in one cluster, which simplifies data

segmentation and scaling.

Examples:

 Cassandra;

 HBase.

134

5.5. Time Series Databases
Time series databases are designed to collect and manage items that change over time. Most of these

databases are organized into structures that record values for one element. For example, you can create

a table to keep track of the CPU temperature. Inside, each value will consist of a time stamp and a

temperature reading. There can be several metrics in the table; the structure of time series databases is

shown in Fig. 9.

Figure 9: Structure of time series databases

Consequences:

 write-oriented;

 are designed to process a constant stream of input data;

 performance depends on the number of items being tracked, the polling interval between

writing new values, and the actual data payload.

Examples:

 OpenTSDB;

 Prometheus;

 InfluxDB;

 TimescaleDB.

NoSQL databases use following SIEM systems: AlienVault USM, AlienVault OSSIM, MozDef,

Maxpatrol, SearchInform SIEM.

6. Combined Databases

NewSQL and multi-model databases are different types of databases, but solve one group of

problems caused by polarized SQL approaches or NoSQL strategies. Why not combine the benefits of

both groups?

6.1. NewSQL Databases
NewSQL databases inherit the relational structure and semantics, but are built using more modern,

scalable constructs. The goal is to provide more scalability than relational databases and higher

consistency guarantees than NoSQL. The trade-off between consistency and availability is the

fundamental problem of distributed databases, described by the CAP theorem [11-12].

Consequences:

 the possibility of horizontal scaling;

 high availability;

 great performance and replication;

 small functionality and flexibility;

 considerable consumption of resources and the need for specialized knowledge to work with

the database.

Examples:

 MemSQL;

 VoltDB;

 Spanner;

135

 Calvin;

 CockroachDB;

 FaunaDB;

 yugabyteDB.

6.2. Multi-Model Databases
Multi-model databases are databases that combine the functionality of several types of databases.

The advantages of this approach are obvious - the same system can use different representations for

different types of data.

The co-location of data from several types of databases in one system allows performing new

operations that would otherwise be difficult or impossible. For example, multi-model databases can

allow users to access and manage data stored in different types of databases within a single request, and

also maintain data consistency when performing operations that change information in several systems

at once [13].

Consequences:

 help to reduce the load on the DBMS;

 allow you to expand to new models as your needs change without changing the underlying

infrastructure;

 provide continuous access and easy distribution of data;

 have linear scalability and are easy to develop.

Examples:

 ArangoDB;

 OrientDB;

 Couchbase.

7. Object-Oriented Databases (OODB)

Information in an object-oriented database is presented in the form of an object, as in object-oriented

programming, the structure of OODB databases is shown in Fig. 10.

Figure 10: Structure of OODB databases

8. Cloud Databases

A cloud database is a collection of structured or unstructured data hosted on a private, public, or

hybrid cloud computing platform [14–17]. There are two types of cloud database models: traditional

database and database as a service (DBaaS). In the DBaaS model, administrative tasks and maintenance

are performed by the cloud provider, the structure of the cloud databases [18–20] is shown in Fig. 10.

136

Figure 11: The structure of cloud databases

Cloud database types use such SIEM systems: HPE ArcSight Splunk Ixia ThreatARMOR, Micro

Focus ArcSight, Trustwave SIEM Enterprise.

Results of DBMS analysis in various SIEM is shown in Table 1.

Table 1
DBMS used in various SIEM

SIEM DBMS

IBM QRadar Ariel database, PostgreSQL, SQLite

LOGRHYTHM Oracle, SQL Server, MySQL

HPE ArcSight Own development CORR-E

Splunk

DB2 / Linux, Informix, MemSQL, MySQL, AWS Aurora, Microsoft SQL Server, Oracle,

PostgreSQL, AWS RedShift, SAP SQL Anywhere, Sybase ASE, Sybase IQ, and Teradata

McAfee (ESM) MSSQL, Oracle, MySQL, Data Access Server (DAS), DB2 / UDB

AlienVault USM RedisDB, MySQL

AlienVault OSSIM RedisDB, MySQL

FortiSIEM PostgreSQL

Ixia ThreatARMOR Rap Sheet

MozDef RabbitMQ, MongoDB, Elasticsearch, Kibana

Wazuh MySQL, PostgreSQL

Prelude OSS MySQL, PostgreSQL

Prelude SIEM MySQL, PostgreSQL

Sagan MySQL / PostgreSQL

Maxpatrol ElasticSearch, MongoDB, MS SQL Express

SolarWinds MSSQL, Oracle, MySQL, MariaDB.

ManageEngine Oracle, SQL, DB2, & MySQL

EventTracker Microsoft SQL Server

Micro Focus ArcSight Own development CORR-E

Trustwave SIEM

Enterprise

Microsoft SQL Server, Microsoft SQL Azure, ORACLE, SYBASE, MySQL, IBM,

DB2, Hadoop

BlackStratus

SIEMStorm Own development

SearchInform SIEM MongoDB

RuSIEM MySQL / Oracle / MS SQL

https://www.blackstratus.com/siem-storm/

137

9. Conclusion

The large number of data types that are stored, speed and performance requirements have led to the

expansion of database types. At the same time, each of them continues to be in demand in its niche,

where relationships between data are associated with a certain database structure scheme.

To select databases when creating SIEM systems, it is necessary to take into account the convenience

of storage, the speed of obtaining and using data. It is necessary to provide integration with other system

modules and external API to provide database support for most DPI systems (both software and

hardware).

It is recommended to use links of several (hybrid types) databases such as SQL and NoSQL, which

will allow you to preserve the convenience of storing data and their classification, as well as high speed

of obtaining large amounts of information due to preliminary indexing.

These recommendations will be used in research project realization devoted to SIEM development.

10. Acknowledgement

This work is carried out within the framework of research grant №АР06851243 “Methods, models

and tools for security events and incidents management for detecting and preventing cyber attacks on

critical infrastructures of digital economics” (2020-2022), funded by the Ministry of Digital

Development, Innovation and Aerospace Industry of the Republic of Kazakhstan.

11. References

[1] Vielberth M. and Pernul G. “A Security Information and Event Management Pattern”. 12th

Latin American Conference on Pattern Languages of Programs (SugarLoafPLoP 2018),

November 2018, 12 p. 27.

[2] Agrawal K., Makwana H. “A Study on Critical Capabilities for Security Information and

Event Management”. International Journal of Science and Research (IJSR). Vol. 4 Issue 7,

July 2015 Rock, pp. 1893-1896.

[3] Henrik Karlzén, “An Analysis of Security Information and Event Management Systems”.

Department of Computer Science and Engineering Chalmers University of Technology

University of Gothenburg, Göteborg, Sweden, January 2009. Available on:

http://publications.lib.chalmers.se/records/fulltext/89572.pdf

[4] Ribolovlev D., Karasov S., Polyakov S. “Classification of emergency management systems

for incidents without baking”. Food of cyber security, №3 (27), 2018, pp. 47-53.

[5] Ariel Query Language Guide, IBM QRadar 7.3.3 (2013 and 2019). Available on:

https://www.ibm.com/docs/en/SS42VS_7.3.3/com.ibm.qradar.doc/b_qradar_aql.pdf

[6] SIEM Analytcis: http://www.siem.su/compare_SIEM_systems.php

[7] J. Lee, Y. Kim, J. Kim and I. Kim, “Toward the SIEM architecture for cloud-based security

services,” 2017 IEEE Conference on Communications and Network Security (CNS), Las

Vegas, NV 2017, pp. 398-399, doi: 10.1109 / CNS.2017.8228696.

[8] I. Bachane, Y. I. K. Adsi and H. C. Adsi, “Real time monitoring of security events for forensic

purposes in Cloud environments using SIEM,” 2016 Third International Conference on

Systems of Collaboration (SysCo), 2016, pp. 1-3, doi: 10.1109/SYSCO.2016.7831327.

[9] B. AlSabbagh and S. Kowalski, “A Framework and Prototype for A Socio-Technical Security

Information and Event Management System (ST-SIEM),” 2016 European Intelligence and

Security Informatics Conference (EISIC), 2016, pp. 192-195, doi: 10.1109/EISIC.2016.049.

[10] A. Serckumecka, I. Medeiros and A. Bessani, “Low-Cost Serverless SIEM in the Cloud,”

2019 38th Symposium on Reliable Distributed Systems (SRDS), 2019, pp. 381-3811, doi:

10.1109/SRDS47363.2019.00057.

[11] M. Nabil, S. Soukainat, A. Lakbabi and O. Ghizlane, “SIEM selection criteria for an efficient

contextual security,” 2017 International Symposium on Networks, Computers and

Communications (ISNCC), 2017, pp. 1-6, doi: 10.1109/ISNCC.2017.8072035.

138

[12] R.-V. Mahmoud, E. Kidmose, A. Turkmen, O. Pilawka, J.M. Pedersen, “DefAtt - Architecture

of Virtual Cyber Labs for Research and Education”, 2021 International Conference on Cyber

Situational Awareness Data Analytics and Assessment (CyberSA), pp. 1-7, 2021.

[13] Yu. Danik, R. Hryschuk, S. Gnatyuk, “Synergistic effects of information and cybernetic

interaction in civil aviation”, Aviation, Vol. 20, №3, рр. 137-144, 2016.

[14] Berdibayev R., Gnatyuk S., Yevchenko Yu., Kishchenko V. “A concept of the architecture

and creation for SIEM system in critical infrastructure”, Studies in Systems, Decision and

Control, Vol. 346, 2021, pp. 221-242.

[15] O. Oksiiuk, V. Chaikovska and A. Fesenko, “Security Technique for Authentication Process

in the Cloud Environment,” 2019 IEEE International Scientific-Practical Conference

Problems of Infocommunications, Science and Technology (PIC S&T), 2019, pp. 379-382,

doi: 10.1109/PICST47496.2019.9061248.

[16] Gnatyuk S., Berdibayev R., Avkurova Z., Verkhovets O., Bauyrzhan M. “Studies on cloud-

based cyber incidents detection and identification in critical infrastructure”, CEUR Workshop

Proceedings, 2021, Vol. 2923, pp. 68-80.

[17] J. Lee, Y. S. Kim, J. H. Kim and I. K. Kim, “Toward the SIEM architecture for cloud-based

security services,” 2017 IEEE Conference on Communications and Network Security (CNS),

2017, pp. 398-399, doi: 10.1109/CNS.2017.8228696.

[18] V. Buriachok, et al., Invasion Detection Model using Two-Stage Criterion of Detection of

Network Anomalies, Cybersecurity Providing in Information and Telecommunication

Systems (CPITS), pp. 23–32, Jul. 2020.

[19] Lukova-Chuiko N., Fesenko A., Papirna H. and Gnatyuk S. “Threat hunting as a method of

protection against cyber threats”, CEUR Workshop Proceedings, Vol. 2833, pp. 103-113,

2021.

[20] Astapenya V., Buriachok V., Sokolov V., Skladannyi P. and Ageyev D. “Last mile technique

for wireless delivery system using an accelerating lens”, Proceedings of 2020 IEEE

International Conference on Problems of Infocommunications Science and Technology, PIC

S and T 2020, pp. 811-814, 2021. doi:10.1109/PICST51311.2020.946788.

