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Abstract  
Background 
This paper is concerned with the identification of biomedical abstracts related to 

protein-protein interactions. We propose a novel feature representation scheme, 

contextual-bag-of-words, to exploit protein name information. 

Results 
Our method outperforms well-known methods that use protein name information as 

additional features. We further improve performance by extracting reliable and 

informative instances from unlabeled and likely positive data to provide additional 

training data. We employ F-measure and the area under a receiver operating 

characteristic curve (AUC) to measure the classification and ranking abilities, 

respectively. Our final model achieves an F-measure of 80.34% and an AUC score of 

88.06%, which are higher than those of the top-ranking system in BioCreAtIvE-II by 

2.34% and 2.52%, respectively. 

Conclusions 
These results show the effectiveness of our contextual-bag-of-words scheme and 

suggest that our system could serve as an efficient preprocessing tool for modern PPI 

database curation. 

Background 
Most biological processes, including metabolism and signal transduction, involve 

large numbers of proteins and are usually regulated through protein-protein 

interactions (PPI). It is therefore important to understand not only the functional roles 

of the individual proteins involved but also the overall organization of each biological 

process [1]. 
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Several experimental methods can be employed to determine whether a protein 

interacts with another protein. Experimental results are published and then stored in 

protein-protein interaction databases such as BIND [2] and DIP [3]. These PPI 

databases are now essential for biologists to design their experiments or verify their 

results since they provide a global and systematic view of the large and complex 

interaction networks in various organisms. 

 

Initially, the results were mainly verified and added to the databases manually. Since 

1990, the development of large-scale and high-throughput experimental technologies 

such as immunoprecipitation and the yeast two-hybrid model has boosted the output 

of new experimental PPI data exponentially [4]. It becomes impossible to perform the 

relying curation task on the formidable number of existing and emerging publications 

if it relies solely on human effort. Therefore, information retrieval and extraction tools 

are being developed to help curators. These tools should be able to examine enormous 

volumes of unstructured texts to extract potential PPI information. They usually adopt 

a general approach: finding articles relevant to PPI first, and then extracting the 

relevant information from them. In this paper, we focus on the first step.  

 

Most methods in this approach formulate the article-finding step as a text 

classification (TC) task, in which articles relevant to PPI are denoted as positive 

instances while irrelevant ones are denoted as negative. We refer to this task as the 

PPI-TC task from now on. One advantage of this formulation is that the machine 

learning (ML) methods commonly used in general TC systems such as Support vector 

machines [5] or Bayesian approaches [6] can be modified and applied to the problem 

of identifying PPI-relevant articles. In spite of this advantage, there are still two main 
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differences between PPI-TC and TC that might be the key challenges for further 

improving the performance of PPI-TC systems. We discuss them in the following two 

paragraphs. 

Words may own different meanings according to contexts 

In TC, documents are usually represented by represented by a "bag of words" (BoW). 

However, in PPI-TC, some words are informative only in certain contexts. For 

example, "bind" is more informative in indicating if an abstract is PPI-relevant when 

it appears in a sentence that has at least two protein names. Thus, including such 

contextual information in the feature representation of PPI-TC is very important. 

The existence of likely data 

Unlike in general TC, where documents are either categorized as relevant or irrelevant 

to some topic, the situation is more complicated in PPI-TC. The definition of "PPI-

relevant" varies with the database for which we curate. Most PPI databases define 

their standard according to Gene Ontology, a taxonomy that classifies all kinds of 

protein-protein interactions. Each PPI database may only annotate a subset of PPI 

types; therefore, only some of these types will overlap with a different PPI database. 

In PPI databases, each existing PPI record is associated with its literature source 

(PMID). Figure 1 shows a PPI record of the MINT database. It shows that the article 

with PubMed ID:11238927 contains information about the interaction between 

P19525 and O75569, where P19525 and O75569 are the primary accession numbers 

of two proteins in the UniProt database. These articles can be treated as PPI-relevant 

and as true positive data. However, to employ mainstream machine-learning 

algorithms and improve their efficacy in PPI-TC, there are still two major challenges. 

The first is how to exploit the articles recorded in other PPI databases. Since other 
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databases may partially annotate the same PPI types as the target database, articles 

recorded in them can be treated as likely positive (LP) data. If more effective training 

data are included, feature weights will be calculated more accurately and the number 

of unseen features will be reduced. Considering these articles may increase the 

generality of the original model. The second challenge is a consequence of the first: 

To use likely positive data we must collect corresponding likely negative (LN) data, 

or the ratio of positive to negative data will become unbalanced. In the following 

sections, we will describe how we tackle these two challenges and discuss why our 

methods are effective for PPI-TC. 

Synopsis 

To increase the readability of this paper and introduce the terminologies that will be 

used in the Results, Discussions, and Conclusions sections, we here summarize the 

major methods, datasets, and evaluation metrics used in our experiments.  

Formulation and term weighting schemes 

In this paper, PPI-TC is formulated as a classification problem. Each document is 

transformed to a feature vector and then classified as either PPI-relevant or -irrelevant. 

We adopt the support vector machines (SVM) as our classification model because its 

efficacy has been demonstrated for binary classification tasks and allows non-binary 

value in feature vectors.  

 

Following the classical BoW feature representation, a document d is represented as a 

term vector v, in which each dimension vi corresponds to a term ti. vi is calculated by a 

term-weighting function, which is very important for SVM-based TC because SVM 
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models are sensitive to the data scale, i.e. they are dominated by some dimensions 

with very wide ranges.  

 

In addition to the simplest binary features, which only indicate the existence of a word 

in a document, there are currently numerous term-weighting schemes that utilize term 

frequency (TF), inverse document frequency (IDF) or statistical metrics information. 

Lan et al. [7] pointed out that the popularly-used term frequency-inverse document 

frequency (TFIDF) method has not performed uniformly well with respect to different 

data corpora. The traditional IDF factor and its variants were introduced to improve 

the discriminating power of terms in the traditional information-retrieval field. 

However, in TC, this may not be the case since the IDF factor neglects the category 

information of the training set. Hence, they proposed two new supervised weighting 

schemes, relative frequency (RF) and term frequency-relative frequency (TFRF), to 

improve the term's discriminating power. In these functions, each term is assigned 

more appropriate weights in terms of different categories. 

 

In Table 1, we list the symbols representing the number of positive and negative 

documents that contain and do not contain term ti. With this table, the schemes stated 

above can be defined as follows: 
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Methods of exploiting contextual information 

A PPI abstract must contain some protein names. Hence, recognition of protein names 

in abstracts can improve the identification of PPI abstracts. In the following 

paragraphs, we describe the three methods that extend the classical BoW scheme, 

including our proposed CBoW, along with the other two well-known methods, BoP 

and BoN. 

Contextual bag of words (CBoW) 

The number of protein names that exists in the context affects a word’s 

informativeness for PPI relevance.  Based on this fact, we distinguish the original 

word bags into different contextual bags. The words in individual sentences are 

bagged according to the number of protein names (PNs) in the sentence. If there are 0 

PN, the words are put into contextual Bag 0; if 1 PN, then Bag 1; and if 2 or more 

PNs, then Bag 2.  

Bag of phrases (BoP) 

[8] suggested that adding phrases into the original bag can help retain some order 

information which is lost in BoW. In our case, we add PN phrases into the bag. 

Bag of normalized PNs (BoN) 

The more protein names that appear in an abstract, the more likely it is to be PPI-

relevant. Following [9], we replace each PN in a given abstract with “PROTEIN_i”, 

where i denotes the order of appearance in this abstract. Abstracts containing different 

numbers of PNs have different normalized PN features.  
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Utilizing the likely data 

The key steps of utilizing the likely data include selecting the most effective ones and 

exploiting them for improving the PPI-TC model. For the first step, the LP data can 

be collected from other PPI databases while the LN data are not available. Therefore, 

collecting LP data is much easier than LN data. In our method, we choose MEDLINE 

abstracts in Genomic TREC 2004 collection that are not recorded in major PPI 

databases to be the LN data. This is because we observe that most Medline abstracts 

are not relevant to PPI. Then, the method described in the "Selecting the most effective 

likely positive and negative data" subsection is employed to pick the most effective 

likely data. The selected LP and LN data are denoted as LP* and LN* from now on. 

For the second step, we employ the hierarchical model that is detailed in the 

"Exploiting the selected likely positive and negative data" subsection.   

Datasets 

In our experiment, we use the dataset of the BioCreAtIvE II IAS subtask [1] because 

the training set contains not only the true positive data (TP) and true negative data 

(TN) but also the likely positive data (LP), which is very necessary for our PPI-TC 

system. The TP (PPI-relevant) data were derived from the content of the IntAct [10] 

and MINT [11] databases, which are not organism specific. TN data were also 

provided by MINT and IntAct database curators. The LP data comprise a collection of 

PubMed identifiers of articles that have been used to annotate protein interactions by 

other interaction databases (namely BIND [2], HPRD [12], MPACT [13] and GRID 

[14]). Note that this additional collection is a noisy dataset and thus not part of the 

ordinary TP collection, as these additional databases may have different annotation 

standards from MINT and IntAct (e.g. regarding the curation of genetic interactions). 

We randomly selected 105,000 abstracts from the Genomic TREC 2004 collection be 
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the LN data. It consisted of 10-year (from 1994 to 2003) published MEDLINE 

abstracts (4,591,008 records). The test set is a balanced dataset, which contains 338 

and 339 abstracts for TP and TN respectively. According to BioCreAtIvE-II’s official 

statement, the keyword set of the test set differs from that of the training set in order 

to prevent over-fitting systems from achieving unfairly high scores. The size of each 

dataset is shown in Table 2.  

Evaluation metrics 

We employ the official evaluation metrics of BioCreAtIvE II, which assess not only 

the accuracy of classification but also the quality of ranking of relevant abstracts. 

Classification metrics  

The classification metrics examine the prediction outcome from the perspective of 

binary classification. The value terms used in the following formulas are defined as 

follows: True Positive (TP) represents the number of correctly classified relevant 

instances, False Positive (FP) the number of incorrectly classified irrelevant instances, 

True Negative (TN) the number of correctly classified irrelevant instances, and finally, 

False Negative (FN) the number of incorrectly classified relevant instances. 

 

The classification metrics used in our experiments are precision, recall and F-measure. 

The F-measure is a harmonic average of precision and recall. These three metrics are 

defined as follows: 

FPTP
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Ranking metrics 

Curation of PPI databases requires a classifier to output a ranked list (as opposed to a 

binary decision) of all testing instances based on the likelihood that they will be in the 

positive class. The curators can then either specify a cutoff to filter out some articles 

on the basis of their experience, or give higher priority to more highly ranked 

instances.  

 

The ranking metric used in our experiments is AUC, the area under the receiver 

operating characteristic curve (ROC curve). The ROC curve is a graph of the fraction 

of true positives (TPR, true positive rate) vs. the fraction of false positives (FPR, false 

positive rate) for a classification system given various cutoffs for output likelihoods, 

where  

FPTP
TPTPR
+

= , 
FPTP

FPFPR
+

=  

When the cutoff is lowered, more instances are considered positive. Hence, both TPR 

and FPR are increased since their numerators become larger but their denominator, 

denoting the total number of positive instances, remains constant. The more positive 

instances that are ranked above the negative ones by the classification system, the 

faster that TPR grows in relation to FPR as the cutoff descends. Consequently, higher 

AUC values indicate more reliable ranking results. 

Results 
Evaluation protein name information 

Table 3 shows the results of different methods of exploiting PN information. CBoW 

significantly outperform BoW in terms of F-measure and AUC, whereas the other two 

configurations that incorporate PN features into BoW only slightly improve the 
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performance of BoW regardless of the weighting schemes. These results suggest that 

our idea of dividing the word bag according to a word’s context is effective. Notably, 

the RF weighting function consistently outperforms the other two in all methods. 

These results demonstrate RF’s appropriateness for both TC and PPI-TC. 

Expanding the training set 

In this section, we examine the effects of adding LP* and LN*. Using the procedure 

described in Methods (note: it is in the last section of this paper), we select 8,862 

abstracts from the original LP dataset and 10,000 abstracts from the unlabeled data set 

to form the LP* and LN* datasets, respectively. 

 

Without lost of generality, we use the CBoW feature representation scheme. Table 4 

shows that irrespective of the weighting scheme used, adding the selected data 

improves both the F-measure and AUC.  These results suggest that exploiting LP and 

unlabeled data not only refines the filtering accuracy but also the ranking quality 

effectively, which is critical for PPI database curation. Similar to the results shown in 

Table 3, RF also outperforms the other weighting schemes. 

Compared with BioCreAtIvE-II systems 

Table 5 compares our scores with the best and median scores in BioCreAtIvE-II. We 

can see that our system performs better than BioCreAtIvE-II's best system and 

significantly better than BioCreAtIvE-II median system. These results suggest that 

our system has state-of-the-art ability to filter out PPI-irrelevant abstracts and rank 

PPI-relevant ones. 
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Discussion  
In this section, we explain CBoW's effectiveness by illustrating and analyzing feature 

weights in different contextual bags. First, we list the words with the largest 

discriminative power difference enhanced by CBoW. In an SVM model, a feature's 

discriminative power correlates positively to its weight. Therefore, we list the words 

with the largest weight variances among all bags, as shown in Table 6. We can see 

that these words are really the words highly related to PPI when they appear in 

sentences with more than two PNs. 

 

To further explain how CBoW correctly identifies a PPI-relevant abstract, we exhibit 

two examples in Table 7. The words in Table 6 are marked in italic. In addition, 

protein names are underlined to indicate context types. 

 

The first example (PMID=9707401) is mislabeled by BoW since it has a PPI keyword, 

interaction. However, in CBoW, only the occurrences located in the sentence with 

two or more protein names have high weight to indicate an abstract’s PPI-relevance. 

The first example is not this case. Therefore, it is correctly classified by CBoW as 

PPI-irrelevant. 

 

The second example (PMID=16286467) is misclassified as PPI-irrelevant by BoW 

because it does not contain top discriminative words such as interaction. However, in 

CBoW, the weights of stimulation, regulated, and phosphorylation are significantly 

enlarged. Therefore, it can be correctly identified as PPI-relevant. 

 

After examining the weights of individual words in different bags, we compare the 

mean and standard deviation of weights for different bags (Table 8). We can see that 
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Bag 2 has the largest mean weight. This result is in accordance with our intuition that 

words in Bag 2 have the strongest discriminative power.  

 

We then use Mann-Whitney’s rank sum test and F-test to test the equality of means 

and variances of weights between any two bags. The p-values of all the tests are listed 

in Table 9. An extremely small p-value (<0.01) is considered strong support for the 

significant difference between the two compared distributions. According to the test 

results, we can see that the weights in Bag 2 and Bag 1 are significantly greater than 

those in Bag 0. Also, the variance of weights in Bag 2 is significantly greater than in 

Bag 1 and Bag 0, suggesting that the weights in Bag 2 range more widely, thus 

making the features in Bag 2 more discriminative and dominant. 

Conclusions  
In this paper, we propose a novel CBoW feature representation scheme and 

demonstrate its effectiveness over other methods that also exploit PN information in 

PPI-TC. We also develop a method to extract likely positive and likely negative data 

which is applicable to PPI-TC. Recently, many advanced document representation 

schemes have been developed. Most of them were produced by incorporating NLP-

based features. [15] pointed out that these features can help disambiguate words in the 

bag but did not find features that are generally effective. The results of our 

experiments on BoP and BoN support this claim. In our method, we need to split the 

feature space according to different types of contexts defined by domain knowledge. 

Our study of the PPI-TC problem presents a potential new way of exploiting NLP-

based contextual information. In the future, we will examine the generality of this 

idea by applying it to TC in other domains. 
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In targeting to an annotation standard of a specific PPI database, all other related 

resources can be regarded as likely-positive. In this case, the complicated dataset 

integration problem can be converted into an easy filtration. Also, we can extract 

abundant likely-negative instances from unlimited unlabeled data to balance the 

training data.  

 

With our methods, our PPI-TC system has higher F-score and AUC than the rank 1 

system of these metrics in the BioCreAtIvE-II IAS challenge, which suggests that our 

system can serve as an efficient preprocessing tool for curating modern PPI databases. 

Methods 
In this section, we first introduce the machine-learning model used in our system: 

support vector machines. Secondly, we describe how our system filters out ineffective 

likely-positive data and selects effective likely-negative data from unlabeled data. 

Finally, we explain how we exploit the selected likely-positive and negative data. 

Support vector machines 

The support vector machine (SVM) model is one of the best known ML models that 

can handle sparse high dimension data, which has been proved useful for text 

classification [16]. It tries to find a maximal-margin separating hyperplane <w, φ(x)> 

- b = 0 to separate the training instances, i.e.,  

∑+
i

iC )(2||||min ξw
 
subject to  

y(i)
 (<w, φ(x(i))> - b)≥ 1－ξ(i), i∀  

where x(i) is the ith training instance which is mapped into a high-dimension space by 

φ )(⋅ , yi∈ {1, -1} is its label, ξ(i) denotes its training error, and C is the cost factor 
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(penalty of the misclassified data). The mapping function φ )(⋅ and the cost factor C are 

the main parameters of a SVM model. 

 

When classifying an instance x, the decision function f(x) indicates that x is "above" 

or "below" the hyperplane. [17] shows that the f(x) can be converted into an 

equivalent dual form which can be more easily computed: 

primal form: f(x) = sign(<w, φ(x)> - b) 

dual form: f(x) = sign )),K(( )()()( by
i

iii −∑ xxα  

where K(x(i), x) = <φ(x(i)), φ(x)> is the kernel function and α(i) can be thought of as w's 

transformation. 

 

In our experiment, we choose the following linear kernel because the literature had 

shown that this kernel is efficient and effective for TC: 

K(x(i), x(j)) = <x(i), x(j)>   

which is equivalent to  

φ(x(i)) = x(i) 

Finally, the cost factor C is chosen to be 1, which is fairly suitable for most problems. 

Selecting the most effective likely positive and negative data 

The limited training set contains only limited numbers of true-positive (TP) and true-

negative (TN) data. To increase the generality of the classification model, more 

external resources should be introduced. One important resource is another PPI 

database; abundant PPI articles are recorded in various such databases. However, 

most of them only annotate a selection of all the PPI types defined in Gene Ontology. 

Therefore, some annotations may match the criteria of the target PPI database while 
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others may not. This means that abstracts annotated in that database can only be 

treated as likely-positive examples, some of which may need to be filtered out. 

 

Another problem is that there are no negative data or even likely-negative data in any 

curation. We will obtain a model with a bias toward positive prediction if only those 

instances in the PPI databases are used because most machine-learning-based 

classifiers tend explicitly or implicitly to record the prior distribution of 

positive/negative labels in the training data. As explained in the introduction, an 

imbalance in training data can cause serious problems. However, a large proportion of 

the biomedical literature is negative, which is exactly the opposite. Therefore, more 

likely-negative (LN) instances should be incorporated to balance the training data, and 

this can be carried out in a manner similar to filtering out LP instances. 

 

Liu et al. [18] provide a survey of these bootstrapping techniques, which iteratively 

tag unlabeled examples and add those with high confidence to the training set.  

In the filtering process, two criteria must be considered: reliability and 

informativeness. We only retain sufficiently reliable instances, or the remainder will 

confuse the final model.  

 

The informativeness of an instance is also important. We do not need additional 

instances if they are absolutely positive or negative. Deciding their labels is trivial for 

our initial classification model. In the terminology of SVM, they are not support 

vectors since they contribute nothing to the decision boundary in training. In testing, 

their output values by SVM are always greater than 1 or less then -1, which means 

they are distant from the separating hyperplane. Therefore, we can discard such 
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uninformative instances to reduce the size of the training set without diminishing 

performance. 

 

Following these criteria, we now illustrate our filtration process. The flowchart of the 

whole procedure is shown in Figure 2. We use the initial model trained with TP+TN 

to label the LP data we collected. Those abstracts in the original LP with an SVM 

output in [γ+, 1] are retained. The dataset after filtering out irrelevant instances in LP 

is referred to as ‘selected likely-positive data’ (LP*).  

 

The construction of selected likely-negative (LN*) data is similar. We collect 50k 

unlabeled abstracts from the PubMed biomedical literature database and classify them 

by our initial model. The articles with an SVM output in [-1, γ-] are collected into the 

LN* dataset.  

 

The two thresholds γ+ and γ- are empirically determined to be 0 and -0.9, respectively. 

We use a looser threshold to filter LP data because of our prior knowledge of their 

reliability: after all, they have been recorded as PPI-relevant in some databases.  

Exploiting likely positive and negative Data 

The final issue is how to utilize these filtered instances. As shown in Figure 2, the 

likely data (LP* + LN*) are used to train a SVM model, the ancillary model, which is 

completely independent of the original training set. Subsequently, we use the ancillary 

model to predict all TP and TN instances, though their labels are already known, and 

these predicted values are scaled by a factor κ and encoded as additional features in 

the final model. In this manner, the final model can assign a suitable weight to the 

output of the ancillary model based on its accuracy in predicting the training set, 
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which is assumed to be close to the accuracy in predicting the test set. The scaling 

factor κ can be regarded as a prior confidence in the ancillary model. 
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Figures 
Figure 1.  A PPI record in the MINT database 

 

Figure 2. Flowchart of constructing the final model 
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Tables 
Table 1. The contingency table for document frequency of term ti in different 

classes. ¬ti stands for all words other than ti 

Class ti ¬ti 

Positive w x 

Negative y z 

 

Table 2: Datasets used in our experiment  

Dataset Size (# of abstracts) 

Training 

True Positive (TP) 3,536 
True Negative (TN) 1,959 
Likely Positive (LP) 18,930 
Likely Negative (LN) 105,000  

Test Positive 338 
Negative 339 

 



 - 22 - 

Table 3. Scores of different methods using PNs, all scores are shown in 
percentage 

 

Weight 
Method 

RF TFRF TFIDF 
F AUC F AUC F AUC 

BoW 78.01 84.60 75.67 81.64 73.52 79.32 

BoW + BoP 78.31 84.26 75.85 80.50 73.28 79.12 

BoW + BoN 78.13 84.45 75.62 80.97 73.32 78.96 

CBoW 80.14 87.88 76.88 83.35 75.62 80.27 

 

Table 4. Scores of original training set vs. the expanded one, all scores are 

shown in percentage 

Weight 

Method 

RF TFRF TFIDF 

F AUC F AUC F AUC 

TN+TP 80.14 87.88 76.88 83.35 75.62 80.27 

+LN*+LP* 80.34 88.06 78.69 85.72 77.70 83.48 

 

Table 5. Compared with BioCreAtIvE-II systems 

System F(%) AUC(%) 

Our system 80.34 88.06 

BioCreAtIvE-II best 78.00 85.54 

BioCreAtIvE-II median 72.24 75.15 
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Table 6. Words with higher variance in weights assigned by SVM 

Term Bag 0 Bag 1 Bag 2 Dev.

interact -0.031  0.150  0.294 0.163 

bind 0.060  -0.017  0.236 0.130 

vitro -0.043  0.038  0.180 0.113 

with 0.029  0.073  0.243 0.113 

bound -0.006  -0.011  0.168 0.102 

association -0.001  0.068  0.188 0.096 

specifically -0.037  0.055  0.150 0.093 

interaction 0.243  0.227  0.393 0.092 

identify -0.045  0.081  0.124 0.088 

localize 0.031  0.020  0.171 0.084 

stimulation -0.007 0.012 0.142 0.081

regulate 0.042 -0.008 0.147 0.079

complex 0.125 0.212 0.281 0.078

phosphorylation -0.012 -0.007 0.124 0.077

target -0.020 0.006 0.121 0.075

 

Table 7. Examples corrected by CBoW 

Type PMID Content 

FP→TN 9707401 In eukaryotes, assembly of the 

mitotic spindle requires the 

interaction of chromosomes with 

microtubules 

FN→TP 16286467 We describe a mechanism whereby 

IL-1beta stimulation of NFkappaB is 

partially regulated by H2O2-

mediated activation of NIK and 

subsequent NIK-mediated 

phosphorylation of IKKalpha 
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Table 8. Summary of weights in different bags 

 Bag 0 Bag 1 Bag 2 

Mean -5.6×10-5 60×10-5 104×10-5 

Dev. 1.38×10-2 1.39×10-2 1.77×10-2 

 

Table 9. p-values of hypothesis test on the equality of means and standard 

deviations of weights 

 Bag 0 vs. 1 Bag 0 vs. 2 Bag 1 vs. 2 

Mean 5.813×10-6
 * 2.642×10-7 * 0.2926  

Dev. 0.3158 <2.2×10-16 * <2.2×10-16 * 

*significant difference 

 

 
 
 


