
© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

Parallel Data Encryption Based on Tinkerbell and
Ikeda Chaotic Functions

Borislav Stoyanov 1 and Dimitar Dobrev 1

1 Konstantin Preslavsky University of Shumen, 115 Universitetska Str., Shumen, 9700,
Bulgaria

Abstract
In this paper, we present a parallel encryption algorithm based on the
Tinkerbell and Ikeda chaotic functions in order to meet the multi-core
processor. The parallel algorithm is constructed with a data parallel approach.
The experimental outputs show that the parallel encryption proposes more
efficient performance against the serial execution of the scheme.

Keywords
Parallel encryption, Tinkerbell chaotic function, Ikeda chaotic function,
NIST statistical tests, PractRand statistical tests, ENT statistical tests

1. Introduction

The enchanting knowledge in data processing and communication inter-
change have created a high demand for the secure of multimedia communication
over the Internet. A major challenge is to protect confidentiality for the informa-
tion in the networks. Modern ciphers like RC4 [1], Salsa20 [2], and SEAL [3] are
constructed with confusion and diffusion characteristics. These two characteris-
tics can likewise be found in chaotic functions, which are normally recognized
by sensitive dependence on initial parameters and by having evolution through
phase space that appears to be perfectly random. As of late, various chaos-based
cryptographic encryption scheme have been presented [4, 5, 6]. In [7], a novel
pseudo-random number generator (PRNG), based on a novel logarithmic chaotic
map is presented. Two Tinkerbell functions are used to novel image encryption
scheme designed in [8].

Parallel computations are used to make encryption quicker and less expen-
sive. Parallel encryption algorithm for multi-core processor based on logistic map
are presented in [9, 10, 11, 12, 13]. In this study, parallel calculations with multi-
core CPU is used to gain both time execution and security level of the designed

Information Systems & Grid Technologies: Fifteenth International Conference ISGT’2022, May 27–28, 2022, Sofia, Bulgaria
EMAIL: borislav.stoyanov@shu.bg (B. Stoyanov); d.d.dobrev@shu.bg (D. Dobrev)
ORCID: 0000-0002-7307-5914 (B. Stoyanov); 0000-0001-5789-9115 (D. Dobrev)

37

encryption scheme. Inspired from [14], the main contributions of our study can
be summarized as follows:

• we present novel pseudo-random byte generation scheme based on Tin-
kerbell and Ikeda chaotic functions, which has good statistical characteris-
tics;
• we design novel parallel encryption algorithm with high level of security.

2. New pseudo-random byte generator based on Tinkerbell and
Ikeda chaotic functions

2.1. Description of the chaotic functions
The Tinkerbell map [15] is a two-dimensional discrete-time dynamical sys-

tem given by:
 xn+1 = x2

n – y2
n + axn + byn (1)

 yn+1 = 2xnyn – cxn + dyn, (2)
where a = 0.9, b = 0.6013, c = 2.0 and d = 0.50.

 zn+1 = 1 + u(cos tn + wnsin tn) (3)
 wn+1 = u(znsin tn + wncos tn) (4)

The two-dimensional Ikeda chaotic function is given by [16, 17]:

where u is a parameter u = 0.7941 and
 6 tn = 0.4 – –––––––––– (5)
 1+ z2

n + w2
n

2.2. New pseudo-random byte generation algorithm
The proposed generator consists of the next steps:
1. The initial values x0, y0, z0, and w0 from Tinkerbell and Ikeda chaotic
maps are determined.
2. The two chaotic maps are iterated for J and K times, respectively.
3. The iteration continues, and as a result, four real fractions are generated
and postprocessed as positive bytes.
4. Perform XOR operation between xi, yi, zi, and wi to get a single output
byte.
5. Return to Step 2 until the byte output is reached.

38

2.3. Performance evaluation
In case of serial encryption, the initial key is a set of all initial values of the

proposed pseudo-random generator. There are four 64 bits floating-point values
by 51 significant bits each [18]. The initial seed of the proposed byte generation
algorithm is 204 bits. This is sufficiently high against exhaustive search [19].

In order to estimate pseudo-randomness of the output bytes, we used the
statistical programs NIST [20], PractRand [21], and ENT [22].

The NIST application consists 15 statistical tests: frequency, block frequen-
cy, cumulative sums forward and reverse, runs, longest run of ones, rank, spec-
tral, non-overlapping templates, overlapping templates, universal, approximate
entropy, serial first and second, linear complexity, random excursion, and random
excursion variant. For the NIST tests, we generated 1000 different byte streams of
length 125,000 bytes each. The outputs from the tests are given in Table 1.

Table 1
NIST test application results
Test P-value Pass rate
Frequency (monobit) 0.643366 993/1000
Block-frequency 0.193767 990/1000
Cumulative sums (Forward) 0.814724 993/1000
Cumulative sums (Reverse) 0.870856 995/1000
Runs 0.310049 984/1000
Longest run of Ones 0.332970 995/1000
Rank 0.009810 996/1000
FFT 0.104371 990/1000
Non-overlapping templates 0.506391 990/1000
Overlapping templates 0.977480 982/1000
Universal 0.867692 990/1000
Approximate entropy 0.637119 983/1000
Random-excursions 0.654500 619/627
Random-excursions Variant 0.465608 620/627
Serial 1 0.994250 994/1000
Serial 2 0.504219 991/1000
Linear complexity 0.433590 996/1000

The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 980 for a sample size = 1000
byte streams. The minimum pass rate for the random excursion (variant) test is
approximately = 613 for a sample size = 627 byte streams. The designed pseudo-

39

random byte generation algorithm passed successfully all the NIST statistical
tests.

The PractRand application [21] outputs 34 p-values and they are in the ap-
propriate (0,1] interval, Table 2 and Table 3. The proposed new pseudo-random
byte generator passed successfully all of PractRand tests.

Table 2
PractRand test application results-I
Test P-value Pass rate
BCFN(2,13):! R= +0.0 “pass”
BCFN(2+0,13-2) R= -4.4 p = 0.970
BCFN(2+1,13-3) R= -1.4 p = 0.715
BCFN(2+2,13-3) R= -2.8 p = 0.873
BCFN(2+3,13-4) R= +2.1 p = 0.190
BCFN(2+4,13-5) R= -3.3 p = 0.923
BCFN(2+5,13-5) R= -3.3 p = 0.925
BCFN(2+6,13-6) R= -1.8 p = 0.770
BCFN(2+7,13-6) R= +0.8 p = 0.335
BCFN(2+8,13-7) R= +1.4 p = 0.252
BCFN(2+9,13-8) R= -0.4 p = 0.499
DC6-9x1Bytes-1 R= -2.0 p = 0.933
Gap-16:! R= +0.0 “pass”
Gap-16:A R= +1.9 p = 0.171
Gap-16:B R= +0.9 p = 0.270

Table 3
PractRand test application results-II
Test P-value Pass rate
Low1/8 BCFN(2,13):! R= +0.0 “pass”
Low1/8 BCFN(2+0,13-4) R= +0.0 p = 0.474
Low1/8 BCFN(2+1,13-5) R= +0.4 p = 0.401
Low1/8 BCFN(2+2,13-5) R= +0.7 p = 0.363
Low1/8 BCFN(2+3,13-6) R= -2.6 p = 0.868
Low1/8 BCFN(2+4,13-6) R= -1.4 p = 0.696
Low1/8 BCFN(2+5,13-7) R= -3.0 p = 0.925
Low1/8 BCFN(2+6,13-8) R= -1.2 p = 0.664
Low1/8 DC6-9x1Bytes-1 R= -1.8 p = 0.906
Low1/8 Gap-16:! R= +0.0 “pass”
Low1/8 Gap-16:A R= -1.5 p = 0.940
Low1/8 Gap-16:B R= -0.0 p = 0.493
Low4/32 BCFN(2,13):! R= +0.0 “pass”
Low4/32 BCFN(2+0,13-4) R= -5.2 p =1-9.6e-3

40

Low4/32 BCFN(2+1,13-5) R= +1.4 p = 0.269
Low4/32 BCFN(2+2,13-5) R= -2.7 p = 0.873
Low4/32 BCFN(2+3,13-6) R= -2.0 p = 0.791
Low4/32 BCFN(2+4,13-6) R= +2.2 p = 0.169
Low4/32 BCFN(2+5,13-7) R= +0.6 p = 0.349
Low4/32 BCFN(2+6,13-8) R= +2.2 p = 0.160
Low4/32 DC6-9x1Bytes-1 R= +3.1 p = 0.116
Low4/32 Gap-16:! R= +0.0 “pass”
Low4/32 Gap-16:A R= +2.7 p = 0.080
Low4/32 Gap-16:B R= -1.5 p = 0.846

The ENT software [22] is a set of 6 tests. The proposed pseudo-random byte
algorithm passed successfully ENT tests, Table 4.

Table 4
ENT test application results
Test Result
Entropy 7.999998 bits per byte
Optimum compression OC would reduce the size of this 125000000-byte file by 0 %
χ2 distribution For 125000000 samples is 262.30, and randomly would ex-

ceed this value 36.33 % of the time
Arithmetic mean value 127.5048 (127.5 = random)
Monte Carlo π estim. 3.3.141320114 (error 0.01 %)
Serial correl. coeff. -0.0000091 (totally uncorrelated = 0.0)

3. New algorithm of parallel encryption

3.1. New parallel data encryption
The new pseudo-random byte generator based on Tinkerbell and Ikeda cha-

otic functions is used in the construction of the parallel encryption algorithm. The
proposed parallel encryption algorithm consists of the next steps:

1. The input data file is divided into p fragments of the available cores
(threads).
2. The initial values of p pseudo-random generators (from Section 2.2)
based on Tinkerbell and Ikeda chaotic functions, 1 ≤ j ≤ p, x0j, y0j, z0j, and w0j
are determined.
3. The p different chaotic pseudo-random generators are iterated each one
on a thread, and as a result p different pseudo-random bytes are obtained
simultaneously.
4. Perform XOR operation between the p pseudo-random bytes and p bytes
from each part of the fragmented input data file.

41

5. Return to Step 3 until the input byte parts are encrypted.
6. The encrypted parts from all threads are merged in output file.

3.2. Performance evaluation
In case of parallel encryption, the initial key space is a set of p different ini-

tial keys of p byte generation algorithms, Section 2.2. Consequently, the overall
key space of the parallel scheme is p × 204 bits. For example, when 8 threads are
used, the initial seed will be equal to 1632 bits.

For the performance evaluation in the parallel case, tests with different thread
numbers are performed. The laptop CPU in the experiment is Intel(R) Core(TM)
i7-8550U CPU@1.80 GHz 2.00 GHz, 4 cores, 8 threads, hyper-threading acti-
vated; RAM: 8 GB; cache: 8 MB. The speed-up S(p) on p threads of the presented
parallel algorithm is given by the equation [23]:
 T(1) E = ––––– (6)
 T(p)´

Table 5 presents the encryption results and speed-up as the number of threads
increase. The encryption is conducted with p initial keys, as p separate parts are
encrypted with a different key. Apparently, that with 8 cores the proposed algo-
rithm achieves its maximum speed-up. The experiments were performed with
9.92 MB data file.

The results of the security and execution outputs are summarized in Table 6.
Using the given experimental findings, we can complete that the novel parallel
scheme, based on the Tinkerbell and Ikeda maps, has acceptable statistical prop-
erties and provide sufficient data security. One such use of our novel algorithm in
the image and audio encryption techniques. More blocks of the encryption image
can be processed at the same time. Another possible application is the real-time
selective video encryption. More sensitive layers can be encrypted in parallel
with our proposed scheme.

Table 5
Experimental outputs of encryption time of a file with varying number of
threads, the corresponding speed-up, and efficiency.

Threads Encryption time
(s)

Throughput
(MB/s)

Speed-up Efficiency

1 3.61 2.75 – –

2 2.12 4.68 1.70 0.85

4 1.53 6.48 2.36 0.59

8 1.24 8.00 2.90 0.36

42

Table 6
Comparison of our algorithm with other closely related techniques.
Algorithm Entropy Throughput

(MB/s)
Key size (b) Correlation

coefficient
Proposed 7.9999 8.00 1632 -0.0000091
Ref. [13] 7.9979 6.48 505 0.00048
Ref. [14] 7.9972 - 888 0.0052

4. Summary

We have proposed a novel pseudo-random byte generation scheme based on
the Tinkerbell and Ikeda functions. The parallel algorithm is created with a data
parallel method. The experimental outputs show that the parallel encryption pres-
ents more efficient outputs against the serial execution of the algorithm.

5. Acknowledgments

This work is partially supported by the Scientific research fund of University
of Shumen, Bulgaria, under the grant No. RD-08-110/22.02.2022.

6. References

[1] J. Katz, Y. Lindell, Introduction to modern cryptography, CRC press, 2020.
[2] D. J. Bernstein, The Salsa20 Family of Stream Ciphers, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008, pp. 84–97. doi:10.1007/978-3-540-
68351-3_8.

[3] P. Rogaway, D. Coppersmith, A software-optimized encryption algorithm,
J. Cryptol. 11 (1998) 273–287. doi:10.1007/ s001459900048.

[4] N. Munir, M. Khan, M. M. Hazzazi, A. Aljaedi, A. A. K. Haj Ismail, A. R.
Alharbi, I. Hussain, Cryptanalysis of internet of health things encryption
scheme based on chaotic maps, IEEE Access 9 (2021) 105678–105685.
doi:10.1109/ACCESS.2021.3099004.

[5] G. He, W. Wu, L. Nie, J. Wen, C. Yang, W. Yu, An improved image multi-
dimensional chaos encryption algorithm based on cuda, in: 2019 9th In-
ternational Conference on Information Science and Technology (ICIST),
2019, pp. 183–187. doi:10.1109/ICIST.2019.8836920.

[6] J. Luo, H. Shi, Research of chaos encryption algorithm based on logistic map-
ping, in: 2006 International Conference on Intelligent Information Hiding
and Multimedia, 2006, pp. 381–383. doi:10.1109/IIH-MSP.2006.265022.

[7] N. Nesa, T. Ghosh, I. Banerjee, Design of a chaos-based encryption

43

scheme for sensor data using a novel logarithmic chaotic map, Journal of
Information Security and Applications 47 (2019) 320–328. doi:10.1016/j.
jisa.2019.05.017.

[8] P. R. Krishna, C. Surya Teja, R. D. S., T. V., A chaos based image encryp-
tion using tinkerbell map functions, in: 2018 Second International Confer-
ence on Electronics, Communication and Aerospace Technology (ICECA),
2018, pp. 578–582. doi:10.1109/ICECA.2018.8474891.

[9] J. Liu, D. Song, Y. Xu, A parallel encryption algorithm for dual-core pro-
cessor based on chaotic map, in: S. S. Mahmoud, Z. Zeng, Y. Li (Eds.),
Fourth International Conference on Machine Vision (ICMV 2011): Com-
puter Vision and Image Analysis; Pattern Recognition and Basic Technolo-
gies, volume 8350, International Society for Optics and Photonics, SPIE,
2012, pp. 73 – 79. doi:10.1117/12.920226.

[10] W. Wang, X. Wang, D. Song, A parallel chaotic cryptosystem for dual-core
processor, in: The 2nd International Conference on Information Science
and Engineering, 2010, pp.920–923. doi:10.1109/ICISE.2010.5689747.

[11] J. Liu, H. Zhang, D. Song, G. Sun, W. Bi, M. K. Buza, A parallel encryption
algorithm of the logistic map for multicore with openmp, in: Ifost, volume
2, 2013, pp. 47–50. doi:10.1109/IFOST.2013.6616857.

[12] D. Burak, Parallelization of the block encryption algorithm based on logis-
tic map, Przegląd Elektrotechniczny 88 (2012) 198–200.

[13] M. J. Rostami, A. Shahba, S. Saryazdi, H. Nezamabadi-pour, A novel paral-
lel image encryption with chaotic windows based on logistic map, Com-
puters & Electrical Engineering 62 (2017) 384–400. doi:10.1016/j.compel-
eceng.2017.04.004.

[14] Ü. Çavuşoğlu, S. Kaçar, A novel parallel image encryption algorithm based
on chaos, Cluster Computing 22 (2019) 1211–1223. doi:10.1007/s10586-
018-02895-w.

[15] K. T. Alligood, T. D. Sauer, J. A. Yorke, D. Chillingworth, Chaos: an intro-
duction to dynamical systems, Springer, New York, 1996.

[16] K. Ikeda, Multiple-valued stationary state and its instability of the trans-
mitted light by a ring cavity system, Optics Communications 30 (1979)
257–261. doi:10.1016/0030-4018(79)90090-7.

[17] K. Ikeda, H. Daido, O. Akimoto, Optical turbulence: Chaotic behavior of
transmitted light from a ring cavity, Physical Review Letters 45 (1980)
709–712. doi:10.1103/PhysRevLett.45.709.

[18] F.-P. W. Group, IEEE standard for floating-point arithmetic, IEEE Std
754-2019 (Revision of IEEE 754-2008) (2019) 1–84. doi:10.1109/
IEEESTD.2019.8766229.

[19] G. Alvarez, S. Li, Some basic cryptographic requirements for chaos-based
cryptosystems, International Journal of Bifurcation and Chaos 16 (2006)

44

2129–2151. doi:10.1142/S0218127406015970.
[20] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Leven-

son, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite
for random and pseudorandom number generators for cryptographic appli-
cation, 2010. NIST Special Publication 800-22: Revision 1a, Lawrence E.
Bassham III. doi:10.5555/2206233.

[21] C. Doty-Humphrey, Practrand: C++ library of pseudo-random number gen-
erators and statistical tests for rngs (2014). URL: http://pracrand.source-
forge.net.

[22] J. Walker, ENT: A pseudorandom number sequence test program, 2008.
URL: http:// www.fourmilab.ch/random/.

[23] G. M. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, in: Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), Associa-
tion for Computing Machinery, New York, NY, USA, 1967, p. 483–485.
doi:10.1145/1465482.1465560.

