
11 

Development Principles of Secure Microservices 
 

Oleksandr Tereshchenko1 and Natalia Trintina2 

 
1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” 37 Peremohy ave., Kyiv, 

03056, Ukraine 
2 State University of Telecommunications, 7 Solomianska str., Kyiv, 03110, Ukraine 

 

Abstract 
The subject matter of this article is to build secure applications using a microservices 

architecture. The goal is to provide developers with useful guidance on already recognized 

threats in microservices applications and how to detect, mitigate or prevent them. We also 

aim to identify potential gaps in security research in microservices architecture. The tasks to 

be solved are: identifying the most pressing threats for microservices and microservices 

architecture in general; selection of the set of approaches and security mechanisms that are 

used to detect, mitigate and prevent these threats. The methods used are: literature analysis, 

microservices application testing. In this article, we conduct a systematic scoping study to 

identify threats to microservices architecture and how to minimize them. We have 

highlighted the most critical threats and proposed solutions and methodologies for dealing 

with them from selected research studies. The following results were obtained. Methods for 

protecting data during transition between microservices are proposed, possible measures to 

ensure the security of data at rest in the database are considered. Some of the most vulnerable 

and complex processes in a microservices application, namely authentication and 

authorization, have been analyzed. Several approaches to authentication and authorization are 

proposed, and the security weaknesses and advantages of each of them are highlighted. In 

particular, approaches based on single-sign-on technology are considered. All approaches to 

the development of microservices applications, which were presented in this article, were 

tested during development of the microservices application and their positive impact on the 

security of the application was proved. In addition, we discussed how the software 

development practices, adopted by the development team, can affect the security of 

microservices applications and how to organize the process of development of a secure 

microservices application. Unfortunately, a review of scientific papers demonstrates that very 

little attention is paid to this topic. The scientific novelty of the results obtained is as follows: 

the most serious security problems encountered in the microservices architecture were 

highlighted, and clear steps were given on how to develop a secure microservices application. 

The relevance of the work lies in the fact that very little attention is paid to this topic, while 

the number of possible vulnerabilities increases as microservices spread. 
 

Keywords1 
Microservices architecture, monolithic architecture, authentication, authorization, client 

certificates, single-sign-on gateway. 

                                                      
CPITS-II-2021: Cybersecurity Providing in Information and Telecommunication Systems, October 26, 2021, Kyiv, Ukraine 

EMAIL: alexandr.tereschenko2014@gmail.com (O. Tereshchenko); trintina2015@gmail.com (N. Trintina) 

ORCID: 0000-0003-0536-2708 (O. Tereshchenko); 0000-0001-6827-4030 (N. Trintina) 

 
©️ 2022 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 



12 

1. Introduction 

Microservices is a new architectural style that has become widespread in our time. Microservices offer 

many advantages over older monolithic architectures. Big business is already moving to microservices 

and this trend will continue, because the monolithic architecture cannot keep up with the requirements 

and challenges of modern software, which is now quite large and complex [1]. 

From a technical point of view, microservices are a specialization of the approach to the 

implementation of SOA (Service-Oriented Architecture), which is used to build flexible systems with 

independent deployment [2]. Compared to alternative software methodologies, microservices are actually 

a very cost-effective solution due to the limitations of older and more traditional software development 

methods, such as monolithic architecture. Monolithic architecture cannot mimic microservices without 

significant infrastructure costs and information unreliability. Despite the widespread use and rapid 

development, scalability has become the main condition for the success of the current widespread use of 

microservices technologies [2]. 

Data security is an important aspect of software development today. Ignoring this aspect will 

undoubtedly lead to serious technological and legal problems, as some countries have strict legislation to 

combat information leakage. An example of such legislation is the general personal data protection 

regulation in the European Union. 

With massive hacking attacks on companies such as Netflix and Amazon, which implemented 

microservices architecture in their applications, security has become an urgent need. Several research 

papers have noted the need to study the security of microservices applications [3, 4, 12]. However, 

security threats are diverse and growing fast. Security proposals also increase and range from the 

protection of individual microservices to the protection of infrastructure as a whole. 

In this article, we conduct a systematic review to identify the main threats to the security of systems 

based on microservices architecture. We analyze existing research on threats and solutions that facilitate 

the security of microservices applications. The objectives of this study can be summarized as follows: 

 identification of the most severe threats to microservices and microservices architecture in general; 

 selection of the set of approaches and security mechanisms used to detect, mitigate and prevent 

these threats. 

 

2. Monolithic Architecture 

Monolithic architecture is a traditional unified model for software development. The monolith in this 

context means that the application is compiled into a single fragment. The monolithic program is 

autonomous. In this case, the components of the program are interconnected and interdependent, rather 

than weakly coupled, as is the case with modular programs. 

As you can see in Figure 1, although this is a fairly simple model, the limitations are obvious and do 

not stop at scalability. They go far beyond the most important modern aspect, namely security. 

 



13 

 
Figure 2: Monolithic architecture 

 

When using a monolithic architecture, we have to compile the entire assembly with minor changes to 

the code, which significantly slows down the deployment and delivery of updates. When using 

microservices, you can change only one service and compile it, which is a more attractive solution. 

Moreover, there is a risk factor that today's large vertical scaling programs can have serious crashes or 

errors that compromise the operation of the entire application. In microservices, this risk levels, as the 

architecture supports horizontal scaling. It is important to keep in mind the previous points, but they are 

somewhat secondary to the possibility of stealing limited data due to their targeted and centralized 

topology or budget problems related to the fact that monolithic development usually uses one specific 

technology or supplier. 

3. Microservices Architecture 

In contrast to the monolithic architecture, which is a single unit, microservices architecture divides the 

application into a collection of smaller independent units [5]. These blocks implement each business 

process as a separate service. Therefore, all services have their own business logic and database. This 

contributes to security by making it possible to use an unlimited number of programming languages, 

APIs, and scaling resources in both directions when resources are needed or not. See Figure 2. 

 

 
 

Figure 2: Microservices architecture 
 

It is important to remember that microservices are not a trouble-free technology, methodology or 

architecture, so there are issues that need to be overcome. This architecture requires more development 



14 

control. There is a need for a larger development management team, and its size depends on the number 

of services involved, vendors, programming languages, databases used during the development process, 

as well as the high complexity of testing. Dividing into several development teams is common for this 

type of applications. 

We need to realize that these are not all the advantages and challenges of microservices architecture, 

so it should be borne in mind that for the successful use of this architecture we require a well-established 

interaction between developers and architects [5-6]. 

4. Properties of Microservices 

Microservices have very important characteristics, and some of these characteristics must be 

considered in the development of secure services. So let's look at these characteristics in more details. 

4.1. Scaling of Microservices 

The fast scaling process has become a feature of microservices that has made them so popular in 

software development. Microservices can independently scale on the X axis, for example, by duplicating 

services, or scale on the Z axis, which is also called partitioning, which is the allocation of different data 

of the same type on different nodes [4]. Figure 3 shows the "Scale Cube": 

 

 
Figure 3: “Scale Cube” 

 

As an example of scaling along the Z axis, we can give an example of the division of large databases 

into smaller parts, which can speed up and facilitate the management of the application [6]. In turn, this 

process is the opposite of monolithic applications, which usually have a single database. 

4.2. Possibility of Independent Updating 

When updating a monolithic application, you need to recompile the entire program. In the case of 

microservices, each service can be deployed independently of other services. Any change in the service 

can be easily made by the developer without the consent of other development teams. Microservices 

architecture ideally promotes the application of continuous integration and continuous delivery [7]. 

4.3. Simplicity of Maintenance 

If you follow the approach of object-oriented design, the microservice code will be limited to one 

entity, so it is easier to understand than the code in a monolithic architecture. Working with smaller code 

bases increases the speed of development and allows you to have a real idea of the side effects of the code 

that programmers write [7]. 

 



15 

4.4. Multilingualism and Heterogeneity 
 

Programmers have the right to choose which programming languages are most suitable for their 

service, freely implementing innovations within the service [7]. Developers can quickly rewrite the 

microservice code using the latest technologies and tools. 

4.5. Failures and Isolated Resources 

Any problem in the monolithic architecture, such as an error during connecting to the database, will 

lead to reduced performance or even a complete failure of the program. However, in the case of 

microservices architecture, these problems apply only to this service. Microservices isolate failures and 

limit the extent to which a failure can affect the program. In the case of well-designed microservices, 

failures are isolated in one service and do not extend to the rest of the system, thus not causing 

inconvenience to the end user. 

5. Security Issues of Microservices Applications 

Microservice protection must overcome a huge number of trust and security issues. These are not the 

new problems. They were inherited from close relatives of the microservices architecture, such as SOA 

and distributed computing. 

The main problems here will always be programming habits and the human factor, and they are 

becoming more acute, as microservices usually turn a simple application into a large area for a hacker 

attack. 

As mentioned above, microservices completely trust each other, so compromising and effectively 

operating one of them can lead to complete compromising of others [7]. Microservices applications have 

many entry points and their protection is a priority. Therefore, the question arises: what are the risks and 

how can they be eliminated at an early stage of development or how to minimize their consequences? 

5.1. Security Issues in the Clouds 

The use of microservices implies that these programs extend to multiple services or platforms located 

in public clouds, such as PaaS, SaaS or IaaS, so security is a problem due to the complexity of 

development, monitoring, debugging and auditing of the entire application in a foreign environment. This 

is due to the fact that the level of transparency is standard for these types of services and is determined by 

providers [8]. Therefore, developers can only blindly believe in the security of the platform or service. 

If an attacker compromises a particular service by exploiting a vulnerability in the public 

microservices, he or she can take control of the virtual machine in which the microservices run. As a 

result, some microservices may not be credible [9]. If a subdomain of a particular application is 

compromised, an attacker can access cookies and obtain confidential information. That is why it is 

important to pay a lot of attention to choosing a cloud service provider. 

5.2. Web Applications Vulnerabilities 

Microservices are the evolution of standard computer platforms. A simple conclusion follows from 

this: what was previously a vulnerability remains the same vulnerability in the microservices application 

[9]. To increase awareness of the most common vulnerabilities, developers should be aware of the ten 

most critical vulnerabilities in an open source Web application security project, the OWASP Top Ten list 

and the OWASP Security Testing Framework [10]. 

All of these vulnerabilities are listed below: 

 Injections. 

 Cross-site scripts (XSS). 

 Problems with the authentication system and storage of sessions. 



16 

 Problems with access control. 

 Security Misconfiguration. 

 Insecurity of sensitive data. 

 Dangerous direct links to objects. 

 Cross-site request forgery (CSRF). 

 Usage of the components with known vulnerabilities. 

 Problems with journaling and monitoring. 

One aspect that deserves a more detailed description is SSRF (Server Side Request Forgery). This 

aspect needs attention despite the apparently low risk [10]. 

In a typical SSRF attack, attackers can force the server to connect only to internal services in the 

organization's infrastructure. In other cases, they may be able to force the server to connect to arbitrary 

external systems, potentially stealing sensitive data, such as authorization credentials (Fig. 4) [11]. 

 

 
 

Figure 4: Server Side Request Forgery 
 

In microservices, inter-server requests are usually secure if deep-layer firewall defense or network 

segregation is used. If these aspects are not met, you may end up with a server-side request forgery 

situation in which an attacker can abuse trust between servers, bypass IP whitelists, authentication 

services, and read resources that are not available to the public. Moreover, attacker can interact with API 

or receive sensitive information, such as the IP address of a web server [11]. 

5.3. Authentication and Authorization 

When we deal with people, authentication and authorization play a big role. Authentication is the 

process of confirming that a user is the one with whom he positions himself [12]. In turn, authorization is 

a mechanism that classifies and allows a person to perform some actions in the system.  

In the case of monolithic systems, the application itself is responsible for authentication and 

authorization. Web frameworks such as Angular, Spring, Django, come with a ready-made user 

management system, which facilitates the implementation of this task in monolithic systems. When it 

comes to distributed systems, due to its complexity we have to look for better schemes. You should avoid 

the option where the user has to log in to each system separately, using different passwords and 

usernames. The way out of this situation may be to create and use a unique identifier that allows 

authentication only once [12]. 

The peculiarity of interservice communication in microservices architecture is that microservices 

completely trust each other. The one of many possible ways to securely authenticate and authorize 

services is to use single-sign-on gateways, as they avoid the use of libraries that rely on a single code 

base, while helping to reduce the number of duplicate codes. 

  



17 

5.3.1. Usage of Single-Sign-on Technology in Microservices Architecture 

A common approach to authentication and authorization is to use any of the single-sign-on solutions. 

Relevant capabilities in this area are provided by the open authentication and authorization data exchange 

standard SAML and the open decentralized authentication system standard OpenID Connect. 

SAML is a standard based on the SOAP protocol, but it is considered quite complex, despite the 

availability of a large number of libraries and tools. OpenID Connect is a standard that emerged as a 

specific implementation of OAuth 2.0 and is based on the methods of managing single-sign-on 

technology adopted by Google and a number of other companies. It uses simple REST calls [12]. 

A directory service can be any tool such as Active Directory or Lightweight Directory Access Protocol 

(LDAP). These systems allow you to store information about the role of users in the system. 

SAML and OpenID are ideal for authentication and authorization of users in the system, but have also 

become widespread for authentication between services. It is extremely important to promote services and 

mechanisms that force users, administrators and developers to use complex, unique passwords [13]. 

5.3.2. Usage of the Single-Sign-on Gateway 

Instead of duplicating the logon control logic on each service, you can pass this work to a separate 

gateway that will act as a proxy server and be located between the services and the external environment. 

Thus, it is possible to localize and centralize the logic of user redirection and execution of confirmation in 

one place [13]. 

But in this case, there is a problem which related to a single point of failure.  

5.3.3. Usage of the HTTP(S) Basic Authentication Standard 

With HTTP Basic Authentication, clients have the ability to send a username and password in a 

standard HTTP header. After the server processes the data, the server may grant a permission to access 

the service to the user. But there is a problem with the lack of security for these headers. Any intermediate 

instance can view the information in the header and see the data. Therefore, HTTP Basic Authentication 

should be used with the HTTPS protocol. 

By using HTTPS, the client is guaranteed that the server, which the client is communicating with, is 

the same server that the client wants to connect to. The HTTPS protocol protects the request from "man-

in-the-middle" attacks, making it almost impossible to manipulate its payload [13]. 

It can be problematic to manage multiple machines, because the server needs to manage its own SSL 

certificates. Tools for automated management of the certification process have not reached sufficient 

perfection yet. Try to completely avoid using self-signed certificates. Another disadvantage is that traffic 

passing through SSL cannot be cached by reverse proxy servers such as Squid or Varnish [14]. 

5.3.4. Client Certificates 

As an alternative to the above, and despite management difficulties, the approach to client 

identification may be the use of the capabilities provided by the descendant of the SSL protocol, 

Transport Layer Security (TLS), which helps to generate client certificates. Each client has an X.509 

certificate, which is used to establish communication between the client and the server. The server 

verifies the authenticity of the client certificate, thus providing strong guarantees of client reliability. 

  



18 

5.3.5. Usage of HMAC over HTTP 

Excessive HTTPS traffic can cause additional load on servers. In addition, there are difficulties with 

caching such traffic. An alternative way to sign a request is to use a hash-based message authentication 

code (HMAC) [14]. 

When using HMAC, the request body is hashed with a private key and the received hash is sent with 

the request. The server then uses its own copy of the private key and the request body to recreate the hash. 

If the hashes coincide, the request is accepted. This eliminates the possibility that the request was forged. 

An additional advantage of this method is that the traffic is much easier to cache and the cost of 

generating hashes can be much lower than the processing of HTTPS traffic. 

5.3.6. Usage of API Keys 

API keys are used by all open APIs of services such as Facebook, Google, Twitter, Google and AWS. 

API keys allow the service to identify the caller and restrict what they can do. 

5.4. Security of Data at Rest in the Database 

Protecting data that is not used and stored in the data stores is a fundamental necessity. Many hackers’ 

attacks choose the application's data at rest as their ultimate target, and this is made possible by the 

vulnerability of their locations. Therefore, no matter how carefully the deep-layer defense has been 

implemented, the placement of data in encrypted form should be guaranteed. Regardless of the 

programming language used, you need to use the implementations of encryption algorithms that are 

constantly being reviewed, improved and have earned a good reputation. The encryption of data, for 

example, by using the AES-128 or AES-256 algorithm, should only be when the program does not use it, 

and decrypt it during data processing [12,13,15,16]. 

5.5. Deep-Layer Defense 

As a deep-layer defense in a microservices application, it is appropriate to use one or more firewalls. 

Typically, firewalls are quite simple and aim to restrict access to certain types of traffic to certain ports. 

The firewall is probably the last line of defense when other lines miss the threat, so the architecture of the 

microservices application should place the firewall in front of the main service levels [12]. 

Sometimes it is advisable to use more than one firewall. An example is when you need to secure a host 

using IPTables by setting up valid inputs and outputs. In turn, the main firewall will be located around the 

perimeter, which will control public access. The ability to segment networks based on team affiliation can 

also come in handy when building deep-layer defense. 

5.6. Tracking and Logging 

Tracking and logging systems have already become a security classic. They allow you to quickly 

detect system failures, which is an important aspect of quality of the customer service. In addition, the 

analysis of logs provides administrators and developers with information about the operation of the 

system and its weaknesses. In turn, this allows you to detect security vulnerabilities in the microservices 

application. QoS technology and its solutions can be useful for monitoring the interaction between 

services. 

  



19 

5.7. Human Factor 

Everything described earlier in this article was related to the technical side of security. But the human 

factor, which in most cases is the cause of security problems, cannot be ignored. Developers should be 

taught to build security according to specific standards, such as ITIL, TOGAF, BSIMM or COBIT. 

6. Conclusion 

The purpose of this article was to describe the vulnerabilities and security requirements of the 

microservices architecture and to analyze possible ways to build secure microservices applications. It is 

important to remember that the study and implementation of security concepts is an important step in 

building reliable information systems today. Unfortunately, when it comes to security, we can responsibly 

say that there is no system that is completely safe and secure. Much is left out because of the enormous 

possibilities of microservices architecture, and much of what has been discussed in this article is just the 

tip of the iceberg, because of the enormous possibilities of microservices architecture, so this topic needs 

further study. 

7. References 
 
[1] N. Anil, J. Parente, M. Wenzel, Microservices architecture, 2018. URL: https://docs.microsoft.com/ 

en-us/dotnet/architecture/microservices/architect-microservice-container-applications/microservices-

architecture. 

[2] S. Fowler, Scalability and Performance, 2019. URL: https://www.oreilly.com/library/ 

view/production-ready-microservices/9781491965962/ch04.html. 

[3] P. Nkomo, M. Coetzee, Software Development Activities for Secure Microservices, Computational 

Science and Its Applications (2019) 573-585. doi:10.1109/CLEI47609.2019.235060. 

[4] S. Sultan, I. Ahmad, T. Dimitriou, Container Security: Issues, Challenges, and the Road Ahead, 

IEEE Access Volume 7 (2019) 52976-52996. doi:10.1109/ACCESS.2019.2911732. 

[5] T. Rosner, The Age of Microservices, 2018. URL: https://www.trinimbus.com/blog/the-age-of-

microservices-amazon-ecs-service-discovery. 

[6] N. Dragoni, S. Giallorenzo, Microservices: yesterday, today, and tomorrow, Springer, Berlin, 2017, 

pp. 195-216. doi:10.1007/978-3-319-67425-4_12. 

[7] C. Richardson, Microservices patterns, Manning, 2019, pp. 317-331. doi:10.1002/spe.2608. 

[8] R. Chen, S. Li, and Z. Li, From Monolith to Microservices: A Dataflow-Driven Approach, 24th 

Asia-Pacific Software Engineering Conference, Nanjing, China, 2017, pp. 466-475. 

doi:10.1109/APSEC.2017.53. 

[9] S. Newman, Building Microservices: Designing Fine-Grained Systems, O'Reilly Media, 2015, pp. 

213-224. doi:10.5555/2904388. 

[10] D. Wichers, J. Williams, Owasp top-10, 2017. URL: https://wiki.owasp.org/images/1/17/ 

OWASP_Top-10_2013--AppSec_EU_2013_-_Dave_Wichers.pdf. 

[11] N. Team, What is the Server-Side Request Forgery Vulnerability & How to Prevent It, 2019. URL: 

https://www.netsparker.com/blog/web-security/server-side-request-forgery-vulnerability-ssrf. 

[12] H. Abdelhakim, S. Yahiouche, Securing microservices and microservice architectures: A systematic 

mapping study, 2021. doi:10.1016/j.cosrev.2021.100415. 

[13] P. Johnson, Microservices Architecture: Security Strategies and Best Practices, 2021. URL: 

https://www.whitesourcesoftware.com/resources/blog/microservices-architecture. 

[14] A. Pereira-Vale, G. Márquez, H. Astudillo, Security Mechanisms Used in Microservices-Based 

Systems: A Systematic Mapping, XLV Latin American Computing Conference, Panama, 2019. 

doi:10.1109/CLEI47609.2019.235060. 

[15] I. Bogachuk, V. Sokolov, V. Buriachok, Monitoring subsystem for wireless systems based on 

miniature spectrum analyzers, in: 2018 International Scientific-Practical Conference Problems of 

Infocommunications. Science and Technology (2018). doi:10.1109/infocommst.2018.8632151. 

[16] Kipchuk, F., et al. Investigation of Availability of Wireless Access Points based on Embedded 



20 

Systems. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, 

Science and Technology (PIC S&T), 2019. https://doi.org/10.1109/picst47496.2019.9061551 
 


