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Abstract
Satellite Communication (SatCom) networks are become more and more integrated with the terrestrial
telecommunication infrastructure. In this paper, we shows the current status of the still ongoing
European Space Agency (ESA) project ”Data-driven Network Controller Orchestration for Real time
Network Management - ANChOR”. In particular, we propose a Long Short-Term Memory (LSTM)-
based methodology to drive the dynamic selection of the optimal satellite gateway station, which will
be performed by combining different kinds of information (i.e. traffic profile, network and weather
conditions). Some preliminary results on the real world dataset shows the effectiveness of the proposed
approach.
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1. Introduction

Non Terrestrial Networks (NTN), and in particular Satellite Communication (SatCom) networks,
are becoming more and more integrated with the terrestrial telecommunication infrastructure.
This is the main aim that a lot of researchers and research activities have been achieving since
the past few years. A concrete example is the 5G ongoing standardization activity within The
Third Generation Partnership Project (3GPP) [1]. The ongoing Release-17 works are including
efforts towards the definition of Internet of Things (IoT) over NTN and New Radio (NR) over
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NTN solutions1. The planned Release-18 works are still including standardization activities on
NTN to further define Radio Layer 2 and Layer 3 details to allow solutions where non-terrestrial
nodes can operate in the Radio Access Network (RAN)2. Numerous are the advantages that NTN
can bring to the terrestrial networks [2]. Foster network spread, bringing connectivity to large
currently un-served or under-served areas, offer backup links in case of non-normal conditions,
such as outages or faults of the primary terrestrial infrastructure, and offload the terrestrial
network offering additional connections to the users to address traffic peaks on the terrestrial
network and preserve the performance of specific loss or delay-sensitive flows are just a few
of them. However, several challenges and open issues are still to be properly investigated and
fixed to allow seamless integration between terrestrial and non-terrestrial networks [3, 4], such
as the definition of proper random access procedures, timing advance strategies, and hand-over
managing policies, despite the considerable amount of research and development effort already
done [5].

The employment of Artificial Intelligence (AI) and Machine Learning (ML) principles and
related solutions is another important pillar of the communication network evolution [6]. It is
evident looking again to the 3GPP Release-18 planned content list which includes the “AI/ML for
Next Generation RAN (NG-RAN)”, “AI/ML – Air interface”, and “AI/ML study, Multimedia codecs,
systems and services” topics and more generally to the huge amount of research contributions
in the literature, which also includes studies and solutions to employ AL/ML techniques in
NTNs [7]. Radio resource management, mobility management, and non-terrestrial/terrestrial
network integration are just a few examples of the aspects that AI/ML solutions can help
improve. However, due to the challenges and open issues still to investigate and address [8],
the full integration of AI/ML strategies in communication networks have been considered,
especially from the standardization viewpoint, as a matter of 6G or Beyond 5G (B5G) network
evolution instead of 5G network consolidation. This is also reflected, as a consequence, in
satellite-terrestrial integrated systems [9].

This paper shows the current status of the still ongoing European Space Agency (ESA)
project “Data-driven Network Controller and Orchestrator for Real-time Network Management
– ANChOR”[10], which aims to provide a further contribution towards the real integration
of satellites into the 5G era and beyond. In particular, we will focus on describing one of
the considered scenarios, the related network architecture, and the system prototype under
development (Section 2), the AI-based method employed to drive the dynamic selection of the
optimal satellite gateway station (Section 3) and the current and preliminary obtained results
(Sections 4 and 5). Finally, conclusions are drawn in Section 6.

2. Anchor Architecture

2.1. Use case for hybrid terrestrial/satellite backhaul in 5G network

The ANChOR architecture has been designed to support a variety of Use Cases (UC) for the
integration of satellite networks in 5G infrastructures, as initially presented in [11] (see Figure

1https://www.3gpp.org/release-17
2https://www.3gpp.org/release18



1). This paper addresses the architectural aspects to enable a particular UC targeting an hybrid
terrestrial/satellite backhaul orchestrated as part of end to end network slicing strategies. In
particular, we focus on the establishment of enhanced Mobile Broadband (eMBB) services
exploiting Geostationary Earth Orbit (GEO) satellite constellations. Current modern satellite
facilities rely on multiple ground stations dislocated in different geographical areas in order
to guarantee high-bandwidth communications and enough redundancy to mitigate signal
attenuation effects due to adverse weather conditions. Dynamic allocation of satellite resources
and their runtime configuration are crucial to optimize and maximize the usage of satellite
segments. Orchestration and AI/ML-based decision mechanisms are used in combination with
in-place satellite optimization techniques e.g, Satellite smart gateway diversity, that allows the
runtime selection of target gateway in a multi-gateway environment and the Adaptive Coding
and Modulation (ACM), for dynamic change of the transmitted signal characteristics, enabling
high-availability of satellite infrastructure while guaranteeing the required level of Quality of
Service (QoS).

Figure 1: Satellite-base 5G backhaul

2.2. Architecture

The ANChOR architecture [11] adopts some of the concepts related to Network Function
Virtualization (NFV), network programmability, and slicing management in 5G networks,
identifying three major functional components:

• Management and Orchestration, implementing the management of end-to-end net-
work slices and coordinating the resource orchestration for domain-specific slice subnets,
including a core network with user plane functions moved towards the edge of the net-
work and a satellite-enabled transport network for the backhaul. Open interfaces are
offered towards the AI/ML platform to enable the automated re-configuration of network
slices at runtime.

• Multi-technology Network Controllers, implementing the control plane of the trans-
port network and enabling the dynamic reconfiguration of the satellite segment.

• Monitoring and AI/ML, which embeds the AI/ML algorithms implementing the data-
driven intelligence to assist the system in the multi-layer automation of the ANChOR
infrastructure. A specific Monitoring Platform collects the monitoring data generated from



several data sources later ingested by AI/ML algorithms to make automation decisions,
applied and enforced by the Management and Orchestration facility.

2.3. Closed-loop for automated hybrid backhaul reconfiguration

Data-driven automatic reactivity/proactivity of control and management platforms is a very
well-known and popular concept adopted in 5G networks to guarantee service continuity while
minimizing human interventions. ANChOR implements such a concept by following a Data-
Driven AI-based closed loop for the runtime reconfiguration of the hybrid 5G backhaul and, in
particular, its satellite segment.

Figure 2: ANChOR closed-loop automation

The ANChOR Management and Orchestration platform, as part of the slice provisioning
process, configures the Monitoring Platform in order to continuously collect data relevant
to determine the current status of each slice and related resources. The collected data are
heterogeneous, related to different slice subnets (e.g., core, satellite-based transport network,
etc), and may involve third party sources, e.g., weather forecast services, relevant for satellite
communications. The Monitoring Platform collects and stores the data, making them available
for the AI/ML platform that continuously takes decisions based on the monitored status. In case
of detection of a sub-optimal condition, the AI/ML platform automatically requests a network
re-configuration to be enforced by the ANChOR Orchestrator. The Orchestrator translates such
requests to real actions that affect one or more network slice subnets composing the target
(monitored) end-to-end slice. Three specific decisions can be made by the AI/ML algorithms in
the case of 5G backhaul. In the case of congestion or failure of the terrestrial link, the AI/ML
platform may decide to relocate the traffic (or part of it) into a satellite link minimizing the
risk of service outages. In case of adverse weather conditions, which may affect the satellite



transmission, the reconfiguration may consist in a redirection of the traffic towards a new target
satellite gateway placed into a geographical area characterized by better weather conditions.
Finally, the characteristics of satellite channels can be tuned at runtime by reconfiguring ACM
parameters.

2.4. System prototype implementation

The first prototype of the ANChOR Platform consists of several software components building
the different parts of the functional architecture. At the top of the system, a centralized Slice
Manager3 implements the Management and Orchestration platform. With reference to figure
2, the Slice Manager implements the Network Slice and Network Slice Subnet Management
Functions (NSMF and NSSMF) of a 5G management system, as defined by the 3GPP architecture.
In particular the Transport Network (TN) NSSMF orchestrates the 5G backhaul. Here a specific
adapter allows the configuration of the Starfish platform [12], which creates and manages
the satellite slice subnets, and an instance of OpenDaylight controller [13], which is used
to configure the virtual switches in the terrestrial network to switch towards the satellite
backhaul and vice-versa. The Monitoring platform is a micro-service Docker-based application,
encompassing several open-source tools and frameworks. The data are collected through a set
of Telegraf agents [14], deployable on demand and configurable at runtime, that collects data
from the 5G Core, Satellite platform and from OpenWeather [15], the external service selected
to get weather forecast information. The data collected are pushed into a Kafka bus [16], where
the AI/ML is listening to new events. Historical data are stored with InfluxDB[17] and used for
AI/ML model training. Prometheus [18] has been selected as the data aggregation platform. The
runtime configuration of the elements building the Monitoring platform is implemented through
a specific Config Manager built from scratch. The AI/ML platform along with preliminary
validation activities in the context of the use case described in subsection 2.1, is widely discussed
in the following section.

3. AI-based Methodology

3.1. Task definition

AI models aim to drive the dynamic selection of the optimal satellite gateway station, which
will be performed by combining different kinds of information (i.e. traffic profile, network and
weather conditions). In particular, this task identifies the appropriate gateway on the basis of
the analysis of the obtained status associated with a given station in a specific time interval
(that is defined according to a sliding window).

3.2. Workflow

The proposed methodology consists of three steps (see Figure 3): labeling, pre-processing and
model training. First step is mandatory to perform a supervised training where each instance
has the related label while the pre-processing has the goal of extracting the sequences from

3https://github.com/nextworks-it/slicer



historical data. Furthermore, the extracted sequences are properly normalized before they are
fed into the model. Finally, a deep learning Long Short-Term Memory (LSTM)-based model is
used to predict the state of each gateway in a specific time interval.

Figure 3: An high-level overview of the framework.

Specifically, the choice of LSTM-based model is motivated by the nature of analyzed data
which are time series without any kind of regularity. This type of model has been designed to
capture both short and long term information within the historical data.

The model’s decisions will be taken based on a mix of network topology information, historical
data (for the training phase), real-time monitoring data and service requirements, that can be
classified in: i) Geographical coordinates of available satellite gateways and satellite terminals;
ii) Service profile characterizing the data traffic on the eMBB network slices, in terms of:
required bandwidth, tolerable delay and maximum acceptable Bit Error Rate (BER); iii) Real-
time monitoring data; iv) Weather information.

4. Experimental Protocol

In this section we discuss about the experimental analysis made for evaluating the efficacy of
the proposed AI model in terms of accuracy, precision and recall.

As mentioned in the previous section, the dataset is composed by different features provided
by several sources. The platform analyzed for the network features is Eurobis considering data
referred to a time span 2021-01-25 00:00 to 2021-02-08 00:00 with 5 minutes step, producing a
dataset having 4032 samples.

The features used to train models concerning to Forward Link (FL), Return Link (RL), weather,
and number of logged-on terminals. In particular, we considered the following features for:

• FL: throughput in terms of packets and bits per seconds, Signal Noise Ratio in dB;
• RL: throughput in terms of packets and bits per seconds, Signal Noise Ratio (SNR) in dB,

BER, frequency error in Hz, Normalized Signal Noise Ratio in dB.

The weather data are gathered by OpenWeather API for historical data (i.e. temperature,
wind, humidity and pressure).

The dataset has been labeled on the basis of specific rules defined by domain experts to
consider two different events. The former concerns the presence of interference leading to the



increase in total received power and BER and the decrease of the RL-SNR and the aggregate
platform throughput. The former is related to a rain event on the teleport which involves a
decrease of the total received power, RL-SNR and the aggregate throughput while increasing
BER.

The obtained dataset has been split in training, validation and test sets in order to find the
best hyper-parameters and to estimate the performance of the designed model. We have tuned
the hyper-parameter, using Adam optimizer [19] with binary cross-entropy as loss function, of
the LSTM-based model on training and validation set; in particular, the final designed model is
composed by LSTM cell with 128 units, Dropout, LSTM cell with 128 units and finally a Dense
layer with 2 units with softmax as activation function and batch size equals to 16. The proposed
model has been implemented in Tensorflow 2.0 using the corresponding Keras layers.

5. Results

In this section we discuss about the achieved results. In particular, in Table 1 some performance
metrics (Accuracy, Precision and Recall) are reported by varying the time window size, that has
been defined for correlating temporal information. The best results in terms of Accuracy have
been reached considering a time window of 10 samples. This result could be due to the fact that
this size is the best in order to capture both short and long information, while with 5 and 15
samples we are able to consider only short or long ones; in fact, the size of window can strongly
affect the result of our analysis because it could consider too many or few samples along time.

Figure 4 reports the training curves related to the best solutions, where it is possible to see
how the loss function decreases as the epochs increase, and at the same time the accuracy of
the model increases. This trend of decreasing loss and increasing accuracy indicates how much
the model is learning in a correct way.

Finally, the proposed model takes into account features provided by Monitoring Platform,
processes and predicts status of gateways, chosen the one with higher probability score, whose
information is then sent to Anchor Orchestrator.

Figure 4: Training curves of Accuracy and loss function.



Time Window (sample) Accuracy Precision Recall
5 90.68% 72.72% 80.00%
10 91.25% 72.00% 72.00%
15 89.37% 71.87% 74.19%

Table 1
Results of the proposed LSTM-based model in terms of Accuracy Precision and Recall by varying the
Time Window size.

6. Conclusions

The interest in applying AI/ML-based methods in different research fields is increasing and
leading to multiple solutions aim to solve multiple problems or at least improving the currently
available solutions. This is true also in the telecommunication network field and, in particular,
in the development of new solutions for a better satellite/terrestrial network integration and an
enhanced resource allocation and management.

This paper shows the current development status of a research project, called ANChOR. The
project description is focused on the considered network architecture, the system prototype
under development, and the AI/ML-based technique that we are developing and testing to
properly address the satellite gateway selection problem. The included preliminary performance
show encouraging trends and good results in terms of the three considered metrics.
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