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Abstract

Background

Research into semantic relation recognition from text has focused on the identification of binary
relations that are contained within one sentence. In the domain of biomedical documents however
relations of interest can have more than two arguments and can also have their entity mentions located
on different sentences. An example of this scenario is the ternary relation of “subcellular localization”
which relates whether an organism’s (O) protein (P) has subcellular location (L) as one of its target
destinations. Empirical evidence suggests that approximately one half of the mentions for this ternary

relation reside on multi-sentence passages.

Results

We introduce a relation recognition algorithm that can detect n-ary relations across multiple sentences
in a document, and use the subcellular localization relation as a motivating example. The approach uses
a text-graph representation of the entire document that is based on intrasentential edges derived from
each sentence’s predicted syntactic parse trees, and on intersentential edges based on either the linking
of adjacent sentences or the linking of coreferents, if reliable coreference predictions are available.
From the text graph state-of-the-art features such as named-entity features and syntactic features are
produced for each argument pairing. We test the approach on the task of recognizing , in PubMed
abstracts, experimentally validated subcellular localization relations that have been curated by
biomedical researchers. When tested against several baseline algorithms, our approach is shown to

attain the highest F-measure.

Conclusions

We present a method that naturally supports the recognition of semantic relations with more than two
arguments and whose mentions can reside across multiple sentences. The algorithm accelerated the

extraction of experimentally validated subcellular localizations. Given that the corpus is based on

abstracts, not copyrighted papers, the data is publicly available from koch.pathogenomics.ca/pplre/.
Significant work remains to approximate human expert levels of performance. We hypothesize that
additional features are required that provide contextual information from elsewhere in the document

about whether the relation refers to an experimentally validated finding.


http://koch.pathogenomics.ca/pplre/

Background

Much of the world’s biomedical knowledge is contained in the natural language text within research
papers that are increasingly becoming available online. Applications that have begun to tap this
knowledge include information extraction and question answering algorithms, but these algorithms
require effective approaches to recognize semantic relations between entity mentions. As has occurred
in other natural language processing tasks, such as named entity recognition, approaches to relation
recognition have evolved over time from knowledge engineering heuristic-based ones [2] to those that
apply supervised machine learning algorithms to the task [1,5,8,10,11,13,14]. Early supervised learning
approaches used bag-of-word representations of the document [14], then quickly proceeded to analyze
shallow sequence representations [1], and most recently the emphasis has been on full syntactic parsing

of each sentence [8,10,13].

While the performance of supervised relation detection has improved significantly since initial
proposals [11], many more advances in the field are required before human levels of competency are
attained. State-of-the-art performance on the protein/gene interaction task is currently 75% F-measure
[5], but this performance was attained on binary relations and the evaluation does not include the
missed relations where entity mentions reside on separate sentences. Research in NLP that has looked
at information in multiple sentences has focused on the topics of co-reference, and more specifically, in
entity detection and tracking across sentences. However, such research has not yet been used in
combination with state-of-the-art approaches to relation detection, especially those that use state-of-
the-art features. As a motivating example, consider the following passage composed of three sentences:
“The pilus ocation OF V. choleraeogsausuy IS €ssential for intestinal colonization. The pilus,ocarion
biogenesis apparatus is composed of at least nine proteins. TcpCpgroren IS @n outer membrane; ocarion
lipoprotein required for pilus, ocarion DiOgenesis.” To our knowledge no supervised relation recognition
algorithm can currently identify the ternary relation between the organism in the first sentence, and the
subcellular location and protein in the third sentence. This relation would go undetected by current

information extraction algorithms.

Our work aims to address this scenario in order to improve the Recall and F-measure of relation
recognition methods. We propose a framework that subsumes the representation used by state-of-the-
art approaches when applied to the detection of binary relations within a single sentence. The

framework is centered on a text-graph representation that includes intersentential edges. We illustrate



that the generation of relation cases when dealing with multi-sentence passages can significantly
increase the proportion of false relation cases from which to construct a classification model, but that

our approach copes with this increase in negative cases.

The remainder of the paper is structured as follows: The next section defines the more general task of
semantic relation detection considered in this paper and summarizes the current challenges that
motivate further research into the topic. The text-graph framework and relation case generation are then
described in detail along with the feature space that generalizes existing methods are introduced.
Finally, we present the empirical results of experiments performed on the task of recognizing

subcellular localizations within PubMed abstracts.

Implementation
As suggested, the implemented system involves the representation of a document as a text graph and

the conversion of the graph into a vector-based feature space. We name the system described below
TeGRR, for: Text Graph-based Relation Recognizer. To ground the implementation however, we first

present a detailed task definition.

Task Definition

We present a definition of the task for relation recognition that generalizes the standard definition for
the recognition of binary relation mentions within a single sentence in order to also encompass the
recognition n-ary relations that can span across multiple sentences. Assume that we are given a natural
language text document (D) composed of a sequence of one or more sentences, where each sentence is
composed of a sequence of one or more tokens. A token can be either a word, punctuation, or an entity
mention. Assume that all of the entity mentions in document D have been labeled by an entity mention
recognition algorithm, as E;;, where j refers to the j™ entity mention of an entity of type E;. Examples of
entity mentions include the proper name “TcpC”, the nominal “the protein”, and the pronoun “it”. We
are also given a typed semantic relation R(A;,...,A,), where argument A; accepts only entity mentions of
type E;. Examples of typed semantic relations are Proteininteraction(Protein, Protein) and Subcellular-
Localization(Organism, Protein, Location). A binary relation is a relation with two arguments; while
one with more than two arguments is an n-ary relation. A relation case C; for document D and for
semantic relation R is a permutation of the entity mentions in D that satisfy the argument entity type

requirements of relation R: C;=(D, R(Ey, j - Enj)). A relation case can be labeled as true or false

.....



depending on whether the n entity mentions of the case indeed stand in relation R or do not. A
document can contain zero or more relation cases. From the sample passage presented in the
introduction, with one organism mention, one protein mention and four location mentions, three false
relation cases and one true relation case can be generated. A training relation case is a relation case
where this label is known, whereas a test relation case is one where the label is unknown (or is hidden).
The set of all training relation cases forms the training set, and the set of test relation cases is the test
set. Given a training set, the task of supervised relation detection is to learn a classification model that

can accurately predict the (unknown) label of a test relation case based on its observed features.

Text-Graph Representation

The core of the proposed framework is a graph-based representation of each document. The text graph
representation is composed of the following types of nodes and edges: 1) Intrasentential nodes and
edges; 2) Sentence to Sentence edges; and 3) Coreference nodes and edges. A sample text graph which

makes use of the three edge types is presented in Figure 1.

Intrasentential Nodes and Edges

Intrasentential nodes and edges are intended to represent the information contained within a single
sentence. Many candidates for these edges exist in the literature. They include: word-to-word edges [4],
shallow parsing edges [15], dependency parse tree edges [9], and phrase-structure parse tree edges [17].
We propose to use the phrase-structure parse tree as the source of intrasentential edges for two reasons.
First the recent analysis by [8] suggests that the phrase-structure parse tree is the single best source of
information for relation detection. Secondly, all other proposed intrasentential edges can be derived
from phrase-structure parse trees by means of simple transformations. Two types of nodes are
associated to a phrase-structure parse tree: leaf nodes and internal nodes. Leaf nodes contain 1) a word,
punctuation mark or entity mention, 2) the part of speech tag, and 3) a named entity tag if one exists.

Internal nodes contain the syntactic phrase-structure label.

Sentence-to-Sentence Edges

The first type of intersentential edges considered is the “sentence-to-sentence” edge. This edge type
simply joins an end-of-sentence punctuation node with the first word of the subsequent sentence. The
intuition for this edge is that an entity that is mentioned in one sentence can be in a semantic relation
with an entity in the adjacent sentence and that the likelihood of such a relation diminishes with

increasing number of sentences that exists between the two entity mentions. The text graph in Figure 1



contains two sentence-to-sentence edges: one between the period punctuation token in the first sentence
and the first word (“The”) in the second sentence; the other between the period punctuation token in the

second sentence and the first word (“TcpC”) in the third sentence.

Coreference Nodes and Edges

Another case of intersentential edges that will be considered is that of coreference edges. These edges
assume that in-document coreference resolution has been accurately performed. The intuition for this
edge is that because the entities refer to the same thing, anything that is said in one sentence can apply
to the entity in the next mentioning of the entity. We create a node for each entity and associate an edge
between the node and each entity mention. The text graph in Figure 1 contains three coreference edges.
The edges all relate to the same entity “pilus” which we assume to be detected by a named-entity

recognition system as be referring to the same concept.

Relation Case Generation

This section describes a procedure to generate the relation cases that will be used to train and test a
classification model. The standard approach to case selection used by single-sentence relation detection
algorithms is to generate all possible permutations within the sentence. To handle multiple sentences
we simply extend the discovery of permutations from within the entire document. Figure 3 presents a

sample relation case drawn from one of the permutations for the text graph in Figure 1.

Input: 1) A text-graph, G; 2) A semantic relation with n arguments, R(Ay,...,An)
Output: A set of unlabeled relation cases, C.

Algorithm:
e Select all entity mentions E;; in G where E; is of the same type as a;.
e Create every permutation among these pairings.
e Associate the nodes along the path between each pair of arguments.

Addition of Syntactic Nodes within the Shortest Path-enclosed Tree

The relation case as described so far is simply composed of the nodes within the shortest path between
each pair of entity mentions. We now attach other nearby nodes that are known to be relevant to
predicting semantic relations. Specifically we add the syntactic nodes and edges contained within the
smallest common subtree in a sentence. These nodes have been shown to be an important source for

predictive features for relation detection by [17] and [8]. Figure 2 illustrates the shortest path-enclosed

! The word “pilus” is associated with the Gene Ontology’s GO0009289 entry.



tree expansion. In the example one additional node, the one containing the preposition “of”, is
appended to the path. Two extensions to the definition of path-enclosed tree are required as a result of
the support of intersentential edges. As shown in the Figure 2, the subtree can now be bounded not just
by entity mentions, such as the Vibrio Cholerae node in the example, but can also be bounded at the
other end by a node attached to an intrasentential edge, such as the pilus node in the example, or by a
node with a sentence-to-sentence edge. A second possible scenario is the one where a sentence is
traversed but does not contain an entity mentions whatsoever. In this case the nodes between the two
nodes in the traversal path are not included in the definition of path enclosed. The intuition here is that

it is the words in the sentence containing an entity that are predictive of its semantic relation.

Clearly more nodes and edges from the text graph could be included into the relation case definition to
provide additional information about the relation case. The proposal above however covers the portion

of the graph suggested in state-of-the-art systems.

Feature Space Definition

Given the above definition of a relation case graph, we are now ready to describe the feature space that
each relation case will be mapped to for the classification task. As a design principle our proposed
feature space is intended to subsume the feature space of the current state-of-the-art methods. The
benchmark that we aimed for is to generalize the proposal by [8]. We do however introduce two
additional features to inform the classification algorithm about the multi-sentence structure of the
relation case: 1) the number of sentences that separate each entity mention pair, and 2) the number of
intervening entity mentions between each entity mention pairing. The feature space is illustrated in

Figure 4. We briefly summarize the features below.

Entity Mention Argument-based Features

A basic source of information about a relation case comes from the entity mention arguments

themselves. The majority of algorithms in the literature make use of some of these features.

Entity Mention Tokens: This pair of features indicates the actual sequence of tokens used to signify
each of the two entity mention arguments. For example, whether an entity mention uses the phrase
“extracellular melieux” versus the synonymous phrase “outside the cell” can have an impact on the
class label prediction. Each one of these pair of feature is a binary vector of all the words that act as

entity mention arguments.



Entity Mention Semantic Class: This pair of features indicates the semantic class and subclass that
each of the entity mentions is associated with. An entity can belong to zero or one semantic classes and
to zero or one semantic subclass. For example, “TcpC” would be associated with the semantic class

PROTEIN. This feature requires preprocessing by an entity mention recognition algorithm.

Subtree-based Features

To inform a classification algorithm about the structure of the relation case graph the subtree approach
of [8] is followed. A feature is created for each possible neighborhood of the relation, where a
neighborhood is defined by a subtree with e edges, where e ranges from zero through to some upper
limit on edges: e e [0, ema]. The proposal in [8] is for en=2. Subtree-based features associated to the
subtrees of size zero (e=0) simply summarize the number of nodes of a certain content type in either
the entire relation case graph, or one of its pairings. For example, one feature would count the number
of NP nodes in the relation case graph, while another feature would count the number of times that the
word “required” is present. For the relation case graph represented in Figure 3 the “NP” feature would
contain the value five (5) and the “required” feature the value one (1) for the pairing of the
ORGANISM and LOCATION arguments. Subtree-based features associated to the subtrees of size e>0
represent the number of times that a subgraph with e edges appears within one of the paired entity
instance subgraphs. For example, one feature would count the number of times that the triple IN — PP —
NP appears in the graph. In the case of the graph in Figure 3 this feature would contain the value two

(2) for the pairing of the ORGANISM and LOCATION arguments.

Intrasentential Features

This section introduces two features that are proposed to inform the classification algorithms about the

multi-sentence structure of the relation. These features are novel to our proposal.

Sentence Count: This feature informs the classifier about the number of sentences that intervene
between entity mentions. For example the number of intervening sentences between the ORGANISM
and LOCATION arguments in the relation case in Figure 3 is two (2) sentences. This information will
help the classifier adjust its predictions based on the separation: the further apart the less likely that a

relation case is true.

Entity Mention’s Sentence Location: Another related pair of features is simply the sentence identifier

for each of the two entity mention pairs. For the example in Figure 3, the Organism entity mention is



located on the first sentence. This information will help the classifier adjust its predictions based on the
sentence in which the entity is mentioned: the closer the mention is to the first sentence the less likely it

is that an unlikely permutation is being considered.

Intervening Entity Mentions: This pair of features inform the classifier about the number of entities
that intervene between two entity mention pairs. For example, in Figure 3 the number of intervening
Location entity mentions between this case’s Organism and Location entity mentions is two (2): from
the first and second sentence. This information will help the classifier adjust its predictions based on
how many other entity mention candidates exist. The greater the number of intervening entity mentions

the less likely that a semantic relation between the two entity mentions is being stated.

Results and discussion

This section describes experiments performed to assess TeGRR’s ability to detect biomedical semantic
relation cases in natural language passages, specifically on the ternary relation of where an organism’s

protein localizes.

PPLRE: Prokaryote Protein Localization Relation Extraction

In partnership with the Brinkman Laboratory for Pathogen Bioinformatics, Genomics, and
Interdisciplinary Studies® we have compiled a set of relation cases of experimentally confirmed
subcellular localizations of Prokaryote proteins contained in a corpus of research paper abstracts found
in PubMed®. The goal of our collaboration is to increase the number of experimentally validated
localizations in the publicly available ePSORTdb* database [11] in order to improve the performance
of classification models [6, 7] that are trained on known localizations in order to make predictions for
proteins whose localization is currently unknown. A benefit of having more accurate localization data
is that it allows biomedical researchers to make important insights into the function of proteins. In the
case of bacterial pathogen proteins for example, the predictions can be used to expedite the
identification of potential vaccine targets. Figure 5 presents the main localization targets that we
labeled for Prokaryotes. The closest data resource that we know of which contains expert annotation of

localization relation cases is the one published in [16]°. Their data however is restricted to binary

2 http://www.pathogenomics.sfu.ca/brinkman/

® http://www.ncbi.nlm.nih.gov/pubmed

* http://db.psort.org/docs/documentation.html#2
> http://www.biostat.wisc.edu/~craven/ie



relations because the task is limited to proteins from the S. cerevisiae yeast. Their data is also restricted

to relations that are mentioned within a single sentence.

To identify relation cases for the domain experts to review, we first collected a subset of approximately
20,000 abstracts from PubMed based on queries that involved a known Prokaryote organism and a
subcellular location. From these documents we identified passages that mention all three entity types.
To accomplish this task the entities mentions were first labeled by a named entity recognition program.
We used a hybrid approach composed of both a dictionary-based and classification-based® algorithm to
recognize the organism and location entity mentions with high accuracy. The hybrid approach also
achieved sufficiently high accuracy on the protein entities (F-measure 85%). This annotation program
was used to annotate both the train and test data of the experiments; which is why the cooccurrence
approach did not achieve 100% Recall. Currently the dataset is composed of 540 true and 4,769 false
curated relation cases drawn from 843 research paper abstracts. Within this dataset 267 of the 540 true
relation cases (~49%) span multiple sentences’. An advantage of a using a corpus based solely on

abstracts rather than the entire paper is that it removes any concern for copyright infringement.

Performance

We tested the performance of the proposed feature space by means of stratified five-fold cross
validation. Each document was randomly assigned to one test set and four train sets, unless the test set
already contained one fifth of the positive cases, in which case it was randomly assigned to another test
set. This stratified dispersal of records was intended to reduce the variance in performance between
each of the five train/test runs. The basic measurements used for the tests were: Precision, Recall and
F-measure. Performance of TeGRR is contrasted against three baseline algorithms: A cooccurrence-
based algorithm that always predicts true for every permutation (All True), and then two binary relation
single-sentence approaches proposed in [10] (YSRL) and [13] (Zparser) that separately train and test an
ORGANISM/PROTEIN classifier and a PROTEIN/LOCATION classifier whose predictions are then

combined. Table 1 summarizes the results.

® http://www.alias-i.com/lingpipe/
" Interestingly, in approximately half of these multi-sentence cases it is the protein mention which
resides in a separate sentence.



P R F

TeGRR | 18.0%] 47.5%]| 26.1%
YSRL 29.1%] 13.3%]| 18.3%
Zparser | 63.5%] 9.3%| 16.1%
All True | 8.3%] 75.6%| 14.9%

Table 1 — Precision/Recall/F-measure by the proposed algorithm (TeGRR); by the modelling of
two separate single-sentence models as proposed in [13] (Zparser) and in [10] (YSRL); and a

naive cooccurrence-based approach that predicts True for every permutation (All True).
As can be seen from the table, the proposed approach achieved the highest F-measure and the second
highest Recall. The proposals by [10] (YSRL) and [13] (Zparser) achieved higher Precision but with
significantly lower Recall®. Finally, as expected the “All True” cooccurrence approach achieved the
highest Recall and the lowest Precision. A source of improvement in TeGRR’s F-measure performance
over YSRL and Zparser is due to TeGRR’s ability to predict multi-sentence relation cases.
Approximately one quarter of TeGRR’s true-positive predictions (approximately 13 of 48 predictions)

were from multi-sentence cases”.

The performance reported in the table above suggests that recognizing all of the experimentally
validated subcellular localizations in a PubMed abstract is a difficult task. One of the expected
challenges of the task is the downstream effect of inaccuracies in the automated detection of protein
mentions. If named entity recognition performance were perfect then the Cooccurrence-based approach
would attain 100% Recall and the Recall of all the other approaches would also be raised. A more
novel challenge to this task is the requirement that the relation mention must be for an experimentally
validated claim. Many of the subcellular localization relations in the literature however are of
background knowledge or are hypothesized. Distinguishing whether a paper reports an experiment or a
hypothesis is likely to involve a significant amount of contextual information that is not currently

addressed in relation recognition systems.

Conclusions

This paper addresses the challenge of recognizing mentions of relations with more than two arguments,

where the argument’s entity mentions can be located in different sentences. A motivating example is

® Note that these performance numbers for Zparser and YSRL differ markedly from the ones reported
in their papers due to: 1) the inclusion of multi-sentence relation cases in our experiments; 2) the use of
automated, not curated, NEs, 3) the use of both negative and positive relation cases, 4) the use of cross-
validation; and 5) the use of a newer dataset.

° Approx. one third of the false-positive predictions (approx. 61 of 157) were on multi-sentence cases.



the ability to identify subcellular localization relations in biomedical research abstracts. For this ternary
relation a large proportion of relation cases appear outside of the single sentence boundary. In general
the more arguments in the semantic relation the more likely it will be that the relation is spread beyond
a single sentence. To support these more complex relation detection scenarios we proposed a text-graph
representation of the entire document. As in state-of-the-art supervised algorithms the intrasentential
graph edges are derived from each sentence’s syntactic parse trees. For intersentential edges we
propose linking adjacent sentence edges and also, if available, entities that are identified as coreferents
by a coreference resolution process. Compared to three baseline algorithms, the proposed approach
achieves competitive F-measure and Recall performance. The paper suggests several avenues of future
research into the area of detecting n-ary relations across multiple sentences. We plan to explore the
question of adding more contextual features. It will also be instructive to explore the challenges that
will arise when the framework is applied to full papers (rather than abstracts only) which will generate

much larger and sparser text graphs.
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Figures

Figure 1 - Sample text graph
A sample text graph derived from three sentences drawn from the abstract of biomedical research paper

PubMedID 15774863 “Identification of a TcpC-TcpQ outer membrane complex involved in the
biogenesis of the toxin-coregulated pilus of Vibrio cholerae.” The graph contains 52 intrasentential

edges connecting 24 internal nodes and 32 leaf nodes. See the section “Text Graph Representation” for

more details on the representation.
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Figure 2 - Shortest-path Enclosed Tree
Example of a path enclosed tree where VibrioCholerae is one of the entities in the relation case and

where the shortest path traverses through the pilus coreference edge. The encircled portion within the

syntactic tree between the two entities is now attached to the relation case.
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Figure 3 - Sample Relation Case Graph
A sample relation case graph used to describe the feature space. The case is drawn from the text graph

represented in Figure 1 for the OPL() relation. The three entities in the case are represented as thick-
lined square nodes, the rounded nodes represent nodes in a shortest path, and the thin-lined square

nodes are syntactic nodes in the path-enclosed tree.
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Figure 4 - Feature Space lllustration

A tabular representation of the feature space, relation case identifiers, and label assignment used for the

ternary PPLRE task. Details of the features are presented in the “Feature Space” section.
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Figure 5 - Prokaryote Localization Compartments

The nine different subcellular locations that have been annotated in the PPLRE corpus

Gram positive bacteria Gram negative bacteria

Cytoplasm

Cell wall

imbriu
Iagellum\
A~

Extracellular

Inner membrane
Periplasm
Outer membrane

Cytoplasmic membrane




	Recognition of Multi-sentence n-ary Subcellular Localization Mentions in Biomedical Abstracts 
	Gabor Melli1, Martin Ester 1, Anoop Sarkar1

	Abstract 
	Background
	Results
	Conclusions

	Background 
	Implementation
	Task Definition
	Text-Graph Representation
	Intrasentential Nodes and Edges
	Sentence-to-Sentence Edges
	Coreference Nodes and Edges

	Relation Case Generation
	Addition of Syntactic Nodes within the Shortest Path-enclosed Tree
	Feature Space Definition
	Entity Mention Argument-based Features
	Subtree-based Features
	Intrasentential Features


	Results and discussion
	PPLRE: Prokaryote Protein Localization Relation Extraction
	Performance

	Conclusions 
	Authors' contributions
	Acknowledgements 
	References
	Figures
	Figure 1  -  Sample text graph
	Figure 2  -  Shortest-path Enclosed Tree
	Figure 3  -  Sample Relation Case Graph
	Figure 4  -  Feature Space Illustration
	Figure 5  -  Prokaryote Localization Compartments


