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Abstract
The forthcoming 6G wireless networks are expected to be much more machine-intelligent in resource
allocation, including relay selections to serve ever-increasing users and the internet of things with
extended coverage. Selecting an optimal multiple-input multiple-output (MIMO) relay using conventional
methods becomes challenging due to dependency on perfect channel information, which exponentially
increases feedback overhead. In this paper, we propose a novel incremental learning-based online MIMO
relay selection algorithm, with only imperfect channel gain information available at the relay nodes
in the framework of MIMO two-way amplify-and-forward (TWAF) relay networks. In particular, we
develop naive Bayes, logistic regression, and support vector-based incremental learning classifiers for
the near-optimal online relay selection. Using simulated results, we show that the proposed online relay
selection approaches outperform the best conventional Gram-Schmidt algorithm while reducing the
feedback overhead up to a factor of eight.
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1. Introduction

With the advent of the internet of everything, the multiple-input multiple-output (MIMO)
network is considered a pivotal technology to meet the high data rate requirements in the
upcoming sixth-generation (6G) networks. Further, relay networks will play a crucial role in the
6G networks by enhancing network reliability, data coverage, and spectral efficiency. MIMO
relaying networks have been recognized to achieve significant diversity gain and significant
spectrum efficiency, to expand ubiquitous coverage on land and air in the upcoming 6G networks.
Further, relay selection can reduce the total network power dissipation while increasing spectral
efficiency [1]. Primarily, in conventional methods, the relay selection uses the procured channel
state information (CSI) knowledge. However, the channels’ time-varying nature and noise make
the procurement of the perfect CSI for a cooperative MIMO network increase the feedback
overhead exceptionally [2]. Thus, with the wide deployment of MIMO relay networks in wireless
sensor devices and the internet of things in the upcoming 6G networks, the amount of feedback
overhead will increase exponentially. Furthermore, with the increased feedback overhead, the
latency of the networks in selecting an even near-optimal relay increases [3]. Hence, we need
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to devise intelligent relay selection algorithms that perform accurately with minimum CSI
dependency and low feedback overhead. It becomes even more challenging in the two-way
relaying network, which provides double spectral efficiency gains compared to a one-way
relaying network, because a two-way relay node simultaneously serves the terminal node in
each transmission phase.

Recently, the relay selection problem has been studied using machine learning (ML)-based
algorithms in [4, 5, 6, 7]. The authors in [4] operated on the unlabelled dataset using the k-means
clustering algorithm, wherein the decode-and-forward (DF) relay nodes were selected under
perfect CSI. The authors in [5] extracted key features in social ties network using stacked
autoencoder and utilized these features for DF relay selection. Furthermore, the authors in
[6] studied two-way (TW) DF relay selection policy using an artificial neural network for a
fixed and variable number of relay nodes by using distance as the feature vector. Recently the
authors in [7] devised a decision tree-based one-way (OW) DF relay selection with quantized
perfect CSI knowledge and show promising results if the Gini-index for the decision trees is set
properly. However, all of these works have focussed only on the single-input single-output (SISO)
networks, DF relaying and considered perfect estimation of the channels. Furthermore, it is well-
known that amplify-and-forward (AF) relaying is widely adopted industrially over DF relaying,
because of reduced implementation complexity, but at the expense of noise amplification [8].

The works in [4, 5, 6, 7] utilized offline learning-based ML algorithms that were trained once
and deployed. Offline learning leads to two fundamental problems: (1) it needs an extensive
amount of training data that covers all the possible testing scenarios, which is not possible
with ever changing propagation environments and channel conditions, and (2) it does not
continuously integrate new information to the designed ML models, rather a new ML model
has to be trained from scratch. However, incremental learning (also referred to as online
learning, evolving learning, constructive learning, etc.) has appeared as a paradigm shift to
provide streaming ML training and data processing [9]. Once deployed, instead of training
the ML models from scratch, incremental learning updates the previously trained model with
the streaming new data. Thus, retraining takes place only on a small amount of data at a
time (reducing training time), we do not need to store all the data (reducing data storage)
and we do not need extensive initial training data covering all possible scenarios (making ML
models adaptive to propagation environment). Therefore, in this work, we design incremental
learning-based MIMO AF relay selection algorithms with imperfect CSI knowledge.

We consider MIMO TWAF relay network, where the terminal nodes intend to communicate
by selecting a relay node, under correlated fading channels with imperfect CSI (Section II). We
propose an incremental learning framework for the online MIMO TWAF relay selection, detail
the process of retraining the ML models and prepare the datasets (Section III). We propose
a naive-Bayes (NB)-based online relay selection policy by employing the pairwise algorithm
(Section IV). Also, we model the stochastic gradient descent (SGD) classifiers to design and
develop the support vector classifier (SVC) and logistic regression (LR)-based online relay
selection algorithms (Section V). We perform extensive performance evaluation by varying
signal-to-noise-ratio (SNR), channel estimation quality (CEQ), antenna correlation, number
of antennas in the MIMO links and relay nodes, and to further reduce the feedback overhead
we consider the quantized imperfect channel gain as feedback vectors (Section VI). Lastly, we
conclude this work (Section VII).



Figure 1: System model of the MIMO TWAF relay network with 𝑁 antennas at each node.

2. System Model

We consider a MIMO TWAF relay network wherein the terminal nodes 𝑇1 and 𝑇2 intend to
exchange signals by selecting a relay node 𝐾𝑠 ∈ 𝒦 ≜ {𝐾1, ...,𝐾𝐽}, as shown in Fig. 1.
Each node is equipped with 𝑁 antennas and the direct link is absent because of path-loss and
shadow fading. For the sake of generality, let Γ and Γ̂ indicate source and destination terminals,
respectively, i.e., if Γ = 𝑇1 then Γ̂ = 𝑇2, and vice-versa.

2.1. Channel Model and its Estimation Quality

We employ the spatially correlated Rayleigh fading channels based on the Kronecker cor-
relation by using the linear minimum mean squared error (LMMSE) technique for channel
estimation [10]. Let the actual channel matrix be Ĥ(·) ∼ 𝒞𝒩 (0, 𝜎2

ℎ̂
) and the transmission and

reception correlation matrices [11] be U(·) and R(·), respectively, then the final channel matrix

becomes R1/2
(·) Ĥ(·)U

1/2
(·) . Let the errors in estimation be E(·) ∼ 𝒞𝒩 (0, 𝜎2

𝑒) and LMMSE-based
estimated channel be H(·) ∼ 𝒞𝒩 (0, 𝜎2

ℎ), given by

H(·) = R
1/2
(·)

(︁
Ĥ(·) +E(·)

)︁
U

1/2
(·) (1)

Without loss of generality, we assume that the error variance is dependent on SNR (𝛾) and

indicate CEQ by 𝛿, such that 𝜎2
𝑒 =

𝜎2
ℎ̂

1+𝛿𝛾𝜎2
ℎ̂

≈ 1
1+𝛿𝛾 and 𝜎2

ℎ=
𝛿𝛾𝜎2

ℎ̂

1+𝛿𝛾𝜎2
ℎ̂

≈ 𝛿𝛾
1+𝛿𝛾 [10].

2.2. Signal Transmission Model

In multiple access phase [𝑇1, 𝑇2] transmit their signals to the 𝒦 relays, wherein the signal
obtained at the 𝑗th relay node becomes

y𝐾𝑗 = HΓ𝐾𝑗sΓ +HΓ̂𝐾𝑗
sΓ̂ + n𝐾𝑗 (2)

where Γ node transmits sΓ with 𝑃Γ transmission power, E{sΓs𝐻Γ } =
𝑃Γ
𝑁 I𝑁 and n𝐾𝑗 denotes

noise at 𝑗th relay node with E{n𝐾𝑗n
𝐻
𝐾𝑗
} = 𝜎2

𝐾𝑗
I𝑁 . Now in broadcast phase, the 𝑗th relay node



amplifies the received signal in (2) with 𝑃𝑅 power, using amplification factor, given by

𝛼𝑗 =

√︂
𝑃𝑅

⧸︁
𝑡𝑟
{︁
(𝑃Γ/𝑁)HΓ𝐾𝑗H

𝐻
Γ𝐾𝑗

+ (𝑃Γ̂/𝑁)HΓ̂𝐾𝑗
H𝐻

Γ̂𝐾𝑗
+ 𝜎2

𝐾𝑗
I𝑁

}︁
(3)

where 𝑡𝑟(·) denotes trace of the matrix. Considering that the self-interference can be canceled
at the terminal nodes, the received signal at terminal nodes [12] can be given by

yΓ =
∑︁𝐽

𝑗=1
𝛼𝑗H𝐾𝑗Γ

(︁
HΓ̂𝐾𝑗

sΓ̂ + n𝐾𝑗

)︁
+ nΓ (4)

where nΓ denotes the noise with E
{︀
nΓn

𝐻
Γ

}︀
= 𝜎2

ΓI𝑁 at Γ. The lower bound on the achievable
capacity of the two-way channel links is the sum of lower bounds of the two one-way links,
𝐶Γ⇔Γ̂,𝑗 = 𝐶Γ⇒Γ̂,𝑗 + 𝐶Γ̂⇒Γ,𝑗 , where the lower bound on the achievable capacity for the

transmission from Γ to Γ̂ terminal via 𝑗th relay node is given by [12]

𝐶Γ⇒Γ̂,𝑗=
1

2
E

{︃
log2 det

(︃
I𝑁+

𝛼2
𝑗𝑃Γ

𝑁
H𝐻

𝐾𝑗ΓHΓ̂𝐾𝑗
H𝐻

Γ̂𝐾𝑗
H𝐾𝑗Γ

(︁
𝛼2
𝑗𝜎

2
𝐾𝑗

H𝐾𝑗ΓH
𝐻
𝐾𝑗Γ+𝜎2

ΓI𝑁

)︁−1
)︃}︃

where 1/2 is because of half-duplex transmission and similarly we can obtain 𝐶Γ̂⇒Γ,𝑗 . We
can pick the optimal relay node 𝐾⋆

𝑠 that maximizes the achievable capacity by exhaustively
searching (ES) over the𝒦 relays, given by 𝐾⋆

𝑠 = argmax𝐾𝑗∈𝒦 𝐶Γ⇔Γ̂,𝑗 , ∀𝐾𝑗 ∈ 𝒦. Nonetheless,
with the increase in relays (𝐽) and/or antennas (𝑁) in MIMO links, ES becomes computationally
very expensive, making it impractical for online relay selection purposes.

3. An Incremental Learning-Formulation for Online MIMO
TWAF relay selection

In this section, we can model the TWAF relay selection problem as a multi-class classification
problem, where the absolute values of the channel gains is provided as the input feature vector
and 𝐽 relay nodes resembles as 𝐽 class labels. For an online setting, let us consider that there
are 𝑡 = {1, ..., 𝑇} discrete-time experiments conducted with 𝑝th ML model 𝐿𝑝, before it is
updated with new data online, where 𝑝 = {1, ..., 𝑃}. During any time instant 𝑡 the absolute
value of channel gains of MA and BC phases are provided as feature vector x𝑡 to the ML model
𝐿𝑝, which then predicts (select) the relay node 𝐾𝑠𝑡 .

Training dataset creation policy – We create the dataset as follows. For the 𝑡th time-instant,
we formulate a 𝑠 = 4𝐽𝑁2-dimensional feature vector (x𝑡) containing the absolute values of
the imperfect channel gains in the MA and BC phases, for all 𝐽 relays, where 4 is because of CSI
knowledge in dual-hop and two-phases, and 𝑁2 is because of 𝑁 ×𝑁 channel between any two
nodes. Correspondingly, we create the label 𝑢𝑡 with the optimal relay node, using the ES method
(detailed in Sec. 2). We repeat this process for 𝑇 time intervals to create the dataset {X0,u0}.
We repeat this process for 𝑃 instants to create a large dataset [{X0,u0}, ..., {X𝑃 ,u𝑃 }].

Traditionally, in offline learning, we train the model 𝐿0 using dataset {X0,u0} and deploy
for future instances. However, these offline learning-based models assume that we have built the
initial training set X0 covering all the possible scenarios (such as CSI, propagation environment



(a) Using Offline learning. (b) Using Incremental (Online) learning.

Figure 2: Retraining of the ML-based models using different learning-based approaches.

etc.) to be occurred in future, which is impractical with ever changing conditions. In practice, we
need to retrain the designed ML models to keep them updated. In Fig. 2a, we depict conventional
way of retraining the offline learning (OL)-based ML models and the process below:

• We train the ML model 𝐿0 using X0 to obtain trained ML model 𝐿1.
• As new data X1 arrives, we test X1 on ML model 𝐿1 and obtain the relay selection

accuracy 𝐴1 for X1 as our testing set. To update the current ML model 𝐿1 (in an online
setting) with newly obtained data X1. We have to train the ML model 𝐿0 from scratch
using all the historical data [X0,X1] stored till now to get updated ML model 𝐿2. And
repeat this process of retraining from scratch to update the ML models in online setting.

• Consider we are at 𝑝th instance with 𝐿𝑝−1 ML model. And we wish to update the 𝐿𝑝−1

ML model. Firstly, we need to store all the [X0, ...,X𝑝−1] datasets for updating the ML
model. Secondly, we have to train ML model 𝐿0 from scratch using [X0, ...,X𝑝−1] to get
an updated model 𝐿𝑝 at any 𝑝th instance.

Thus, for retraining of offline learning-based ML models, we have to store the entire historical
data and retrain the ML models from scratch every time. In Fig. 2b, we depict incremental
learning (IL)-based ML models and the process below:

• We train the ML model 𝐿0 using X0 to obtain trained ML model 𝐿1.
• As new data X1 arrives, we test X1 on ML model 𝐿1 and obtain the relay selection

accuracy 𝐴1 for X1 as our testing set. To update the current ML model 𝐿1 (in an online
setting) with newly obtained data X1. We retrain the model 𝐿1 using only last instance
testing data X1 to get updated ML model 𝐿2. And repeat this procedure of retraining to
update the ML models in online setting.

• Consider we are at 𝑝th instance with 𝐿𝑝−1 ML model. And we wish to update the 𝐿𝑝−1

ML model. Herein, we can retrain 𝐿𝑝−1 ML model using only X𝑝−1 dataset to get an
updated ML model 𝐿𝑝 at any 𝑝th instance.

Thus, in an online setting, designing ML models using incremental learning frameworks
offers following advantages over retraining of offline learning based ML models:

• We do not need an exhaustive initial dataset X0 covering all the possible future testing
scenarios because the incremental learning-based models are designed for retraining.

• We do not need to store-and-retrain on all the historical dataset, but just the previous
instance testing dataset, reducing data storage cost and retraining time.

Now, we propose incremental learning-based ML models for online relay selection below.



4. Incremental Learning-based Naive Bayes Classifier

Naive Bayes classifier is a generative-model [13] that assumes (1) for given class labels, the
attributes are conditionally independent and (2) no latent attribute impact on prediction. Herein,
each feature vector x𝑡 belongs to only one class 𝐾𝑗 ∈ 𝒦, for any time instant 𝑡. Firstly, we
learn the class priors (each relay’s probability), given by 𝑃 (𝐾𝑗) = 𝐿𝐾𝑗/𝐿, ∀ 𝐾𝑗 , where
𝐿𝐾𝑗 and 𝐿 denote the number of samples with label 𝐾𝑗 and total samples. Secondly, for the
given feature vector x𝑡 we generate a model for each label corresponding to each feature.
This is done by calculating the mean 𝜇�̄�,𝐾𝑗

and standard deviation 𝜎2
�̄�,𝐾𝑗

associated with

all the classes ∈ 𝒦 and for all the features �̄� ∈ {1, ..., 𝑑} given by a normal distribution

𝑃
(︁
𝑥�̄�𝑡

⃒⃒⃒
𝐾𝑗

)︁
. Thirdly, we can calculate the conditional probability over query sample x𝑡 as

𝑃 (x𝑡|𝐾𝑗) =
∏︀𝑑

�̄�=1𝑃
(︁
𝑥�̄�𝑡 |𝐾𝑗

)︁
, ∀ 𝐾𝑗 ∈ 𝒦. Fourthly, by employing the bayes’ theorem, the

conditional probability of each label 𝐾𝑗 ∈ 𝒦 for the query sample 𝑥�̄�𝑡 can be decomposed as

𝑃 (𝐾𝑗 |x𝑡) =
𝑃 (x𝑡|𝐾𝑗)𝑃 (𝐾𝑗)∑︀𝐽
𝑙=1,𝑙 ̸=𝐾𝑗

𝑃 (x𝑡|𝑙)𝑃 (𝑙)
(5)

Lastly, the naive Bayes classifier combines independent feature model obtained above with a
decision rule like maximum a posteriori, that determines the selected relay 𝐾𝑠𝑡 = argmax𝐾𝑗∈𝒦
𝑃 (𝐾𝑗 |x𝑡). Please note we employ the pairwise algorithm [13] for updating the mean and
standard deviation of the features incrementally.

5. Incremental Learning-based SGD (SVC and LR) Classifier

We now show the SGD classifier [14]-based formulation for linear SVC [15] and LR [16]-based
online relay selection. We form a binary classifier where y𝑡 ∈ {−1, 1} and our aim is to lean a
linear scoring function 𝑓(x𝑡) = w†

𝑡x𝑡 + 𝑏𝑡, wherein w𝑡 and 𝑏𝑡 denotes the weight and bias at
𝑡th time-instant. Further, the predictions for the binary classification is done by checking the
sign of the scoring function 𝑓(x𝑡) and we aim to minimize:

𝐸(w𝑡, 𝑏𝑡) =
𝛼

2
w†

𝑡w𝑡(w𝑡) +
1

𝐿

∑︁𝐿

𝑖=1
ℒ
(︁
𝑦
(𝑖)
𝑡 , 𝑓(x

(𝑖)
𝑡 )
)︁

(6)

where 𝛼 > 0 controls the regularization strength. The loss function ℒ(·) can be defined as:

• Hinge-loss for SVC classifier [15]: ℒ(𝑦(𝑖)𝑡 , 𝑓(x
(𝑖)
𝑡 )) = max(0, 1− 𝑦

(𝑖)
𝑡 𝑓(x

(𝑖)
𝑡 )).

• Log-loss for LR classifier [16]: ℒ(𝑦(𝑖)𝑡 , 𝑓(x
(𝑖)
𝑡 )) = log(1 + exp(−𝑦(𝑖)𝑡 𝑓(x

(𝑖)
𝑡 )))

The TWAF MIMO relay selection is a multi-class classification (MCC) problem, thus we
use one-vs-all classifier to implement the 𝐽 binary classifiers for each relay (class) to find 𝑅𝑠𝑡 .
Moreover, the first order routine for SGD learning is applied for updating the weights as

w𝑡 ← w𝑡 − 𝜂𝑡

⎡⎣𝛼𝜕𝒱(w𝑡)

𝜕w𝑡
+

𝜕ℒ
(︁
w†

𝑡x𝑡 + 𝑏𝑡, 𝑦
(𝑖)
𝑡

)︁
𝜕w𝑡

⎤⎦ (7)

Similarly, intercept term is updated and learning rate 𝜂𝑡 is gradually decayed with time [14].



(a) Mean accuracy. (b) Time-cost comparison. (c) Data-storage cost.

Figure 3: Comparison of retraining for OL and IL-based ML relay selection for SNR = 10 dB, 𝜌 =
0.8, 𝐽 = 5, and 𝑁 = 4. Note that both OL and IL algorithms are re-trained (updated) for each 𝑝th

round, according to the policies detailed in Sec. 3.

6. Performance Evaluation

We keep the number of ML model updates (retraining) as 𝑝 = 50 and utilize Rayleigh fading
channels with the corresponding CEQ. We consider following benchmark algorithms – (1) Ex-
haustive Search-based optimal Relay Selection (ES RS) – Detailed in Sec. 2, (2) Gram-Schmidt-based
Relay Selection (GS RS) [12]–Conventionally, GS-based relay selection policy performs the best,
wherein we select the relay by 𝑅𝑠 = argmax𝐾𝑗∈𝒦

∏︀𝑇2
Γ=𝑇1

det(H𝐻
𝐾𝑗Γ

H𝐾𝑗Γ) det(H
𝐻
Γ̂𝐾𝑗

HΓ̂𝐾𝑗
),

and (3) Random RS – We choose relay 𝑅𝑠 ∈ 𝒦 at random.

6.1. Retraining of the ML Models Developed via Incremental-learning (IL)
versus Offline Learning (OL)

We compare the retraining of the proposed relay selection ML models (SVC, NB, LR) designed
via offline and incremental learning in Fig. 3. We vary the CEQ (𝛿) after every 50 rounds (i.e. for
𝑝 ≤ 50 the 𝛿 = 0.2, for 50 < 𝑝 ≤ 100 the 𝛿 = 0.6 and for 𝑝 > 100 the 𝛿 = ∞), where 𝛿 = 0
indicates fully erroneous channel estimation and 𝛿 =∞ denotes perfect channel estimation. In
Fig. 3a, the accuracy of optimal relay selection via retraining of OL-based ML models is slightly
better than the proposed IL approach. This is because retraining of OL-based ML models utilizes
all the prior historical data, while retraining in IL takes place using only the previous instant of
data. This also explains the reason behind exponential increase in time-cost and linear increase
in data-storage cost for retraining OL algorithms, compared to the time-cost of few seconds and
data-storage cost of few kilobytes for IL algorithms in Fig. 3b and Fig. 3c, respectively. Thus, IL
solves the two fundamental problems (of data storage and re-training time) faced in deploying
OL algorithms in practical settings. Hence, providing us a method to deploy the ML algorithms
for real-world applications, where re-training the ML algorithms is inevitable.

6.2. Limited Feedback Scenarios and Time-Cost Analysis

Each real-value feedback requires 8 bits of information, thus, we focus on feedback overhead
by considering the quantized feedback of the channel gains. We divide the channel gains into
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Figure 4: Impact of varying CSI quantization levels (SNR = 10 dB, 𝜌 = 0.8, 𝛿 = 0.35, 𝐽 = 10, 𝑁 = 5).

Table 1
Comparison of relay selection algorithms.

RS Algorithms Time-cost [ms] Complexity Feedback Overhead
ES (Optimal upper bound) 0.779 𝒪(16𝐽𝑁3 + 𝐽) 4𝐽𝑁2 complex-values

GS (Conventional best) 0.132 𝒪(4𝐽𝑁3 + 𝐽) = 2×4𝐽𝑁2×8 bits
IL-based NB (Proposed) 0.023 𝒪(4𝐽𝑁2) No Quant.: 4𝐽𝑁2 real-values
IL-based SVC (Proposed) 0.007 𝒪(4𝐽𝑁2) =4𝐽𝑁2×8 bits. Quant. lev-
IL-based LR (Proposed) 0.036 𝒪(4𝐽𝑁2 + 1) els(𝑄 = 4): 4𝐽𝑁2×2 bits

𝑄 levels that can be represented as 𝑄 = 2𝑏, where 𝑏 denotes the number of bits required for
feedback for corresponding 𝑄 levels. In Fig. 4, for benchmark, we consider the performance of
ES and GS relay selection when no quantization is performed, i.e., complex-valued CSI feedback.
The ES and GS with the quantized channel gains are not able to reach the achievable capacity
of ES and GS with no quantization, even with 22 levels, because there is no phase information
in the feedback. Also, incremental learning-based relay selection algorithms outperform the
conventional best GS with complex-value feedback information (16 bits feedback) once 𝑄 ≥ 4
(2 bits feedback) and achieves performance very close to ES for 𝑄 = 6 quantization levels (3 bits
feedback), showing the merits of proposed incremental learning. We analyse the computational
complexity, time-cost and feedback overhead for all the proposed relay selection algorithms in
Table 1 for 𝐽 = 5 and 𝑁 = 4. Clearly, ES-based relay selection takes the most time, followed
by GS approach. Also, SVC reduces time-cost by 95% compared to GS relay selection.

7. Conclusion

In this work, we proposed incremental learning-based (NB, SVC, LR) relay selection models
for the MIMO TWAF networks with imperfect CSI. We showed that incremental learning-
based retraining can help us in reducing the time-cost and data-storage-cost exponentially,
while achieving similar performance gains, as the retraining of offline ML models. Further, the
proposed incremental learning-based relay selection algorithms (using 2 bits feedback) achieve
similar performance as conventional best GS algorithm (using 16 bits feedback) and can achieve
performance close to optimal brute-force ES algorithm with 3 bits feedback. Also, SVC-based
relay selection reduces the time-cost by 95% compared to GS-based relay selection.
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