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Abstract 
The paper is dedicated to applications of Noncomutative Cryptography to access control 

algorithms for Information Systems. The example of usage of the protocol based on 

multivariate transformations to access control tasks is given. The platforms for such protocols 

are subsemigroups of affine Cremona semigroup acting on affine space of dimension n with 

Multicomposition property, i.e. ability to make computation of the composition of n elements 

from subsemigroup in polynomial time T(n).The implementation of the algorithm is given in 

the case of platform of Eulerian transformations. The modification of main algorithm is based 

on the idea of combination of Eulerian Transformations with elements of affine Cremona 

group of bounded degree and polynomial density. 
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1. Introduction 

Protocol based approach to control access to information systems in information space is a very 

popular one. With the appearance of the first samples of quantum computers it is very important to 

investigate potential of this approach. We study new postquantum resistant multivariate protocols 

which can substitute unresistable to quantum computer based attacks Diffie-Hellman algorithm. 

Current state of research in Postquantum Multivariate Cryptography is presented on the web page of 

the future Satellite Conference “Mathematical Aspects of Post Quantum Cryptography” of the 

Mathematical Congress 2022 (see https://icm2022.org/satellites). One of the sixth main directions of 

the Post Quantum Cryptography is Multivariate Cryptography for which affine Cremona semigroup 

named after Luigi Cremona [1] and its multivariate transformations are the main instruments to create 

cryptographical algorithms. These transformations are induced by endomorphisms of polynomial ring 

],...,,[ 21 nxxxK  over commutative ring K. The case K=Fq of finite field is very popular in classical 

Multivariate Cryptography. We discover large subgroups of CSn(K), n=2,3,… with the 

Multicomposition property (MCP) which means possibility to compute the composition of N arbitrary 

chosen elements of CSn(K) in polynomial time T(n). We assume that each element of CSn(K) is given 

in its standard polynomial form ),,...,,( 21 nii xxxfx   i=1,2,…n. 

2. On Multivariate Protocols of Noncommutative CRYPTOGRAPHY and 
Access Control 

Tahoma protocol was introduced in [2]. It uses two semigroups Sn<SCn(K) and Sm<CSm(K), m<n 

with the MPC property. We assume that there is homomorphism mnmn SS :, . 
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At the entrance of protocol we have elements ,,...,, 21 kggg  k  2 from CSn(K) conjugated with 

elements kggg ',...,',' 21  from Sn together with elements khhh ,...,, 21 from Sm conjugated with 

).'(),...,'(),'( 21 kggg   

Alice sends pair (gi, hi), i=1, 2,…,k to Bob. 

Bob selects sequences w(1)=(i(1,1), i(2,1), …, i(l(1),1), w(2)=(i(1,2), i(2,2), …, i(l(2),2),, ….,  

w(s)=(i(1,s), i(2,s), …, i(l(s),s) of elements from {1,2,…,k} 

He sends g(j)=gi(1,j)gi(2,j), … gi(l(j),j), j=1,2,…,s to Alice. Bob keeps z(j)=hi(1,j)hi(2,j), … hi(l(j),j), 

j=1,2,…,s in his private storage. 

Alice restores z(j) because of her knowledge on the input data. Postquantum seсurity of the 

protocol rests on the problem of decomposition of w(i) into generators gi . 

Access control algorithm. 

Alice (administrator of information system) forms pseudorandom or genuine random system (p1, 

p2,…,pm) from Km and word w in the alphabet z(1),  z(2),…,z(s). Alice sets password as w(p). Bob 

enters w(p) and gets access to the system. 

Algorithm is implemented with various platforms Sn, Sm and homomorphism between them (see 

[3–5]). 

3. Case of Eulerian Platform 

Let us consider the case when Sn and Sm are subsemigroups of semigroups ESn(K) and ESm(K) of 

Eulerian transformations, i.e. transformations moving each variable xi into monomial term  

qix1
α(i,1)x2

α(i,2)…xn
α(i,n) (t=n or t=m) where qi are regular elements of K and a(i,j) from Zd ,d=|K*|. 

These transformations were used for the development of public key algorithms [6, 7] and key 

exchange protocols [8] and key generation algorithm of one time pad encryption [9]. 

For simplicity we assume that algorithm has two outputs z(1) and z(2) with coefficients qi, a(i,j) 

and q’i, a’(i,j) respectively. Alice and Bob use generator of pseudorandom sequence (r1, r2 ,…,rm)=r 

where ri, are from K*. 

They form formal word w of kind z(1) α(1) z(2) α(2) z(1) α(3) … or z(2) b(1)z(1) b(2)z(2) b(3) … of length k, 

k=O(1) and use w(r) as entrance password. 

It is clear that the execution time of the protocol is O(n 3) which is the time to compute the 

composition of the elements from ESn(K). 

The computation of the entrance password costs O(m2) because Alice and Bob use publicly known  

decomposition of w into hidden z(1) and z(2). 

Assume that Alice and Bob use word w without change and the adversary is able to intercept some 

pairs (r, w(r)) where unknown w is of kind xi →yi  x1 
y(i,1) x2 

y(i,2)… xm y(i,m) , i=1,2, …, n .The word 

depends on m2+m unknowns. So Alice and Bob can use unchanged word safely <m+1 times.  

With this restrictions the only option for adversary is to break postquantum safe protocol. So Alice 

and Bob can use various words w during practically unlimited time. Noteworthy that they can change 

the size of parameter m via new session of the protocol with the same or new platform. 

Alternative usage. In this case correspondents can use the protocol with several outputs for the 

generation of password for “multiplicative” one time pad with plainspace (K*) m and encryption 

function (x1 , x2 ,…,  xm )→( x1p1, x2p2 , …, xmpm) where p=(p1, p2 ,…, pm) is the password. 

They form password via described above process of generation pairs (w , r) and setting p=w(r). 

Password has to be used only one time.  

Noteworthy that in the case K=Fq correspondents can use plainspace Kn and additive one time pad 

with encryption function (x1 , x2 ,…,  xm )→( x1 + p1, x2 + p2 , …, xm + pm).  

4. An Example of Implementation 

Let us consider an Eulerian semigroup ESn(K), which is a subsemigroup of CSn(K) of 

transformations of kind xi→ti(x1,x2,…,xn), where ti are monomial terms in K[x1,x2,…,xn]. Let LEn(K) be 

a subsemigroup of ESn(K) of kind 

x1→q1x1
a(1,1) 
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L:    x2→q2a21x1
a(2,1)x2

a(2,2) 

               … 

xn→qnan1x1
a(n,1)x2

a(n,2)…xn
a(n,n) 

where qi are regular element of K 

together with subgroups UEn(K) of transformations of kind 

x1→q1x1
a(1,1)x2

a(1,2)…xn
a(1,n) 

U:    x2→q2x1
a(2,1)x2

a(2,2)…xn-1
a(2,n-1) 

… 

xn→qnx1
a(n,1) 

Notice that in the case of finite K map L is invertible transformation of (K*)n if a(1,1), a(2,2),…, 

a(n,n) are mutually prime with d=|K*|. Similarly U induces a bijection of K* if a(n,1), a(n-

1,1),…,a(1,1) are mutualy prime with d. 

Assume that m<n. We consider a parabolic semigroup Pn,m(K) of all transformations of kind 

x1→q1x1
a(1,1)x2

a(1,2)…xm
a(1,m) 

x2→q2x1
a(2,1)x2

a(2,2)…xm
a(2,m) 

                   … 

xm→qm x1
a(m,1)x2

a(m,2)…xm
a(n,m)

 

xm+1→qm+1x1
a(m+1,1)x2

a(m+1,2)…xm
a(m+1,n) 

xm+2→qm+2x1
a(m+2,1) x2a

(m+2,2)… xm
a(m+2,n) 

                    … 

xn→qnx1
a(n,1) x2

a(n,2) …xn
a(n,n) 

 

Let φn,m(g) be the restriction of g є Pn,m(K) onto variables x1, x2,…,xm. It is easy to see that φn,m  is a 

homomorphism of Pn,m(K) onto ESm(K). We consider a special case of Tahoma protocol presented in 

[2]. 

Alice takes transformations p1, p2,…, pt є Pn,m(K) with pseudorandom coefficient for pi  given by 

list iq1, 
iq2,…, iqn, from K* and  ia(i,j) from Zd., d=|K*|. Alice takes L є LEn(K) given by coefficients 

b(i,j), i≤j, qi є K*, i=1,2,…,n and U є UEn(K) with coefficients c(i,j), j≤i and qi’ є K*, i=1,2,…,n. We 

assume that b(1,1), b(2,2),…, b(n,n) and c(1,n), c(2,n),…, c(n,n) are mutually prime with d=|K*|. 

Alice forms elements p1, p2,…, pt  ai=ULpiU
-1L-1 , i=1,2,…n where U-1 and L-1 are inverse 

automorphisms for U and L from AutK[x1,x2,…,xn]. She computes bi=φ(pi) and takes automorphism 

U’ є UEm(K) and L’ є LEm(K). 

Alice computes bi=U’L’φ(pi)(U’L’)-1, where U’єUEm(K), L’єULm(K) and sends pairs (ai,bi) to Bob. 

Bob takes sequences rj(1,r), rj(2,r),…, rj(l(r),r)є{1,2,…,t}, r є{1,2,…, k} and forms 

wr=aj(1,r)aj(2,r)…aj(l®, r) and wr’= bj(1, r)bj(2,r)…bj(l®, r). He sends wr to Alice and keeps wr’ for himself. 

Alice restores w’r via computation of L-1(U’)-1wr’LU=v, φ(v) and U’L’φ(v)(U’L’)-1. zr=w’r are 

collision elements (outputs) of the protocol. The complexity of algorithm is established by the 

complexity of composition of two elements from ESn(K) which is O(n3). 

The protocol can be used for the presented access control algorithm. Correspondents can use 

strings (r1,r2,…,rm)є(K*)n to form entrance password to the system. 

5. Algorithm Modification 

Assume that zr is given by the rule 

x1→
rq1x1

 a(1,1,r)x2
a(1,2,r)…xm

 a(1,m,r)
 

x2→
rq2x2

a(2,1,r) x2
a(2,2,r)… xm

 a(2,m,r)           … 

                 … 

xn→
rqmxm a(m,1.r)x2

a(m,2,r)… xn
 a(m,m,r)                             … 

 

We form zr via consideration of  

g1(r)=rq1
rq1x1

a(1,1,r)+rq1
rq2x2

a(1,2,r)+rq1
rqmxm

a(1,m,r) 

g2(r)=rq2
rq1x1

a(1,1,r)+rq2
rq2x2

a(1,2,r)+rq2
rqmxm

a(1,m,r) 

                                                      … 

gm,(r)=rqm
rq1x1

a(m,1,r)+rqm
rq2x2

a(m,2,r)+rq1
rqmxm

a(m,m,r) 
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and the map 

x1→g1(r),x2→g2(r), …,xn→gn(r) 

We define Gi(1)i(2)…i(k) as the rule 

x1→g1(i(1))g1(i(2))…g1(i(k)), 

x2→g2(i(1))g2(i(2))…g2(i(k)), 

… 

xm→gm(i(1))gm(i(2))…gm(i(k)). 

 

5.1. Modified Access Control Algorithm Based on Protocol 
 

Alice and Bob selects two strings (j(1), j(2),…j(k(1)))є{1,2,…,t}k(1) and (i(1), i(2),…i(k(2)) 

є{1,2,…,t}k(2). 

They form composition Zj(1),j(2),…,j(k(1)) of Zj(1), Zj(2), …,   Zj(k(1)) from ESm(K) and compose it with 

Gi(1)i(2)…i(k(2)) єCSm(K). They will use this composition C=C(j(1),j(2),…j(k(1)),i(1),i(2),…,i(k(2)) of 

Zj(1),j(2),…,j(k(1)) and Gi(1)i(2)…i(k(2))  in affine Cremona group formally, i. e. without computation of the 

standard form. 

In fact they create string r=(r1,r2,…,rm)є(K*)m and compute C=C(r) with the usage of 

decomposition C into Z= Zj(1),j(2),…,j(k(1)) and G= Gi(1)i(2)…i(k) and given above formula in the definitions 

of Z and G. 

Notice that standard forms C are of degree αm for some constant α, the density of C, i.e total 

number of monomials in its standard form is O(mk(2)+1). So the task of adversary to interpolate C via 

interceptions of pairs of kind r, c(r) is impossible task. 

So the only option for adversary is to break the suggested above postquantum protocol. 

 

5.2. On the Symbiotic Combination with One Time Pad 
 

Classical one time pad over additive group K+ of the ring K is encryption function on the 

plainspace Kn given by the rule (x1,x2,…xm →(x1,x2,…xm)+(p1,p2,…,pm)= (y1,y2,…,ym) where password 

(p1,p2,…,pm) and ciphertext (y1,y2,…,ym). 

Alice and Bob can use it via generation of passwords  C(j(1),j(2),…j(k(1)),i(1),i(2),…,i(k(2))(r)  

generated via suggested above protocol based scheme. 

Complexity remarks 

1) The complexity of protocol is O(m3) 

2) The computation of Z(i) in the point (r1,r2,…,rm) takes O(m2) 

3) Generation of g(m) takes O(m2) 

The complexity of algorithm is O(m2(k(1)))+O(m2(k(2))). Suggestion: correspondents can select 

k(1) and k(2) of size O(m). Then complexity of entire algorithm is O(m3). 

The algorithm is implemented in the cases of finite fields and arithmetical rings of residues 

modulo q. q>2. 

6. Conclusion 

The paper gives an example of application of protocols of Noncommutative Cryptography (see 

[10–23]) to the problems of Access Control for Information Systems. 

The general scheme can be the following one. Alice and Bob use protocol based on the input (IAS) 

and output algebraic systems (OAS) given by some generators a1, a2,…, an and b1, b2, …, bm  

respectively. Correspondents elaborate in a secure way some elements c1, c2,…, ct which generates  

the special subsystem (RIS)  of OIS. They take element w=w(c1, c2,…,ct) which is known function 

from hidden generators ci. 

Finally they use some ‘’deformation rule” d to form entrance password d(w) for some Information 

System IS. 
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For the selection of appropriate protocol recent cryptanalytical results [24–26] can be used. 

Flexibility of the method allows generalization for the case of multiuser mode. 

Descriptions of cryptographical problems in access control technology and alternative solutions 

reader can find in [27, 28]. 
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