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Abstract
We consider the problem of scattered data interpolation in R3 using curve 
networks extended to smooth interpolation surfaces. Nielson (1983) 
proposed a solution that constructs smooth interpolation curve network 
with minimal L2-norm of the second derivative. The obtained minimum 
norm network (MNN) is cubic. Vlachkova (2020) generalized Nielson’s 
result to smooth interpolation curve networks with minimal Lp-norm of 
the second derivative for 1<p<∞. Vlachkova and Radev (2020) proposed 
an algorithm that degree elevates the MNN to quartic curve network and 
then extends it to a smooth surface consisting of quartic triangular Bézier 
surfaces. Here we apply this algorithm to the following two curve networks: 
(i) the MNN which is degree elevated to quartic; (ii) the minimum Lp-norm 
network for p=3/2 which is slightly modified to quartic. We evaluate and 
compare the quality and the shape of the obtained surfaces with respect to 
different criteria. We performed a large number of experiments using data 
of increasing complexity. Here we present and comment the results of our 
experiments.
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1. Introduction

Interpolation of data points in ℝ3 by smooth surface is a fundamental problem 
in applied mathematics which finds applications in a variety of fields such as medi-
cine, architecture, archeology, computer graphics and animation, bioinformatics, 
scientific visualization, and more. In general the problem can be formulated as 
follows: Given a set of points (xi, yi, zi) ∈ ℝ3, i = 1, ..., n, find a bivariate function 
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F(x, y) defined in a certain domain D containing points Vi = (xi, yi), such that F pos-
sesses continuous partial derivatives up to a given order, and F(xi, yi) = zi.

Various methods and approaches for solving this problem were proposed and 
discussed, see, e.g., the surveys [1, 2, 3], and also [4, 5]. A standard approach to 
solve the problem consists of two steps, see [1]:

1. Construct a triangulation T = T(V1, ..., VN);
2. For every triangle in construct a surface which interpolates the data in 
the three vertices.
The interpolation surface constructed in Step 2 is usually polynomial or 

piecewise polynomial. Typically, the patches are computed with a priori pre-
scribed normal vectors at the data points G1 or G2 smoothness of the resulting 
surface is achieved either by increasing the degree of the patches, or by the so 
called splitting [6] in which for each triangle in T a macro-patch consisting of a 
fixed number of Bézier sub-patches is constructed. Splitting allows to keep the 
degree of the Bézier patches low by increasing the degrees of freedom. In prac-
tice using patches of least degree and splitting is preferable since it is computa-
tionally simple and efficient.

Shirman and Séquin [7, 8] construct a G1 smooth surface consisting of quartic 
triangular Bézier surfaces. Their method assumes that the normal vectors at the 
data points are given as part of the input. Shirman and Séquin construct a smooth 
cubic curve network defined on the edges of T, first, and then degree elevate it 
to quartic. Next, they apply splitting where for each triangle in T a macro-patch 
consisting of three quartic Bézier sub-patches is constructed. To compute the in-
ner Bézier control points closest to the boundary of the macro-patch, Shirman and 
Séquin use a method proposed by Chiyokura and Kimura [9, 10]. The interpola-
tion surfaces constructed by Shirman and Séquin’s algorithm often suffer from 
unwanted bulges, tilts, and shears as pointed out by the authors in [11] and more 
recently by Hettinga and Kosinka in [12].

Nielson [13] proposed a three-steps method for solving the interpolation 
problem as follows:

Step 1. Triangulation. Construct a triangulation T of Vi, i = 1, ..., n. The do-
main D is the union of all triangles in T.

Step 2. Minimum norm network. The interpolant F and its first order partial 
derivatives are defined on the edges of T to satisfy an extremal property. The 
resulting MNN is a cubic curve network, i. e. on every edge of T it is a cubic 
polynomial. 

Step 3. Interpolation surface. The MNN obtained is extended to F by an 
appropriate blending method based on convex combination schemes. Nielson’s 
interpolant F is a rational function on every triangle in T. 

Andersson et al. [14] focused on Step 2 of the above method, namely the 
construction of the MNN. The authors gave a new proof of Nielson’s result by 
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using a different approach. They constructed a system of simple linear curve net-
works called basic curve networks and then represented the second derivative 
of the MNN as a linear combination of these basic curve networks. The new ap-
proach allows to consider and handle the case where the data are convex and we 
seek a convex interpolant. Andersson et al. formulate the corresponding extremal 
constrained interpolation problem of finding a minimum norm network that is 
convex along the edges of the triangulation. The extremal network is character-
ized as a solution to a nonlinear system of equations.

Vlachkova and Radev [15] proposed an algorithm for interpolation of data 
in ℝ3 which improves on Shirman and Séquin’s approach in the following way. 
First, they use Nielson’s MNN which is degree elevated to quartic curve network. 
Second, they extend it to a smooth surface consisting of quartic triangular Bézier 
patches by applying different strategy for computation of the control points. A 
significant advantage of Nielson’s method is that the normal vectors at the data 
points are obtained through the computation of the MNN. Moreover, during the 
computation of control points closest to the boundary of a macro-patch, Vlach-
kova and Radev [15] adopt additional criteria so that to avoid unwanted distor-
tions and twists which appear in surfaces constructed by Shirman and Séquin’s 
method. As a result, the quality of the resulting surfaces is improved.

Vlachkova [16] extended Nielson’s MNN to minimum Lp-norm networks for 
1 < p < ∞. The most important conclusions in [16] are as follows: 

• the results allow the efficient computation of the minimum Lp-norm net-
works for 1 < p < ∞; 
• the normal vectors at the data points are obtained simultaneously with the 
computation of the minimum Lp-norm networks; 
• the minimum Lp-norm networks are obtained through a global optimiza-
tion which improves their shape; 
• the results allows the construction of optimized polynomial minimum 
norm networks of a priori given degree. 
In this paper, we consider the following two curve networks: 
(i) Nielson’s MNN which is degree elevated to quartic; 
 (ii) the minimum Lp-norm network for p = 3/2 which is slightly modified to 
quartic. 
Using the algorithm proposed in [15], we construct the corresponding two 

interpolation surfaces consisting of quartic triangular Bézier patches. Our goal 
is to evaluate and compare the quality and the shape of these surfaces. We have 
chosen the following criteria for comparison: 

 (i) the highlight-line algorithm [17]; 
 (ii) the color plot of the Gaussian curvature; 
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 (iii)  the maximum distance between the function sampled at the data points 
and the corresponding interpolant. 
Our work and contributions presented here are in the field of experimental 

algorithmics. We share and comment on the observations from the experiments 
performed, which will help to further optimize the quality and the shape of the 
interpolation surfaces generated with the algorithm proposed in [15].

2. Preliminaries and related work

Let n ≥ 3 be an integer and Pi: = (xi, yi, zi), i = 1, ..., n be different points in 
ℝ3. We call this set of points data. We assume that the projections Vi = (xi, yi) of 
the data Oxy into the plane are different and non-collinear. Stressing the fact that 
Vi are in a general position, although not necessarily irregularly placed, we call 
such data scattered.

Definition 1. A collection of non-overlapping, non-degenerate triangles in is 
a triangulation of the points Vi, i = 1, ..., n, if the set of the vertices of the triangles 
coincides with the set of the points Vi, i = 1, ..., n.

Hereafter we assume that a triangulation T of the points Vi, i = 1, ..., n, is 
given and fixed. Furthermore, for the sake of simplicity, we assume that the do-
main D formed by the union of the triangles in T is connected. In general D is 
a collection of polygons with holes. The set of the edges of the triangles in T is 
denoted by E. If there is an edge between Vi and Vj in E, it will be referred to by 
eij or simply by e if no ambiguity arises.

Definition 2. A curve network is a collection of real-valued univariate func-
tions {fe}e∈E defined on the edges in E. 

With any real-valued bivariate function defined on we naturally associate the 
curve network defined as the restriction of on the edges in , i. e. for , 

 (1)

where 0 ≤ t ≤ || e || and || e || = 

Furthermore, according to the context F will denote either a real-valued bi-
variate function or a curve network defined by (1). For p, such that 1 < p < ∞, we 
introduce the following class of smooth interpolants 

where is the class of bivariate continuous functions defined in D, AC is the 
class of univariate absolutely continuous functions defined in [0, || e ||], and Lp 
is the class of univariate functions defined in [0, || e ||] whose p-th power of the 
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absolute value is Lebesgue integrable. The restrictions on E of the functions in Fp 
form the corresponding class of so-called smooth interpolation curve networks 

  (2)

The smoothness of the interpolation curve network F ∈ Cp(E) geometrically 
means that at each point Pi there is a tangent plane to F, where a plane is tangent 
to the curve network at a point Pi if it contains the tangent vectors at Pi of the 
curves incident to Pi.

Inner product and Lp-norm are defined in Cp(E) by 

where F ∈ Cp(E) and G: = {ge}e∈E ∈ Cp(E). We denote the networks of the 
second derivative of F by F″: = {fe″}e∈E and consider the following extremal 
problem: 

For i = 1, ..., n let mi denote the degree of the vertex Vi, i. e. the number of 
the edges in E incident to Vi. In [14] for any pair of indices is, such that i = 1, ..., 
n and s = 1, ..., mi – 2, a basic curve network Bis is defined on E. The basic curve 
networks are linear curve networks of minimal support.

Let q be the conjugate of p, i.e. 1/p + 1/q = 1. In [16] a full characterization of 
the solution F * to the extremal problem (Pp) for 1 < p < ∞ was made. It was shown 
that the curve network F * ∈ Cp(E) solves problem (Pp) for 1 < p < ∞ if and only if 

where  The coefficients αis are ob-
tained as the unique solution to a system of equations which is nonlinear except 
in the case p = 2 where it is linear. We note that Nielson’s MNN is obtained for p 
= 2. We also note that in the case where q is an even number then the correspond-
ing minimum Lp-norm network is a polynomial curve network of degree q + 1. 
In the case where q is an odd number then on every edge of the triangulation the 
corresponding minimum Lp-norm network is either a polynomial of degree q + 1, 
or a spline of degree q + 1 with one knot.

Now we briefly discuss the constrained interpolation problem of finding a 
minimum norm network which is convex along the edges of T. We recall that this 
problem was set and solved in [14].

For a given triangulation, there is a unique continuous function L : D → ℝ1 
that is linear inside each of the triangles of T and interpolates the data. 
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Definition 3. Scattered data D in are convex if there exists a triangulation T 
of Vi, i = 1, ..., n, such that the corresponding function L is convex. The data are 
strictly convex if they are convex and the gradient of L has a jump discontinuity 
across each edge inside D.

We introduce the class of smooth interpolation edge convex curve networks 

and consider the following constrained extremal interpolation problem 

In [14] it was shown that in the case of strictly convex data problem has a 
unique solution (the edge convex MNN) such that 

where (x)+ : = max(x, 0), and αis ∈ ℝ. The coefficients αis are obtained as the 
unique solution to a nonlinear system of equations. The solution F̂* on each edge 
in T is either a convex cubic polynomial, or a convex cubic spline with one knot 
consisting of a linear function and a convex cubic polynomial.

In this paper we consider the unconstrained problem (Pp) for p = 3/2 and 
also the constrained problem (P̂). The solution of (Pp) for p = 3/2 (hence q =3) on 
each edge in T is a quartic spline with at most one knot. For both problems, we 
slightly modify their solutions to obtain a polynomial curve networks (quartic for 
(Pp) for p = 3/2,  and cubic for (P̂)) while preserving the same tangent planes at 
the data points.

Figure 1: Example 1: (left). The triangulation; (right) The MNN (p=2)
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Figure 2: Example 1. Example 1. The surface interpolating the MNN: (left) 
Highlight lines on the surface; (right) Gaussian curvature: the color scale goes 
from blue (low) to red (large)

Figure 3: Example 1. The surface interpolating the modified edge convex 
MNN: (left) Highlight lines on the surface; (right) Gaussian curvature: the 
color scale goes from blue (low) to red (large)

3. Results from the experiments

Here we present and comment on two examples from the experiments per-
formed and we share our observations and conclusions. We use BezierView [18] 
to visualize the highlight lines and the Gaussian curvature of the interpolation 
surfaces.

Example 1. We consider data obtained from a symmetric triangular pyra-
mid. We have n = 4,  
V4 = (0,0), and zi = 0, i = 1,2,3, z4 = –1/2. The triangulation and the correspond-
ing MNN are shown in Figure 1. The highlight lines on the interpolation surface 
are visualized in Figure 2 (left). The Gaussian curvature is visualized in Figure 
2 (right) where the color scale goes from blue (low) to red (large). The mini-
mum value of the Gaussian curvature is -11.8318, the maximum value is 34.3368. 
The surface that interpolates the edge convex MNN is shown in Figure 3. The 
highlight lines of this surface are visualized in Figure 3 (left) and its Gaussian 
curvature is visualized in Figure 3 (right). The minimum value of the Gaussian 
curvature is -0.6046, and the maximum value is 36.1598.
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Table 1
The data for Example 2

Example 2. We consider the convex function f = exp((x – 0.5)2 + (y – 0.5)2) 
which is sampled at 25 points shown in Table 1. The triangulation, which is 
shown in Figure 4 (left), is the Delaunay triangulation. The corresponding edge 
convex MNN is shown in Figure 4 (right). The highlight lines on the surface are 
visualized in Figure 6. 

For Example 1, see Figure 2, we can see that our interpolant for the uncon-
strained case is visually pleasant: the highlight lines are smooth with a small 
number of inflection points (if any), and the Gaussian curvature is evenly dis-
tributed. The highlight lines of the surface interpolating the edge convex MNN 
in Figure 3 (left) also look nicely as in the unconstrained case but the Gaussian 
curvature in Figure 3 (right) is not evenly distributed.

For Example 2 where the data are sampled from the convex exponential func-
tion, it is clearly seen that the interpolation surface generated from our algorithm 
presented in [15], see Figure 5 (right), significantly improves on the surface gener-
ated from Shirman and Sequin’s algorithm [7, 8], see Figure 5 (left). Although at 
first glance the surface in Figure 5 (right) visually even appears convex, when we 
examine the highlight lines in Figure 6 in detail, it is clearly seen that it is not convex.

The above observations shows that the algorithm presented in [15] can be 
refined and improved further. Another conclusion obtained from our preliminary 
numerical experiments is that using the modified quartic minimum Lp-norm net-
work for p = 3/2 gives better results with respect to the maximum distance than 
using the degree elevated MNN.

4. Conclusion and future work

Given the importance of surface modeling and simulation techniques in 
practice, it is important to better understand and create interpolation surfaces with 
good approximation properties based on different criteria. In the future we intend 
to enlarge our work by analyzing in-depth more data sets, which will support 
further optimization of our algorithm [15]. More details will be presented in the 
full version of this paper.
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Figure 4: Example 2: (left) The Delaunay triangulation for n=25; (right) The 
edge convex MNN

Figure 5: Comparison of two interpolation surfaces for the data in Example 2: 
(left) The surface generated using Shirman and Sequin’s algorithm; (right) The 
surface generated using Algorithm 2 in [15]

Figure 6: Example 2: The highlight lines of the surface interpolating the edge 
convex MNN and generated using Algorithm 2 in [15]
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